1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 31 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 35 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MachineScheduler.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/MC/MCAsmInfo.h" 44 #include "llvm/MC/TargetRegistry.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Transforms/CFGuard.h" 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 62 // Register the target. 63 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 64 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 65 66 PassRegistry &PR = *PassRegistry::getPassRegistry(); 67 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 68 initializeX86LowerAMXTypeLegacyPassPass(PR); 69 initializeX86PreAMXConfigPassPass(PR); 70 initializeX86PreTileConfigPass(PR); 71 initializeGlobalISel(PR); 72 initializeWinEHStatePassPass(PR); 73 initializeFixupBWInstPassPass(PR); 74 initializeEvexToVexInstPassPass(PR); 75 initializeFixupLEAPassPass(PR); 76 initializeFPSPass(PR); 77 initializeX86FixupSetCCPassPass(PR); 78 initializeX86CallFrameOptimizationPass(PR); 79 initializeX86CmovConverterPassPass(PR); 80 initializeX86TileConfigPass(PR); 81 initializeX86FastPreTileConfigPass(PR); 82 initializeX86FastTileConfigPass(PR); 83 initializeX86LowerTileCopyPass(PR); 84 initializeX86ExpandPseudoPass(PR); 85 initializeX86ExecutionDomainFixPass(PR); 86 initializeX86DomainReassignmentPass(PR); 87 initializeX86AvoidSFBPassPass(PR); 88 initializeX86AvoidTrailingCallPassPass(PR); 89 initializeX86SpeculativeLoadHardeningPassPass(PR); 90 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 91 initializeX86FlagsCopyLoweringPassPass(PR); 92 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 93 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 94 initializeX86OptimizeLEAPassPass(PR); 95 initializeX86PartialReductionPass(PR); 96 initializePseudoProbeInserterPass(PR); 97 } 98 99 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 100 if (TT.isOSBinFormatMachO()) { 101 if (TT.getArch() == Triple::x86_64) 102 return std::make_unique<X86_64MachoTargetObjectFile>(); 103 return std::make_unique<TargetLoweringObjectFileMachO>(); 104 } 105 106 if (TT.isOSBinFormatCOFF()) 107 return std::make_unique<TargetLoweringObjectFileCOFF>(); 108 return std::make_unique<X86ELFTargetObjectFile>(); 109 } 110 111 static std::string computeDataLayout(const Triple &TT) { 112 // X86 is little endian 113 std::string Ret = "e"; 114 115 Ret += DataLayout::getManglingComponent(TT); 116 // X86 and x32 have 32 bit pointers. 117 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 118 Ret += "-p:32:32"; 119 120 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 121 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 122 123 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 124 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 125 Ret += "-i64:64"; 126 else if (TT.isOSIAMCU()) 127 Ret += "-i64:32-f64:32"; 128 else 129 Ret += "-f64:32:64"; 130 131 // Some ABIs align long double to 128 bits, others to 32. 132 if (TT.isOSNaCl() || TT.isOSIAMCU()) 133 ; // No f80 134 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 135 Ret += "-f80:128"; 136 else 137 Ret += "-f80:32"; 138 139 if (TT.isOSIAMCU()) 140 Ret += "-f128:32"; 141 142 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 143 if (TT.isArch64Bit()) 144 Ret += "-n8:16:32:64"; 145 else 146 Ret += "-n8:16:32"; 147 148 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 149 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 150 Ret += "-a:0:32-S32"; 151 else 152 Ret += "-S128"; 153 154 return Ret; 155 } 156 157 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 158 bool JIT, 159 Optional<Reloc::Model> RM) { 160 bool is64Bit = TT.getArch() == Triple::x86_64; 161 if (!RM.hasValue()) { 162 // JIT codegen should use static relocations by default, since it's 163 // typically executed in process and not relocatable. 164 if (JIT) 165 return Reloc::Static; 166 167 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 168 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 169 // use static relocation model by default. 170 if (TT.isOSDarwin()) { 171 if (is64Bit) 172 return Reloc::PIC_; 173 return Reloc::DynamicNoPIC; 174 } 175 if (TT.isOSWindows() && is64Bit) 176 return Reloc::PIC_; 177 return Reloc::Static; 178 } 179 180 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 181 // is defined as a model for code which may be used in static or dynamic 182 // executables but not necessarily a shared library. On X86-32 we just 183 // compile in -static mode, in x86-64 we use PIC. 184 if (*RM == Reloc::DynamicNoPIC) { 185 if (is64Bit) 186 return Reloc::PIC_; 187 if (!TT.isOSDarwin()) 188 return Reloc::Static; 189 } 190 191 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 192 // the Mach-O file format doesn't support it. 193 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 194 return Reloc::PIC_; 195 196 return *RM; 197 } 198 199 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 200 bool JIT, bool Is64Bit) { 201 if (CM) { 202 if (*CM == CodeModel::Tiny) 203 report_fatal_error("Target does not support the tiny CodeModel", false); 204 return *CM; 205 } 206 if (JIT) 207 return Is64Bit ? CodeModel::Large : CodeModel::Small; 208 return CodeModel::Small; 209 } 210 211 /// Create an X86 target. 212 /// 213 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 214 StringRef CPU, StringRef FS, 215 const TargetOptions &Options, 216 Optional<Reloc::Model> RM, 217 Optional<CodeModel::Model> CM, 218 CodeGenOpt::Level OL, bool JIT) 219 : LLVMTargetMachine( 220 T, computeDataLayout(TT), TT, CPU, FS, Options, 221 getEffectiveRelocModel(TT, JIT, RM), 222 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 223 OL), 224 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 225 // On PS4, the "return address" of a 'noreturn' call must still be within 226 // the calling function, and TrapUnreachable is an easy way to get that. 227 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 228 this->Options.TrapUnreachable = true; 229 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 230 } 231 232 setMachineOutliner(true); 233 234 // x86 supports the debug entry values. 235 setSupportsDebugEntryValues(true); 236 237 initAsmInfo(); 238 } 239 240 X86TargetMachine::~X86TargetMachine() = default; 241 242 const X86Subtarget * 243 X86TargetMachine::getSubtargetImpl(const Function &F) const { 244 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 245 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 246 Attribute FSAttr = F.getFnAttribute("target-features"); 247 248 StringRef CPU = 249 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 250 StringRef TuneCPU = 251 TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU; 252 StringRef FS = 253 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 254 255 SmallString<512> Key; 256 // The additions here are ordered so that the definitely short strings are 257 // added first so we won't exceed the small size. We append the 258 // much longer FS string at the end so that we only heap allocate at most 259 // one time. 260 261 // Extract prefer-vector-width attribute. 262 unsigned PreferVectorWidthOverride = 0; 263 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 264 if (PreferVecWidthAttr.isValid()) { 265 StringRef Val = PreferVecWidthAttr.getValueAsString(); 266 unsigned Width; 267 if (!Val.getAsInteger(0, Width)) { 268 Key += 'p'; 269 Key += Val; 270 PreferVectorWidthOverride = Width; 271 } 272 } 273 274 // Extract min-legal-vector-width attribute. 275 unsigned RequiredVectorWidth = UINT32_MAX; 276 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 277 if (MinLegalVecWidthAttr.isValid()) { 278 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 279 unsigned Width; 280 if (!Val.getAsInteger(0, Width)) { 281 Key += 'm'; 282 Key += Val; 283 RequiredVectorWidth = Width; 284 } 285 } 286 287 // Add CPU to the Key. 288 Key += CPU; 289 290 // Add tune CPU to the Key. 291 Key += TuneCPU; 292 293 // Keep track of the start of the feature portion of the string. 294 unsigned FSStart = Key.size(); 295 296 // FIXME: This is related to the code below to reset the target options, 297 // we need to know whether or not the soft float flag is set on the 298 // function before we can generate a subtarget. We also need to use 299 // it as a key for the subtarget since that can be the only difference 300 // between two functions. 301 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 302 // If the soft float attribute is set on the function turn on the soft float 303 // subtarget feature. 304 if (SoftFloat) 305 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 306 307 Key += FS; 308 309 // We may have added +soft-float to the features so move the StringRef to 310 // point to the full string in the Key. 311 FS = Key.substr(FSStart); 312 313 auto &I = SubtargetMap[Key]; 314 if (!I) { 315 // This needs to be done before we create a new subtarget since any 316 // creation will depend on the TM and the code generation flags on the 317 // function that reside in TargetOptions. 318 resetTargetOptions(F); 319 I = std::make_unique<X86Subtarget>( 320 TargetTriple, CPU, TuneCPU, FS, *this, 321 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 322 PreferVectorWidthOverride, RequiredVectorWidth); 323 } 324 return I.get(); 325 } 326 327 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 328 unsigned DestAS) const { 329 assert(SrcAS != DestAS && "Expected different address spaces!"); 330 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 331 return false; 332 return SrcAS < 256 && DestAS < 256; 333 } 334 335 //===----------------------------------------------------------------------===// 336 // X86 TTI query. 337 //===----------------------------------------------------------------------===// 338 339 TargetTransformInfo 340 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 341 return TargetTransformInfo(X86TTIImpl(this, F)); 342 } 343 344 //===----------------------------------------------------------------------===// 345 // Pass Pipeline Configuration 346 //===----------------------------------------------------------------------===// 347 348 namespace { 349 350 /// X86 Code Generator Pass Configuration Options. 351 class X86PassConfig : public TargetPassConfig { 352 public: 353 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 354 : TargetPassConfig(TM, PM) {} 355 356 X86TargetMachine &getX86TargetMachine() const { 357 return getTM<X86TargetMachine>(); 358 } 359 360 ScheduleDAGInstrs * 361 createMachineScheduler(MachineSchedContext *C) const override { 362 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 363 DAG->addMutation(createX86MacroFusionDAGMutation()); 364 return DAG; 365 } 366 367 ScheduleDAGInstrs * 368 createPostMachineScheduler(MachineSchedContext *C) const override { 369 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 370 DAG->addMutation(createX86MacroFusionDAGMutation()); 371 return DAG; 372 } 373 374 void addIRPasses() override; 375 bool addInstSelector() override; 376 bool addIRTranslator() override; 377 bool addLegalizeMachineIR() override; 378 bool addRegBankSelect() override; 379 bool addGlobalInstructionSelect() override; 380 bool addILPOpts() override; 381 bool addPreISel() override; 382 void addMachineSSAOptimization() override; 383 void addPreRegAlloc() override; 384 bool addPostFastRegAllocRewrite() override; 385 void addPostRegAlloc() override; 386 void addPreEmitPass() override; 387 void addPreEmitPass2() override; 388 void addPreSched2() override; 389 bool addPreRewrite() override; 390 391 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 392 }; 393 394 class X86ExecutionDomainFix : public ExecutionDomainFix { 395 public: 396 static char ID; 397 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 398 StringRef getPassName() const override { 399 return "X86 Execution Dependency Fix"; 400 } 401 }; 402 char X86ExecutionDomainFix::ID; 403 404 } // end anonymous namespace 405 406 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 407 "X86 Execution Domain Fix", false, false) 408 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 409 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 410 "X86 Execution Domain Fix", false, false) 411 412 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 413 return new X86PassConfig(*this, PM); 414 } 415 416 void X86PassConfig::addIRPasses() { 417 addPass(createAtomicExpandPass()); 418 419 // We add both pass anyway and when these two passes run, we skip the pass 420 // based on the option level and option attribute. 421 addPass(createX86LowerAMXIntrinsicsPass()); 422 addPass(createX86LowerAMXTypePass()); 423 424 TargetPassConfig::addIRPasses(); 425 426 if (TM->getOptLevel() != CodeGenOpt::None) { 427 addPass(createInterleavedAccessPass()); 428 addPass(createX86PartialReductionPass()); 429 } 430 431 // Add passes that handle indirect branch removal and insertion of a retpoline 432 // thunk. These will be a no-op unless a function subtarget has the retpoline 433 // feature enabled. 434 addPass(createIndirectBrExpandPass()); 435 436 // Add Control Flow Guard checks. 437 const Triple &TT = TM->getTargetTriple(); 438 if (TT.isOSWindows()) { 439 if (TT.getArch() == Triple::x86_64) { 440 addPass(createCFGuardDispatchPass()); 441 } else { 442 addPass(createCFGuardCheckPass()); 443 } 444 } 445 446 if (TM->Options.JMCInstrument) 447 addPass(createJMCInstrumenterPass()); 448 } 449 450 bool X86PassConfig::addInstSelector() { 451 // Install an instruction selector. 452 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 453 454 // For ELF, cleanup any local-dynamic TLS accesses. 455 if (TM->getTargetTriple().isOSBinFormatELF() && 456 getOptLevel() != CodeGenOpt::None) 457 addPass(createCleanupLocalDynamicTLSPass()); 458 459 addPass(createX86GlobalBaseRegPass()); 460 return false; 461 } 462 463 bool X86PassConfig::addIRTranslator() { 464 addPass(new IRTranslator(getOptLevel())); 465 return false; 466 } 467 468 bool X86PassConfig::addLegalizeMachineIR() { 469 addPass(new Legalizer()); 470 return false; 471 } 472 473 bool X86PassConfig::addRegBankSelect() { 474 addPass(new RegBankSelect()); 475 return false; 476 } 477 478 bool X86PassConfig::addGlobalInstructionSelect() { 479 addPass(new InstructionSelect(getOptLevel())); 480 return false; 481 } 482 483 bool X86PassConfig::addILPOpts() { 484 addPass(&EarlyIfConverterID); 485 if (EnableMachineCombinerPass) 486 addPass(&MachineCombinerID); 487 addPass(createX86CmovConverterPass()); 488 return true; 489 } 490 491 bool X86PassConfig::addPreISel() { 492 // Only add this pass for 32-bit x86 Windows. 493 const Triple &TT = TM->getTargetTriple(); 494 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 495 addPass(createX86WinEHStatePass()); 496 return true; 497 } 498 499 void X86PassConfig::addPreRegAlloc() { 500 if (getOptLevel() != CodeGenOpt::None) { 501 addPass(&LiveRangeShrinkID); 502 addPass(createX86FixupSetCC()); 503 addPass(createX86OptimizeLEAs()); 504 addPass(createX86CallFrameOptimization()); 505 addPass(createX86AvoidStoreForwardingBlocks()); 506 } 507 508 addPass(createX86SpeculativeLoadHardeningPass()); 509 addPass(createX86FlagsCopyLoweringPass()); 510 addPass(createX86DynAllocaExpander()); 511 512 if (getOptLevel() != CodeGenOpt::None) 513 addPass(createX86PreTileConfigPass()); 514 else 515 addPass(createX86FastPreTileConfigPass()); 516 } 517 518 void X86PassConfig::addMachineSSAOptimization() { 519 addPass(createX86DomainReassignmentPass()); 520 TargetPassConfig::addMachineSSAOptimization(); 521 } 522 523 void X86PassConfig::addPostRegAlloc() { 524 addPass(createX86LowerTileCopyPass()); 525 addPass(createX86FloatingPointStackifierPass()); 526 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 527 // to using the Speculative Execution Side Effect Suppression pass for 528 // mitigation. This is to prevent slow downs due to 529 // analyses needed by the LVIHardening pass when compiling at -O0. 530 if (getOptLevel() != CodeGenOpt::None) 531 addPass(createX86LoadValueInjectionLoadHardeningPass()); 532 } 533 534 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 535 536 void X86PassConfig::addPreEmitPass() { 537 if (getOptLevel() != CodeGenOpt::None) { 538 addPass(new X86ExecutionDomainFix()); 539 addPass(createBreakFalseDeps()); 540 } 541 542 addPass(createX86IndirectBranchTrackingPass()); 543 544 addPass(createX86IssueVZeroUpperPass()); 545 546 if (getOptLevel() != CodeGenOpt::None) { 547 addPass(createX86FixupBWInsts()); 548 addPass(createX86PadShortFunctions()); 549 addPass(createX86FixupLEAs()); 550 } 551 addPass(createX86EvexToVexInsts()); 552 addPass(createX86DiscriminateMemOpsPass()); 553 addPass(createX86InsertPrefetchPass()); 554 addPass(createX86InsertX87waitPass()); 555 } 556 557 void X86PassConfig::addPreEmitPass2() { 558 const Triple &TT = TM->getTargetTriple(); 559 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 560 561 // The X86 Speculative Execution Pass must run after all control 562 // flow graph modifying passes. As a result it was listed to run right before 563 // the X86 Retpoline Thunks pass. The reason it must run after control flow 564 // graph modifications is that the model of LFENCE in LLVM has to be updated 565 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 566 // placement of this pass was hand checked to ensure that the subsequent 567 // passes don't move the code around the LFENCEs in a way that will hurt the 568 // correctness of this pass. This placement has been shown to work based on 569 // hand inspection of the codegen output. 570 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 571 addPass(createX86IndirectThunksPass()); 572 573 // Insert extra int3 instructions after trailing call instructions to avoid 574 // issues in the unwinder. 575 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 576 addPass(createX86AvoidTrailingCallPass()); 577 578 // Verify basic block incoming and outgoing cfa offset and register values and 579 // correct CFA calculation rule where needed by inserting appropriate CFI 580 // instructions. 581 if (!TT.isOSDarwin() && 582 (!TT.isOSWindows() || 583 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 584 addPass(createCFIInstrInserter()); 585 586 if (TT.isOSWindows()) { 587 // Identify valid longjmp targets for Windows Control Flow Guard. 588 addPass(createCFGuardLongjmpPass()); 589 // Identify valid eh continuation targets for Windows EHCont Guard. 590 addPass(createEHContGuardCatchretPass()); 591 } 592 addPass(createX86LoadValueInjectionRetHardeningPass()); 593 594 // Insert pseudo probe annotation for callsite profiling 595 addPass(createPseudoProbeInserter()); 596 597 // On Darwin platforms, BLR_RVMARKER pseudo instructions are lowered to 598 // bundles. 599 if (TT.isOSDarwin()) 600 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 601 // Only run bundle expansion if there are relevant ObjC runtime functions 602 // present in the module. 603 const Function &F = MF.getFunction(); 604 const Module *M = F.getParent(); 605 return M->getFunction("objc_retainAutoreleasedReturnValue") || 606 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"); 607 })); 608 } 609 610 bool X86PassConfig::addPostFastRegAllocRewrite() { 611 addPass(createX86FastTileConfigPass()); 612 return true; 613 } 614 615 bool X86PassConfig::addPreRewrite() { 616 addPass(createX86TileConfigPass()); 617 return true; 618 } 619 620 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 621 return getStandardCSEConfigForOpt(TM->getOptLevel()); 622 } 623