1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 60 cl::desc("Enable the conditional branch " 61 "folding pass"), 62 cl::init(false), cl::Hidden); 63 64 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 65 // Register the target. 66 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 67 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 68 69 PassRegistry &PR = *PassRegistry::getPassRegistry(); 70 initializeGlobalISel(PR); 71 initializeWinEHStatePassPass(PR); 72 initializeFixupBWInstPassPass(PR); 73 initializeEvexToVexInstPassPass(PR); 74 initializeFixupLEAPassPass(PR); 75 initializeFPSPass(PR); 76 initializeX86FixupSetCCPassPass(PR); 77 initializeX86CallFrameOptimizationPass(PR); 78 initializeX86CmovConverterPassPass(PR); 79 initializeX86ExpandPseudoPass(PR); 80 initializeX86ExecutionDomainFixPass(PR); 81 initializeX86DomainReassignmentPass(PR); 82 initializeX86AvoidSFBPassPass(PR); 83 initializeX86AvoidTrailingCallPassPass(PR); 84 initializeX86SpeculativeLoadHardeningPassPass(PR); 85 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 86 initializeX86FlagsCopyLoweringPassPass(PR); 87 initializeX86CondBrFoldingPassPass(PR); 88 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 89 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 90 initializeX86OptimizeLEAPassPass(PR); 91 initializeX86PartialReductionPass(PR); 92 } 93 94 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 95 if (TT.isOSBinFormatMachO()) { 96 if (TT.getArch() == Triple::x86_64) 97 return std::make_unique<X86_64MachoTargetObjectFile>(); 98 return std::make_unique<TargetLoweringObjectFileMachO>(); 99 } 100 101 if (TT.isOSBinFormatCOFF()) 102 return std::make_unique<TargetLoweringObjectFileCOFF>(); 103 return std::make_unique<X86ELFTargetObjectFile>(); 104 } 105 106 static std::string computeDataLayout(const Triple &TT) { 107 // X86 is little endian 108 std::string Ret = "e"; 109 110 Ret += DataLayout::getManglingComponent(TT); 111 // X86 and x32 have 32 bit pointers. 112 if ((TT.isArch64Bit() && 113 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 114 !TT.isArch64Bit()) 115 Ret += "-p:32:32"; 116 117 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 118 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 119 120 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 121 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 122 Ret += "-i64:64"; 123 else if (TT.isOSIAMCU()) 124 Ret += "-i64:32-f64:32"; 125 else 126 Ret += "-f64:32:64"; 127 128 // Some ABIs align long double to 128 bits, others to 32. 129 if (TT.isOSNaCl() || TT.isOSIAMCU()) 130 ; // No f80 131 else if (TT.isArch64Bit() || TT.isOSDarwin()) 132 Ret += "-f80:128"; 133 else 134 Ret += "-f80:32"; 135 136 if (TT.isOSIAMCU()) 137 Ret += "-f128:32"; 138 139 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 140 if (TT.isArch64Bit()) 141 Ret += "-n8:16:32:64"; 142 else 143 Ret += "-n8:16:32"; 144 145 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 146 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 147 Ret += "-a:0:32-S32"; 148 else 149 Ret += "-S128"; 150 151 return Ret; 152 } 153 154 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 155 bool JIT, 156 Optional<Reloc::Model> RM) { 157 bool is64Bit = TT.getArch() == Triple::x86_64; 158 if (!RM.hasValue()) { 159 // JIT codegen should use static relocations by default, since it's 160 // typically executed in process and not relocatable. 161 if (JIT) 162 return Reloc::Static; 163 164 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 165 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 166 // use static relocation model by default. 167 if (TT.isOSDarwin()) { 168 if (is64Bit) 169 return Reloc::PIC_; 170 return Reloc::DynamicNoPIC; 171 } 172 if (TT.isOSWindows() && is64Bit) 173 return Reloc::PIC_; 174 return Reloc::Static; 175 } 176 177 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 178 // is defined as a model for code which may be used in static or dynamic 179 // executables but not necessarily a shared library. On X86-32 we just 180 // compile in -static mode, in x86-64 we use PIC. 181 if (*RM == Reloc::DynamicNoPIC) { 182 if (is64Bit) 183 return Reloc::PIC_; 184 if (!TT.isOSDarwin()) 185 return Reloc::Static; 186 } 187 188 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 189 // the Mach-O file format doesn't support it. 190 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 191 return Reloc::PIC_; 192 193 return *RM; 194 } 195 196 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 197 bool JIT, bool Is64Bit) { 198 if (CM) { 199 if (*CM == CodeModel::Tiny) 200 report_fatal_error("Target does not support the tiny CodeModel", false); 201 return *CM; 202 } 203 if (JIT) 204 return Is64Bit ? CodeModel::Large : CodeModel::Small; 205 return CodeModel::Small; 206 } 207 208 /// Create an X86 target. 209 /// 210 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 211 StringRef CPU, StringRef FS, 212 const TargetOptions &Options, 213 Optional<Reloc::Model> RM, 214 Optional<CodeModel::Model> CM, 215 CodeGenOpt::Level OL, bool JIT) 216 : LLVMTargetMachine( 217 T, computeDataLayout(TT), TT, CPU, FS, Options, 218 getEffectiveRelocModel(TT, JIT, RM), 219 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 220 OL), 221 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 222 // On PS4, the "return address" of a 'noreturn' call must still be within 223 // the calling function, and TrapUnreachable is an easy way to get that. 224 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 225 this->Options.TrapUnreachable = true; 226 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 227 } 228 229 setMachineOutliner(true); 230 231 // x86 supports the debug entry values. 232 setSupportsDebugEntryValues(true); 233 234 initAsmInfo(); 235 } 236 237 X86TargetMachine::~X86TargetMachine() = default; 238 239 const X86Subtarget * 240 X86TargetMachine::getSubtargetImpl(const Function &F) const { 241 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 242 Attribute FSAttr = F.getFnAttribute("target-features"); 243 244 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 245 ? CPUAttr.getValueAsString() 246 : (StringRef)TargetCPU; 247 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 248 ? FSAttr.getValueAsString() 249 : (StringRef)TargetFS; 250 251 SmallString<512> Key; 252 // The additions here are ordered so that the definitely short strings are 253 // added first so we won't exceed the small size. We append the 254 // much longer FS string at the end so that we only heap allocate at most 255 // one time. 256 257 // Extract prefer-vector-width attribute. 258 unsigned PreferVectorWidthOverride = 0; 259 if (F.hasFnAttribute("prefer-vector-width")) { 260 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 261 unsigned Width; 262 if (!Val.getAsInteger(0, Width)) { 263 Key += "prefer-vector-width="; 264 Key += Val; 265 PreferVectorWidthOverride = Width; 266 } 267 } 268 269 // Extract min-legal-vector-width attribute. 270 unsigned RequiredVectorWidth = UINT32_MAX; 271 if (F.hasFnAttribute("min-legal-vector-width")) { 272 StringRef Val = 273 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 274 unsigned Width; 275 if (!Val.getAsInteger(0, Width)) { 276 Key += "min-legal-vector-width="; 277 Key += Val; 278 RequiredVectorWidth = Width; 279 } 280 } 281 282 // Add CPU to the Key. 283 Key += CPU; 284 285 // Keep track of the start of the feature portion of the string. 286 unsigned FSStart = Key.size(); 287 288 // FIXME: This is related to the code below to reset the target options, 289 // we need to know whether or not the soft float flag is set on the 290 // function before we can generate a subtarget. We also need to use 291 // it as a key for the subtarget since that can be the only difference 292 // between two functions. 293 bool SoftFloat = 294 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 295 // If the soft float attribute is set on the function turn on the soft float 296 // subtarget feature. 297 if (SoftFloat) 298 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 299 300 Key += FS; 301 302 // We may have added +soft-float to the features so move the StringRef to 303 // point to the full string in the Key. 304 FS = Key.substr(FSStart); 305 306 auto &I = SubtargetMap[Key]; 307 if (!I) { 308 // This needs to be done before we create a new subtarget since any 309 // creation will depend on the TM and the code generation flags on the 310 // function that reside in TargetOptions. 311 resetTargetOptions(F); 312 I = std::make_unique<X86Subtarget>( 313 TargetTriple, CPU, FS, *this, 314 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 315 RequiredVectorWidth); 316 } 317 return I.get(); 318 } 319 320 //===----------------------------------------------------------------------===// 321 // X86 TTI query. 322 //===----------------------------------------------------------------------===// 323 324 TargetTransformInfo 325 X86TargetMachine::getTargetTransformInfo(const Function &F) { 326 return TargetTransformInfo(X86TTIImpl(this, F)); 327 } 328 329 //===----------------------------------------------------------------------===// 330 // Pass Pipeline Configuration 331 //===----------------------------------------------------------------------===// 332 333 namespace { 334 335 /// X86 Code Generator Pass Configuration Options. 336 class X86PassConfig : public TargetPassConfig { 337 public: 338 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 339 : TargetPassConfig(TM, PM) {} 340 341 X86TargetMachine &getX86TargetMachine() const { 342 return getTM<X86TargetMachine>(); 343 } 344 345 ScheduleDAGInstrs * 346 createMachineScheduler(MachineSchedContext *C) const override { 347 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 348 DAG->addMutation(createX86MacroFusionDAGMutation()); 349 return DAG; 350 } 351 352 ScheduleDAGInstrs * 353 createPostMachineScheduler(MachineSchedContext *C) const override { 354 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 355 DAG->addMutation(createX86MacroFusionDAGMutation()); 356 return DAG; 357 } 358 359 void addIRPasses() override; 360 bool addInstSelector() override; 361 bool addIRTranslator() override; 362 bool addLegalizeMachineIR() override; 363 bool addRegBankSelect() override; 364 bool addGlobalInstructionSelect() override; 365 bool addILPOpts() override; 366 bool addPreISel() override; 367 void addMachineSSAOptimization() override; 368 void addPreRegAlloc() override; 369 void addPostRegAlloc() override; 370 void addPreEmitPass() override; 371 void addPreEmitPass2() override; 372 void addPreSched2() override; 373 374 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 375 }; 376 377 class X86ExecutionDomainFix : public ExecutionDomainFix { 378 public: 379 static char ID; 380 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 381 StringRef getPassName() const override { 382 return "X86 Execution Dependency Fix"; 383 } 384 }; 385 char X86ExecutionDomainFix::ID; 386 387 } // end anonymous namespace 388 389 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 390 "X86 Execution Domain Fix", false, false) 391 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 392 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 393 "X86 Execution Domain Fix", false, false) 394 395 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 396 return new X86PassConfig(*this, PM); 397 } 398 399 void X86PassConfig::addIRPasses() { 400 addPass(createAtomicExpandPass()); 401 402 TargetPassConfig::addIRPasses(); 403 404 if (TM->getOptLevel() != CodeGenOpt::None) { 405 addPass(createInterleavedAccessPass()); 406 addPass(createX86PartialReductionPass()); 407 } 408 409 // Add passes that handle indirect branch removal and insertion of a retpoline 410 // thunk. These will be a no-op unless a function subtarget has the retpoline 411 // feature enabled. 412 addPass(createIndirectBrExpandPass()); 413 414 // Add Control Flow Guard checks. 415 const Triple &TT = TM->getTargetTriple(); 416 if (TT.isOSWindows()) { 417 if (TT.getArch() == Triple::x86_64) { 418 addPass(createCFGuardDispatchPass()); 419 } else { 420 addPass(createCFGuardCheckPass()); 421 } 422 } 423 } 424 425 bool X86PassConfig::addInstSelector() { 426 // Install an instruction selector. 427 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 428 429 // For ELF, cleanup any local-dynamic TLS accesses. 430 if (TM->getTargetTriple().isOSBinFormatELF() && 431 getOptLevel() != CodeGenOpt::None) 432 addPass(createCleanupLocalDynamicTLSPass()); 433 434 addPass(createX86GlobalBaseRegPass()); 435 return false; 436 } 437 438 bool X86PassConfig::addIRTranslator() { 439 addPass(new IRTranslator()); 440 return false; 441 } 442 443 bool X86PassConfig::addLegalizeMachineIR() { 444 addPass(new Legalizer()); 445 return false; 446 } 447 448 bool X86PassConfig::addRegBankSelect() { 449 addPass(new RegBankSelect()); 450 return false; 451 } 452 453 bool X86PassConfig::addGlobalInstructionSelect() { 454 addPass(new InstructionSelect()); 455 return false; 456 } 457 458 bool X86PassConfig::addILPOpts() { 459 if (EnableCondBrFoldingPass) 460 addPass(createX86CondBrFolding()); 461 addPass(&EarlyIfConverterID); 462 if (EnableMachineCombinerPass) 463 addPass(&MachineCombinerID); 464 addPass(createX86CmovConverterPass()); 465 return true; 466 } 467 468 bool X86PassConfig::addPreISel() { 469 // Only add this pass for 32-bit x86 Windows. 470 const Triple &TT = TM->getTargetTriple(); 471 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 472 addPass(createX86WinEHStatePass()); 473 return true; 474 } 475 476 void X86PassConfig::addPreRegAlloc() { 477 if (getOptLevel() != CodeGenOpt::None) { 478 addPass(&LiveRangeShrinkID); 479 addPass(createX86FixupSetCC()); 480 addPass(createX86OptimizeLEAs()); 481 addPass(createX86CallFrameOptimization()); 482 addPass(createX86AvoidStoreForwardingBlocks()); 483 } 484 485 addPass(createX86SpeculativeLoadHardeningPass()); 486 addPass(createX86FlagsCopyLoweringPass()); 487 addPass(createX86WinAllocaExpander()); 488 } 489 void X86PassConfig::addMachineSSAOptimization() { 490 addPass(createX86DomainReassignmentPass()); 491 TargetPassConfig::addMachineSSAOptimization(); 492 } 493 494 void X86PassConfig::addPostRegAlloc() { 495 addPass(createX86FloatingPointStackifierPass()); 496 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 497 // to using the Speculative Execution Side Effect Suppression pass for 498 // mitigation. This is to prevent slow downs due to 499 // analyses needed by the LVIHardening pass when compiling at -O0. 500 if (getOptLevel() != CodeGenOpt::None) 501 addPass(createX86LoadValueInjectionLoadHardeningPass()); 502 } 503 504 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 505 506 void X86PassConfig::addPreEmitPass() { 507 if (getOptLevel() != CodeGenOpt::None) { 508 addPass(new X86ExecutionDomainFix()); 509 addPass(createBreakFalseDeps()); 510 } 511 512 addPass(createX86IndirectBranchTrackingPass()); 513 514 addPass(createX86IssueVZeroUpperPass()); 515 516 if (getOptLevel() != CodeGenOpt::None) { 517 addPass(createX86FixupBWInsts()); 518 addPass(createX86PadShortFunctions()); 519 addPass(createX86FixupLEAs()); 520 } 521 addPass(createX86EvexToVexInsts()); 522 addPass(createX86DiscriminateMemOpsPass()); 523 addPass(createX86InsertPrefetchPass()); 524 addPass(createX86InsertX87waitPass()); 525 } 526 527 void X86PassConfig::addPreEmitPass2() { 528 const Triple &TT = TM->getTargetTriple(); 529 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 530 531 // The X86 Speculative Execution Pass must run after all control 532 // flow graph modifying passes. As a result it was listed to run right before 533 // the X86 Retpoline Thunks pass. The reason it must run after control flow 534 // graph modifications is that the model of LFENCE in LLVM has to be updated 535 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 536 // placement of this pass was hand checked to ensure that the subsequent 537 // passes don't move the code around the LFENCEs in a way that will hurt the 538 // correctness of this pass. This placement has been shown to work based on 539 // hand inspection of the codegen output. 540 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 541 addPass(createX86IndirectThunksPass()); 542 543 // Insert extra int3 instructions after trailing call instructions to avoid 544 // issues in the unwinder. 545 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 546 addPass(createX86AvoidTrailingCallPass()); 547 548 // Verify basic block incoming and outgoing cfa offset and register values and 549 // correct CFA calculation rule where needed by inserting appropriate CFI 550 // instructions. 551 if (!TT.isOSDarwin() && 552 (!TT.isOSWindows() || 553 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 554 addPass(createCFIInstrInserter()); 555 // Identify valid longjmp targets for Windows Control Flow Guard. 556 if (TT.isOSWindows()) 557 addPass(createCFGuardLongjmpPass()); 558 addPass(createX86LoadValueInjectionRetHardeningPass()); 559 } 560 561 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 562 return getStandardCSEConfigForOpt(TM->getOptLevel()); 563 } 564