1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 31 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 35 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MachineScheduler.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/RegAllocRegistry.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCAsmInfo.h" 45 #include "llvm/MC/TargetRegistry.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CodeGen.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/CFGuard.h" 53 #include <memory> 54 #include <string> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 59 cl::desc("Enable the machine combiner pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> 63 EnableTileRAPass("x86-tile-ra", 64 cl::desc("Enable the tile register allocation pass"), 65 cl::init(true), cl::Hidden); 66 67 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 68 // Register the target. 69 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 70 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 71 72 PassRegistry &PR = *PassRegistry::getPassRegistry(); 73 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 74 initializeX86LowerAMXTypeLegacyPassPass(PR); 75 initializeX86PreAMXConfigPassPass(PR); 76 initializeX86PreTileConfigPass(PR); 77 initializeGlobalISel(PR); 78 initializeWinEHStatePassPass(PR); 79 initializeFixupBWInstPassPass(PR); 80 initializeEvexToVexInstPassPass(PR); 81 initializeFixupLEAPassPass(PR); 82 initializeFPSPass(PR); 83 initializeX86FixupSetCCPassPass(PR); 84 initializeX86CallFrameOptimizationPass(PR); 85 initializeX86CmovConverterPassPass(PR); 86 initializeX86TileConfigPass(PR); 87 initializeX86FastPreTileConfigPass(PR); 88 initializeX86FastTileConfigPass(PR); 89 initializeX86LowerTileCopyPass(PR); 90 initializeX86ExpandPseudoPass(PR); 91 initializeX86ExecutionDomainFixPass(PR); 92 initializeX86DomainReassignmentPass(PR); 93 initializeX86AvoidSFBPassPass(PR); 94 initializeX86AvoidTrailingCallPassPass(PR); 95 initializeX86SpeculativeLoadHardeningPassPass(PR); 96 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 97 initializeX86FlagsCopyLoweringPassPass(PR); 98 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 99 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 100 initializeX86OptimizeLEAPassPass(PR); 101 initializeX86PartialReductionPass(PR); 102 initializePseudoProbeInserterPass(PR); 103 initializeX86ReturnThunksPass(PR); 104 } 105 106 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 107 if (TT.isOSBinFormatMachO()) { 108 if (TT.getArch() == Triple::x86_64) 109 return std::make_unique<X86_64MachoTargetObjectFile>(); 110 return std::make_unique<TargetLoweringObjectFileMachO>(); 111 } 112 113 if (TT.isOSBinFormatCOFF()) 114 return std::make_unique<TargetLoweringObjectFileCOFF>(); 115 return std::make_unique<X86ELFTargetObjectFile>(); 116 } 117 118 static std::string computeDataLayout(const Triple &TT) { 119 // X86 is little endian 120 std::string Ret = "e"; 121 122 Ret += DataLayout::getManglingComponent(TT); 123 // X86 and x32 have 32 bit pointers. 124 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 125 Ret += "-p:32:32"; 126 127 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 128 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 129 130 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 131 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 132 Ret += "-i64:64"; 133 else if (TT.isOSIAMCU()) 134 Ret += "-i64:32-f64:32"; 135 else 136 Ret += "-f64:32:64"; 137 138 // Some ABIs align long double to 128 bits, others to 32. 139 if (TT.isOSNaCl() || TT.isOSIAMCU()) 140 ; // No f80 141 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 142 Ret += "-f80:128"; 143 else 144 Ret += "-f80:32"; 145 146 if (TT.isOSIAMCU()) 147 Ret += "-f128:32"; 148 149 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 150 if (TT.isArch64Bit()) 151 Ret += "-n8:16:32:64"; 152 else 153 Ret += "-n8:16:32"; 154 155 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 156 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 157 Ret += "-a:0:32-S32"; 158 else 159 Ret += "-S128"; 160 161 return Ret; 162 } 163 164 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 165 bool JIT, 166 Optional<Reloc::Model> RM) { 167 bool is64Bit = TT.getArch() == Triple::x86_64; 168 if (!RM) { 169 // JIT codegen should use static relocations by default, since it's 170 // typically executed in process and not relocatable. 171 if (JIT) 172 return Reloc::Static; 173 174 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 175 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 176 // use static relocation model by default. 177 if (TT.isOSDarwin()) { 178 if (is64Bit) 179 return Reloc::PIC_; 180 return Reloc::DynamicNoPIC; 181 } 182 if (TT.isOSWindows() && is64Bit) 183 return Reloc::PIC_; 184 return Reloc::Static; 185 } 186 187 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 188 // is defined as a model for code which may be used in static or dynamic 189 // executables but not necessarily a shared library. On X86-32 we just 190 // compile in -static mode, in x86-64 we use PIC. 191 if (*RM == Reloc::DynamicNoPIC) { 192 if (is64Bit) 193 return Reloc::PIC_; 194 if (!TT.isOSDarwin()) 195 return Reloc::Static; 196 } 197 198 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 199 // the Mach-O file format doesn't support it. 200 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 201 return Reloc::PIC_; 202 203 return *RM; 204 } 205 206 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 207 bool JIT, bool Is64Bit) { 208 if (CM) { 209 if (*CM == CodeModel::Tiny) 210 report_fatal_error("Target does not support the tiny CodeModel", false); 211 return *CM; 212 } 213 if (JIT) 214 return Is64Bit ? CodeModel::Large : CodeModel::Small; 215 return CodeModel::Small; 216 } 217 218 /// Create an X86 target. 219 /// 220 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 221 StringRef CPU, StringRef FS, 222 const TargetOptions &Options, 223 Optional<Reloc::Model> RM, 224 Optional<CodeModel::Model> CM, 225 CodeGenOpt::Level OL, bool JIT) 226 : LLVMTargetMachine( 227 T, computeDataLayout(TT), TT, CPU, FS, Options, 228 getEffectiveRelocModel(TT, JIT, RM), 229 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 230 OL), 231 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 232 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within 233 // the calling function, and TrapUnreachable is an easy way to get that. 234 if (TT.isPS() || TT.isOSBinFormatMachO()) { 235 this->Options.TrapUnreachable = true; 236 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 237 } 238 239 setMachineOutliner(true); 240 241 // x86 supports the debug entry values. 242 setSupportsDebugEntryValues(true); 243 244 initAsmInfo(); 245 } 246 247 X86TargetMachine::~X86TargetMachine() = default; 248 249 const X86Subtarget * 250 X86TargetMachine::getSubtargetImpl(const Function &F) const { 251 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 252 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 253 Attribute FSAttr = F.getFnAttribute("target-features"); 254 255 StringRef CPU = 256 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 257 StringRef TuneCPU = 258 TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU; 259 StringRef FS = 260 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 261 262 SmallString<512> Key; 263 // The additions here are ordered so that the definitely short strings are 264 // added first so we won't exceed the small size. We append the 265 // much longer FS string at the end so that we only heap allocate at most 266 // one time. 267 268 // Extract prefer-vector-width attribute. 269 unsigned PreferVectorWidthOverride = 0; 270 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 271 if (PreferVecWidthAttr.isValid()) { 272 StringRef Val = PreferVecWidthAttr.getValueAsString(); 273 unsigned Width; 274 if (!Val.getAsInteger(0, Width)) { 275 Key += 'p'; 276 Key += Val; 277 PreferVectorWidthOverride = Width; 278 } 279 } 280 281 // Extract min-legal-vector-width attribute. 282 unsigned RequiredVectorWidth = UINT32_MAX; 283 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 284 if (MinLegalVecWidthAttr.isValid()) { 285 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 286 unsigned Width; 287 if (!Val.getAsInteger(0, Width)) { 288 Key += 'm'; 289 Key += Val; 290 RequiredVectorWidth = Width; 291 } 292 } 293 294 // Add CPU to the Key. 295 Key += CPU; 296 297 // Add tune CPU to the Key. 298 Key += TuneCPU; 299 300 // Keep track of the start of the feature portion of the string. 301 unsigned FSStart = Key.size(); 302 303 // FIXME: This is related to the code below to reset the target options, 304 // we need to know whether or not the soft float flag is set on the 305 // function before we can generate a subtarget. We also need to use 306 // it as a key for the subtarget since that can be the only difference 307 // between two functions. 308 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 309 // If the soft float attribute is set on the function turn on the soft float 310 // subtarget feature. 311 if (SoftFloat) 312 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 313 314 Key += FS; 315 316 // We may have added +soft-float to the features so move the StringRef to 317 // point to the full string in the Key. 318 FS = Key.substr(FSStart); 319 320 auto &I = SubtargetMap[Key]; 321 if (!I) { 322 // This needs to be done before we create a new subtarget since any 323 // creation will depend on the TM and the code generation flags on the 324 // function that reside in TargetOptions. 325 resetTargetOptions(F); 326 I = std::make_unique<X86Subtarget>( 327 TargetTriple, CPU, TuneCPU, FS, *this, 328 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 329 PreferVectorWidthOverride, RequiredVectorWidth); 330 } 331 return I.get(); 332 } 333 334 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 335 unsigned DestAS) const { 336 assert(SrcAS != DestAS && "Expected different address spaces!"); 337 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 338 return false; 339 return SrcAS < 256 && DestAS < 256; 340 } 341 342 //===----------------------------------------------------------------------===// 343 // X86 TTI query. 344 //===----------------------------------------------------------------------===// 345 346 TargetTransformInfo 347 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 348 return TargetTransformInfo(X86TTIImpl(this, F)); 349 } 350 351 //===----------------------------------------------------------------------===// 352 // Pass Pipeline Configuration 353 //===----------------------------------------------------------------------===// 354 355 namespace { 356 357 /// X86 Code Generator Pass Configuration Options. 358 class X86PassConfig : public TargetPassConfig { 359 public: 360 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 361 : TargetPassConfig(TM, PM) {} 362 363 X86TargetMachine &getX86TargetMachine() const { 364 return getTM<X86TargetMachine>(); 365 } 366 367 ScheduleDAGInstrs * 368 createMachineScheduler(MachineSchedContext *C) const override { 369 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 370 DAG->addMutation(createX86MacroFusionDAGMutation()); 371 return DAG; 372 } 373 374 ScheduleDAGInstrs * 375 createPostMachineScheduler(MachineSchedContext *C) const override { 376 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 377 DAG->addMutation(createX86MacroFusionDAGMutation()); 378 return DAG; 379 } 380 381 void addIRPasses() override; 382 bool addInstSelector() override; 383 bool addIRTranslator() override; 384 bool addLegalizeMachineIR() override; 385 bool addRegBankSelect() override; 386 bool addGlobalInstructionSelect() override; 387 bool addILPOpts() override; 388 bool addPreISel() override; 389 void addMachineSSAOptimization() override; 390 void addPreRegAlloc() override; 391 bool addPostFastRegAllocRewrite() override; 392 void addPostRegAlloc() override; 393 void addPreEmitPass() override; 394 void addPreEmitPass2() override; 395 void addPreSched2() override; 396 bool addRegAssignAndRewriteOptimized() override; 397 398 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 399 }; 400 401 class X86ExecutionDomainFix : public ExecutionDomainFix { 402 public: 403 static char ID; 404 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 405 StringRef getPassName() const override { 406 return "X86 Execution Dependency Fix"; 407 } 408 }; 409 char X86ExecutionDomainFix::ID; 410 411 } // end anonymous namespace 412 413 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 414 "X86 Execution Domain Fix", false, false) 415 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 416 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 417 "X86 Execution Domain Fix", false, false) 418 419 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 420 return new X86PassConfig(*this, PM); 421 } 422 423 void X86PassConfig::addIRPasses() { 424 addPass(createAtomicExpandPass()); 425 426 // We add both pass anyway and when these two passes run, we skip the pass 427 // based on the option level and option attribute. 428 addPass(createX86LowerAMXIntrinsicsPass()); 429 addPass(createX86LowerAMXTypePass()); 430 431 TargetPassConfig::addIRPasses(); 432 433 if (TM->getOptLevel() != CodeGenOpt::None) { 434 addPass(createInterleavedAccessPass()); 435 addPass(createX86PartialReductionPass()); 436 } 437 438 // Add passes that handle indirect branch removal and insertion of a retpoline 439 // thunk. These will be a no-op unless a function subtarget has the retpoline 440 // feature enabled. 441 addPass(createIndirectBrExpandPass()); 442 443 // Add Control Flow Guard checks. 444 const Triple &TT = TM->getTargetTriple(); 445 if (TT.isOSWindows()) { 446 if (TT.getArch() == Triple::x86_64) { 447 addPass(createCFGuardDispatchPass()); 448 } else { 449 addPass(createCFGuardCheckPass()); 450 } 451 } 452 453 if (TM->Options.JMCInstrument) 454 addPass(createJMCInstrumenterPass()); 455 } 456 457 bool X86PassConfig::addInstSelector() { 458 // Install an instruction selector. 459 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 460 461 // For ELF, cleanup any local-dynamic TLS accesses. 462 if (TM->getTargetTriple().isOSBinFormatELF() && 463 getOptLevel() != CodeGenOpt::None) 464 addPass(createCleanupLocalDynamicTLSPass()); 465 466 addPass(createX86GlobalBaseRegPass()); 467 return false; 468 } 469 470 bool X86PassConfig::addIRTranslator() { 471 addPass(new IRTranslator(getOptLevel())); 472 return false; 473 } 474 475 bool X86PassConfig::addLegalizeMachineIR() { 476 addPass(new Legalizer()); 477 return false; 478 } 479 480 bool X86PassConfig::addRegBankSelect() { 481 addPass(new RegBankSelect()); 482 return false; 483 } 484 485 bool X86PassConfig::addGlobalInstructionSelect() { 486 addPass(new InstructionSelect(getOptLevel())); 487 return false; 488 } 489 490 bool X86PassConfig::addILPOpts() { 491 addPass(&EarlyIfConverterID); 492 if (EnableMachineCombinerPass) 493 addPass(&MachineCombinerID); 494 addPass(createX86CmovConverterPass()); 495 return true; 496 } 497 498 bool X86PassConfig::addPreISel() { 499 // Only add this pass for 32-bit x86 Windows. 500 const Triple &TT = TM->getTargetTriple(); 501 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 502 addPass(createX86WinEHStatePass()); 503 return true; 504 } 505 506 void X86PassConfig::addPreRegAlloc() { 507 if (getOptLevel() != CodeGenOpt::None) { 508 addPass(&LiveRangeShrinkID); 509 addPass(createX86FixupSetCC()); 510 addPass(createX86OptimizeLEAs()); 511 addPass(createX86CallFrameOptimization()); 512 addPass(createX86AvoidStoreForwardingBlocks()); 513 } 514 515 addPass(createX86SpeculativeLoadHardeningPass()); 516 addPass(createX86FlagsCopyLoweringPass()); 517 addPass(createX86DynAllocaExpander()); 518 519 if (getOptLevel() != CodeGenOpt::None) 520 addPass(createX86PreTileConfigPass()); 521 else 522 addPass(createX86FastPreTileConfigPass()); 523 } 524 525 void X86PassConfig::addMachineSSAOptimization() { 526 addPass(createX86DomainReassignmentPass()); 527 TargetPassConfig::addMachineSSAOptimization(); 528 } 529 530 void X86PassConfig::addPostRegAlloc() { 531 addPass(createX86LowerTileCopyPass()); 532 addPass(createX86FloatingPointStackifierPass()); 533 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 534 // to using the Speculative Execution Side Effect Suppression pass for 535 // mitigation. This is to prevent slow downs due to 536 // analyses needed by the LVIHardening pass when compiling at -O0. 537 if (getOptLevel() != CodeGenOpt::None) 538 addPass(createX86LoadValueInjectionLoadHardeningPass()); 539 } 540 541 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 542 543 void X86PassConfig::addPreEmitPass() { 544 if (getOptLevel() != CodeGenOpt::None) { 545 addPass(new X86ExecutionDomainFix()); 546 addPass(createBreakFalseDeps()); 547 } 548 549 addPass(createX86IndirectBranchTrackingPass()); 550 551 addPass(createX86IssueVZeroUpperPass()); 552 553 if (getOptLevel() != CodeGenOpt::None) { 554 addPass(createX86FixupBWInsts()); 555 addPass(createX86PadShortFunctions()); 556 addPass(createX86FixupLEAs()); 557 } 558 addPass(createX86EvexToVexInsts()); 559 addPass(createX86DiscriminateMemOpsPass()); 560 addPass(createX86InsertPrefetchPass()); 561 addPass(createX86InsertX87waitPass()); 562 } 563 564 void X86PassConfig::addPreEmitPass2() { 565 const Triple &TT = TM->getTargetTriple(); 566 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 567 568 // The X86 Speculative Execution Pass must run after all control 569 // flow graph modifying passes. As a result it was listed to run right before 570 // the X86 Retpoline Thunks pass. The reason it must run after control flow 571 // graph modifications is that the model of LFENCE in LLVM has to be updated 572 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 573 // placement of this pass was hand checked to ensure that the subsequent 574 // passes don't move the code around the LFENCEs in a way that will hurt the 575 // correctness of this pass. This placement has been shown to work based on 576 // hand inspection of the codegen output. 577 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 578 addPass(createX86IndirectThunksPass()); 579 addPass(createX86ReturnThunksPass()); 580 581 // Insert extra int3 instructions after trailing call instructions to avoid 582 // issues in the unwinder. 583 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 584 addPass(createX86AvoidTrailingCallPass()); 585 586 // Verify basic block incoming and outgoing cfa offset and register values and 587 // correct CFA calculation rule where needed by inserting appropriate CFI 588 // instructions. 589 if (!TT.isOSDarwin() && 590 (!TT.isOSWindows() || 591 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 592 addPass(createCFIInstrInserter()); 593 594 if (TT.isOSWindows()) { 595 // Identify valid longjmp targets for Windows Control Flow Guard. 596 addPass(createCFGuardLongjmpPass()); 597 // Identify valid eh continuation targets for Windows EHCont Guard. 598 addPass(createEHContGuardCatchretPass()); 599 } 600 addPass(createX86LoadValueInjectionRetHardeningPass()); 601 602 // Insert pseudo probe annotation for callsite profiling 603 addPass(createPseudoProbeInserter()); 604 605 // On Darwin platforms, BLR_RVMARKER pseudo instructions are lowered to 606 // bundles. 607 if (TT.isOSDarwin()) 608 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 609 // Only run bundle expansion if there are relevant ObjC runtime functions 610 // present in the module. 611 const Function &F = MF.getFunction(); 612 const Module *M = F.getParent(); 613 return M->getFunction("objc_retainAutoreleasedReturnValue") || 614 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"); 615 })); 616 } 617 618 bool X86PassConfig::addPostFastRegAllocRewrite() { 619 addPass(createX86FastTileConfigPass()); 620 return true; 621 } 622 623 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 624 return getStandardCSEConfigForOpt(TM->getOptLevel()); 625 } 626 627 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, 628 const TargetRegisterClass &RC) { 629 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC); 630 } 631 632 bool X86PassConfig::addRegAssignAndRewriteOptimized() { 633 // Don't support tile RA when RA is specified by command line "-regalloc". 634 if (!isCustomizedRegAlloc() && EnableTileRAPass) { 635 // Allocate tile register first. 636 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); 637 addPass(createX86TileConfigPass()); 638 } 639 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 640 } 641