1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetObjectFile.h" 21 #include "X86TargetTransformInfo.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/CodeGen/ExecutionDomainFix.h" 29 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MachineScheduler.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 #include "llvm/Target/TargetOptions.h" 48 #include <memory> 49 #include <string> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 54 cl::desc("Enable the machine combiner pass"), 55 cl::init(true), cl::Hidden); 56 57 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 58 cl::desc("Enable the conditional branch " 59 "folding pass"), 60 cl::init(false), cl::Hidden); 61 62 extern "C" void LLVMInitializeX86Target() { 63 // Register the target. 64 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 65 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 66 67 PassRegistry &PR = *PassRegistry::getPassRegistry(); 68 initializeGlobalISel(PR); 69 initializeWinEHStatePassPass(PR); 70 initializeFixupBWInstPassPass(PR); 71 initializeEvexToVexInstPassPass(PR); 72 initializeFixupLEAPassPass(PR); 73 initializeX86CallFrameOptimizationPass(PR); 74 initializeX86CmovConverterPassPass(PR); 75 initializeX86ExpandPseudoPass(PR); 76 initializeX86ExecutionDomainFixPass(PR); 77 initializeX86DomainReassignmentPass(PR); 78 initializeX86AvoidSFBPassPass(PR); 79 initializeX86SpeculativeLoadHardeningPassPass(PR); 80 initializeX86FlagsCopyLoweringPassPass(PR); 81 initializeX86CondBrFoldingPassPass(PR); 82 } 83 84 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 85 if (TT.isOSBinFormatMachO()) { 86 if (TT.getArch() == Triple::x86_64) 87 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 88 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 89 } 90 91 if (TT.isOSFreeBSD()) 92 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 93 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 94 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 95 if (TT.isOSSolaris()) 96 return llvm::make_unique<X86SolarisTargetObjectFile>(); 97 if (TT.isOSFuchsia()) 98 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 99 if (TT.isOSBinFormatELF()) 100 return llvm::make_unique<X86ELFTargetObjectFile>(); 101 if (TT.isOSBinFormatCOFF()) 102 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 103 llvm_unreachable("unknown subtarget type"); 104 } 105 106 static std::string computeDataLayout(const Triple &TT) { 107 // X86 is little endian 108 std::string Ret = "e"; 109 110 Ret += DataLayout::getManglingComponent(TT); 111 // X86 and x32 have 32 bit pointers. 112 if ((TT.isArch64Bit() && 113 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 114 !TT.isArch64Bit()) 115 Ret += "-p:32:32"; 116 117 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 118 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 119 Ret += "-i64:64"; 120 else if (TT.isOSIAMCU()) 121 Ret += "-i64:32-f64:32"; 122 else 123 Ret += "-f64:32:64"; 124 125 // Some ABIs align long double to 128 bits, others to 32. 126 if (TT.isOSNaCl() || TT.isOSIAMCU()) 127 ; // No f80 128 else if (TT.isArch64Bit() || TT.isOSDarwin()) 129 Ret += "-f80:128"; 130 else 131 Ret += "-f80:32"; 132 133 if (TT.isOSIAMCU()) 134 Ret += "-f128:32"; 135 136 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 137 if (TT.isArch64Bit()) 138 Ret += "-n8:16:32:64"; 139 else 140 Ret += "-n8:16:32"; 141 142 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 143 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 144 Ret += "-a:0:32-S32"; 145 else 146 Ret += "-S128"; 147 148 return Ret; 149 } 150 151 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 152 bool JIT, 153 Optional<Reloc::Model> RM) { 154 bool is64Bit = TT.getArch() == Triple::x86_64; 155 if (!RM.hasValue()) { 156 // JIT codegen should use static relocations by default, since it's 157 // typically executed in process and not relocatable. 158 if (JIT) 159 return Reloc::Static; 160 161 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 162 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 163 // use static relocation model by default. 164 if (TT.isOSDarwin()) { 165 if (is64Bit) 166 return Reloc::PIC_; 167 return Reloc::DynamicNoPIC; 168 } 169 if (TT.isOSWindows() && is64Bit) 170 return Reloc::PIC_; 171 return Reloc::Static; 172 } 173 174 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 175 // is defined as a model for code which may be used in static or dynamic 176 // executables but not necessarily a shared library. On X86-32 we just 177 // compile in -static mode, in x86-64 we use PIC. 178 if (*RM == Reloc::DynamicNoPIC) { 179 if (is64Bit) 180 return Reloc::PIC_; 181 if (!TT.isOSDarwin()) 182 return Reloc::Static; 183 } 184 185 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 186 // the Mach-O file format doesn't support it. 187 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 188 return Reloc::PIC_; 189 190 return *RM; 191 } 192 193 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 194 bool JIT, bool Is64Bit) { 195 if (CM) { 196 if (*CM == CodeModel::Tiny) 197 report_fatal_error("Target does not support the tiny CodeModel"); 198 return *CM; 199 } 200 if (JIT) 201 return Is64Bit ? CodeModel::Large : CodeModel::Small; 202 return CodeModel::Small; 203 } 204 205 /// Create an X86 target. 206 /// 207 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 208 StringRef CPU, StringRef FS, 209 const TargetOptions &Options, 210 Optional<Reloc::Model> RM, 211 Optional<CodeModel::Model> CM, 212 CodeGenOpt::Level OL, bool JIT) 213 : LLVMTargetMachine( 214 T, computeDataLayout(TT), TT, CPU, FS, Options, 215 getEffectiveRelocModel(TT, JIT, RM), 216 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 217 OL), 218 TLOF(createTLOF(getTargetTriple())) { 219 // Windows stack unwinder gets confused when execution flow "falls through" 220 // after a call to 'noreturn' function. 221 // To prevent that, we emit a trap for 'unreachable' IR instructions. 222 // (which on X86, happens to be the 'ud2' instruction) 223 // On PS4, the "return address" of a 'noreturn' call must still be within 224 // the calling function, and TrapUnreachable is an easy way to get that. 225 // The check here for 64-bit windows is a bit icky, but as we're unlikely 226 // to ever want to mix 32 and 64-bit windows code in a single module 227 // this should be fine. 228 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() || 229 TT.isOSBinFormatMachO()) { 230 this->Options.TrapUnreachable = true; 231 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 232 } 233 234 // Outlining is available for x86-64. 235 if (TT.getArch() == Triple::x86_64) 236 setMachineOutliner(true); 237 238 initAsmInfo(); 239 } 240 241 X86TargetMachine::~X86TargetMachine() = default; 242 243 const X86Subtarget * 244 X86TargetMachine::getSubtargetImpl(const Function &F) const { 245 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 246 Attribute FSAttr = F.getFnAttribute("target-features"); 247 248 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 249 ? CPUAttr.getValueAsString() 250 : (StringRef)TargetCPU; 251 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 252 ? FSAttr.getValueAsString() 253 : (StringRef)TargetFS; 254 255 SmallString<512> Key; 256 Key.reserve(CPU.size() + FS.size()); 257 Key += CPU; 258 Key += FS; 259 260 // FIXME: This is related to the code below to reset the target options, 261 // we need to know whether or not the soft float flag is set on the 262 // function before we can generate a subtarget. We also need to use 263 // it as a key for the subtarget since that can be the only difference 264 // between two functions. 265 bool SoftFloat = 266 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 267 // If the soft float attribute is set on the function turn on the soft float 268 // subtarget feature. 269 if (SoftFloat) 270 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 271 272 // Keep track of the key width after all features are added so we can extract 273 // the feature string out later. 274 unsigned CPUFSWidth = Key.size(); 275 276 // Extract prefer-vector-width attribute. 277 unsigned PreferVectorWidthOverride = 0; 278 if (F.hasFnAttribute("prefer-vector-width")) { 279 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 280 unsigned Width; 281 if (!Val.getAsInteger(0, Width)) { 282 Key += ",prefer-vector-width="; 283 Key += Val; 284 PreferVectorWidthOverride = Width; 285 } 286 } 287 288 // Extract min-legal-vector-width attribute. 289 unsigned RequiredVectorWidth = UINT32_MAX; 290 if (F.hasFnAttribute("min-legal-vector-width")) { 291 StringRef Val = 292 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 293 unsigned Width; 294 if (!Val.getAsInteger(0, Width)) { 295 Key += ",min-legal-vector-width="; 296 Key += Val; 297 RequiredVectorWidth = Width; 298 } 299 } 300 301 // Extracted here so that we make sure there is backing for the StringRef. If 302 // we assigned earlier, its possible the SmallString reallocated leaving a 303 // dangling StringRef. 304 FS = Key.slice(CPU.size(), CPUFSWidth); 305 306 auto &I = SubtargetMap[Key]; 307 if (!I) { 308 // This needs to be done before we create a new subtarget since any 309 // creation will depend on the TM and the code generation flags on the 310 // function that reside in TargetOptions. 311 resetTargetOptions(F); 312 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 313 Options.StackAlignmentOverride, 314 PreferVectorWidthOverride, 315 RequiredVectorWidth); 316 } 317 return I.get(); 318 } 319 320 //===----------------------------------------------------------------------===// 321 // Command line options for x86 322 //===----------------------------------------------------------------------===// 323 static cl::opt<bool> 324 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 325 cl::desc("Minimize AVX to SSE transition penalty"), 326 cl::init(true)); 327 328 //===----------------------------------------------------------------------===// 329 // X86 TTI query. 330 //===----------------------------------------------------------------------===// 331 332 TargetTransformInfo 333 X86TargetMachine::getTargetTransformInfo(const Function &F) { 334 return TargetTransformInfo(X86TTIImpl(this, F)); 335 } 336 337 //===----------------------------------------------------------------------===// 338 // Pass Pipeline Configuration 339 //===----------------------------------------------------------------------===// 340 341 namespace { 342 343 /// X86 Code Generator Pass Configuration Options. 344 class X86PassConfig : public TargetPassConfig { 345 public: 346 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 347 : TargetPassConfig(TM, PM) {} 348 349 X86TargetMachine &getX86TargetMachine() const { 350 return getTM<X86TargetMachine>(); 351 } 352 353 ScheduleDAGInstrs * 354 createMachineScheduler(MachineSchedContext *C) const override { 355 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 356 DAG->addMutation(createX86MacroFusionDAGMutation()); 357 return DAG; 358 } 359 360 ScheduleDAGInstrs * 361 createPostMachineScheduler(MachineSchedContext *C) const override { 362 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 363 DAG->addMutation(createX86MacroFusionDAGMutation()); 364 return DAG; 365 } 366 367 void addIRPasses() override; 368 bool addInstSelector() override; 369 bool addIRTranslator() override; 370 bool addLegalizeMachineIR() override; 371 bool addRegBankSelect() override; 372 bool addGlobalInstructionSelect() override; 373 bool addILPOpts() override; 374 bool addPreISel() override; 375 void addMachineSSAOptimization() override; 376 void addPreRegAlloc() override; 377 void addPostRegAlloc() override; 378 void addPreEmitPass() override; 379 void addPreEmitPass2() override; 380 void addPreSched2() override; 381 382 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 383 }; 384 385 class X86ExecutionDomainFix : public ExecutionDomainFix { 386 public: 387 static char ID; 388 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 389 StringRef getPassName() const override { 390 return "X86 Execution Dependency Fix"; 391 } 392 }; 393 char X86ExecutionDomainFix::ID; 394 395 } // end anonymous namespace 396 397 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 398 "X86 Execution Domain Fix", false, false) 399 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 400 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 401 "X86 Execution Domain Fix", false, false) 402 403 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 404 return new X86PassConfig(*this, PM); 405 } 406 407 void X86PassConfig::addIRPasses() { 408 addPass(createAtomicExpandPass()); 409 410 TargetPassConfig::addIRPasses(); 411 412 if (TM->getOptLevel() != CodeGenOpt::None) 413 addPass(createInterleavedAccessPass()); 414 415 // Add passes that handle indirect branch removal and insertion of a retpoline 416 // thunk. These will be a no-op unless a function subtarget has the retpoline 417 // feature enabled. 418 addPass(createIndirectBrExpandPass()); 419 } 420 421 bool X86PassConfig::addInstSelector() { 422 // Install an instruction selector. 423 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 424 425 // For ELF, cleanup any local-dynamic TLS accesses. 426 if (TM->getTargetTriple().isOSBinFormatELF() && 427 getOptLevel() != CodeGenOpt::None) 428 addPass(createCleanupLocalDynamicTLSPass()); 429 430 addPass(createX86GlobalBaseRegPass()); 431 return false; 432 } 433 434 bool X86PassConfig::addIRTranslator() { 435 addPass(new IRTranslator()); 436 return false; 437 } 438 439 bool X86PassConfig::addLegalizeMachineIR() { 440 addPass(new Legalizer()); 441 return false; 442 } 443 444 bool X86PassConfig::addRegBankSelect() { 445 addPass(new RegBankSelect()); 446 return false; 447 } 448 449 bool X86PassConfig::addGlobalInstructionSelect() { 450 addPass(new InstructionSelect()); 451 return false; 452 } 453 454 bool X86PassConfig::addILPOpts() { 455 if (EnableCondBrFoldingPass) 456 addPass(createX86CondBrFolding()); 457 addPass(&EarlyIfConverterID); 458 if (EnableMachineCombinerPass) 459 addPass(&MachineCombinerID); 460 addPass(createX86CmovConverterPass()); 461 return true; 462 } 463 464 bool X86PassConfig::addPreISel() { 465 // Only add this pass for 32-bit x86 Windows. 466 const Triple &TT = TM->getTargetTriple(); 467 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 468 addPass(createX86WinEHStatePass()); 469 return true; 470 } 471 472 void X86PassConfig::addPreRegAlloc() { 473 if (getOptLevel() != CodeGenOpt::None) { 474 addPass(&LiveRangeShrinkID); 475 addPass(createX86FixupSetCC()); 476 addPass(createX86OptimizeLEAs()); 477 addPass(createX86CallFrameOptimization()); 478 addPass(createX86AvoidStoreForwardingBlocks()); 479 } 480 481 addPass(createX86SpeculativeLoadHardeningPass()); 482 addPass(createX86FlagsCopyLoweringPass()); 483 addPass(createX86WinAllocaExpander()); 484 } 485 void X86PassConfig::addMachineSSAOptimization() { 486 addPass(createX86DomainReassignmentPass()); 487 TargetPassConfig::addMachineSSAOptimization(); 488 } 489 490 void X86PassConfig::addPostRegAlloc() { 491 addPass(createX86FloatingPointStackifierPass()); 492 } 493 494 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 495 496 void X86PassConfig::addPreEmitPass() { 497 if (getOptLevel() != CodeGenOpt::None) { 498 addPass(new X86ExecutionDomainFix()); 499 addPass(createBreakFalseDeps()); 500 } 501 502 addPass(createX86IndirectBranchTrackingPass()); 503 504 if (UseVZeroUpper) 505 addPass(createX86IssueVZeroUpperPass()); 506 507 if (getOptLevel() != CodeGenOpt::None) { 508 addPass(createX86FixupBWInsts()); 509 addPass(createX86PadShortFunctions()); 510 addPass(createX86FixupLEAs()); 511 addPass(createX86EvexToVexInsts()); 512 } 513 addPass(createX86DiscriminateMemOpsPass()); 514 addPass(createX86InsertPrefetchPass()); 515 } 516 517 void X86PassConfig::addPreEmitPass2() { 518 addPass(createX86RetpolineThunksPass()); 519 // Verify basic block incoming and outgoing cfa offset and register values and 520 // correct CFA calculation rule where needed by inserting appropriate CFI 521 // instructions. 522 const Triple &TT = TM->getTargetTriple(); 523 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 524 if (!TT.isOSDarwin() && 525 (!TT.isOSWindows() || 526 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 527 addPass(createCFIInstrInserter()); 528 } 529 530 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 531 return getStandardCSEConfigForOpt(TM->getOptLevel()); 532 } 533