1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <memory> 50 #include <string> 51 52 using namespace llvm; 53 54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 55 cl::desc("Enable the machine combiner pass"), 56 cl::init(true), cl::Hidden); 57 58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 59 cl::desc("Enable the conditional branch " 60 "folding pass"), 61 cl::init(false), cl::Hidden); 62 63 extern "C" void LLVMInitializeX86Target() { 64 // Register the target. 65 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 66 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 67 68 PassRegistry &PR = *PassRegistry::getPassRegistry(); 69 initializeGlobalISel(PR); 70 initializeWinEHStatePassPass(PR); 71 initializeFixupBWInstPassPass(PR); 72 initializeEvexToVexInstPassPass(PR); 73 initializeFixupLEAPassPass(PR); 74 initializeFPSPass(PR); 75 initializeX86CallFrameOptimizationPass(PR); 76 initializeX86CmovConverterPassPass(PR); 77 initializeX86ExpandPseudoPass(PR); 78 initializeX86ExecutionDomainFixPass(PR); 79 initializeX86DomainReassignmentPass(PR); 80 initializeX86AvoidSFBPassPass(PR); 81 initializeX86SpeculativeLoadHardeningPassPass(PR); 82 initializeX86FlagsCopyLoweringPassPass(PR); 83 initializeX86CondBrFoldingPassPass(PR); 84 initializeX86OptimizeLEAPassPass(PR); 85 } 86 87 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 88 if (TT.isOSBinFormatMachO()) { 89 if (TT.getArch() == Triple::x86_64) 90 return std::make_unique<X86_64MachoTargetObjectFile>(); 91 return std::make_unique<TargetLoweringObjectFileMachO>(); 92 } 93 94 if (TT.isOSFreeBSD()) 95 return std::make_unique<X86FreeBSDTargetObjectFile>(); 96 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 97 return std::make_unique<X86LinuxNaClTargetObjectFile>(); 98 if (TT.isOSSolaris()) 99 return std::make_unique<X86SolarisTargetObjectFile>(); 100 if (TT.isOSFuchsia()) 101 return std::make_unique<X86FuchsiaTargetObjectFile>(); 102 if (TT.isOSBinFormatELF()) 103 return std::make_unique<X86ELFTargetObjectFile>(); 104 if (TT.isOSBinFormatCOFF()) 105 return std::make_unique<TargetLoweringObjectFileCOFF>(); 106 llvm_unreachable("unknown subtarget type"); 107 } 108 109 static std::string computeDataLayout(const Triple &TT, 110 bool AddressSpaces = true) { 111 // X86 is little endian 112 std::string Ret = "e"; 113 114 Ret += DataLayout::getManglingComponent(TT); 115 // X86 and x32 have 32 bit pointers. 116 if ((TT.isArch64Bit() && 117 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 118 !TT.isArch64Bit()) 119 Ret += "-p:32:32"; 120 121 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 122 if (AddressSpaces) 123 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 124 125 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 126 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 127 Ret += "-i64:64"; 128 else if (TT.isOSIAMCU()) 129 Ret += "-i64:32-f64:32"; 130 else 131 Ret += "-f64:32:64"; 132 133 // Some ABIs align long double to 128 bits, others to 32. 134 if (TT.isOSNaCl() || TT.isOSIAMCU()) 135 ; // No f80 136 else if (TT.isArch64Bit() || TT.isOSDarwin()) 137 Ret += "-f80:128"; 138 else 139 Ret += "-f80:32"; 140 141 if (TT.isOSIAMCU()) 142 Ret += "-f128:32"; 143 144 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 145 if (TT.isArch64Bit()) 146 Ret += "-n8:16:32:64"; 147 else 148 Ret += "-n8:16:32"; 149 150 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 151 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 152 Ret += "-a:0:32-S32"; 153 else 154 Ret += "-S128"; 155 156 return Ret; 157 } 158 159 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 160 bool JIT, 161 Optional<Reloc::Model> RM) { 162 bool is64Bit = TT.getArch() == Triple::x86_64; 163 if (!RM.hasValue()) { 164 // JIT codegen should use static relocations by default, since it's 165 // typically executed in process and not relocatable. 166 if (JIT) 167 return Reloc::Static; 168 169 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 170 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 171 // use static relocation model by default. 172 if (TT.isOSDarwin()) { 173 if (is64Bit) 174 return Reloc::PIC_; 175 return Reloc::DynamicNoPIC; 176 } 177 if (TT.isOSWindows() && is64Bit) 178 return Reloc::PIC_; 179 return Reloc::Static; 180 } 181 182 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 183 // is defined as a model for code which may be used in static or dynamic 184 // executables but not necessarily a shared library. On X86-32 we just 185 // compile in -static mode, in x86-64 we use PIC. 186 if (*RM == Reloc::DynamicNoPIC) { 187 if (is64Bit) 188 return Reloc::PIC_; 189 if (!TT.isOSDarwin()) 190 return Reloc::Static; 191 } 192 193 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 194 // the Mach-O file format doesn't support it. 195 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 196 return Reloc::PIC_; 197 198 return *RM; 199 } 200 201 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 202 bool JIT, bool Is64Bit) { 203 if (CM) { 204 if (*CM == CodeModel::Tiny) 205 report_fatal_error("Target does not support the tiny CodeModel", false); 206 return *CM; 207 } 208 if (JIT) 209 return Is64Bit ? CodeModel::Large : CodeModel::Small; 210 return CodeModel::Small; 211 } 212 213 /// Create an X86 target. 214 /// 215 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 216 StringRef CPU, StringRef FS, 217 const TargetOptions &Options, 218 Optional<Reloc::Model> RM, 219 Optional<CodeModel::Model> CM, 220 CodeGenOpt::Level OL, bool JIT) 221 : LLVMTargetMachine( 222 T, computeDataLayout(TT), TT, CPU, FS, Options, 223 getEffectiveRelocModel(TT, JIT, RM), 224 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 225 OL), 226 TLOF(createTLOF(getTargetTriple())), 227 DLNoAddrSpaces(computeDataLayout(TT, /*AddressSpaces=*/false)) { 228 // On PS4, the "return address" of a 'noreturn' call must still be within 229 // the calling function, and TrapUnreachable is an easy way to get that. 230 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 231 this->Options.TrapUnreachable = true; 232 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 233 } 234 235 // Outlining is available for x86-64. 236 if (TT.getArch() == Triple::x86_64) 237 setMachineOutliner(true); 238 239 initAsmInfo(); 240 } 241 242 X86TargetMachine::~X86TargetMachine() = default; 243 244 const X86Subtarget * 245 X86TargetMachine::getSubtargetImpl(const Function &F) const { 246 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 247 Attribute FSAttr = F.getFnAttribute("target-features"); 248 249 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 250 ? CPUAttr.getValueAsString() 251 : (StringRef)TargetCPU; 252 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 253 ? FSAttr.getValueAsString() 254 : (StringRef)TargetFS; 255 256 SmallString<512> Key; 257 Key.reserve(CPU.size() + FS.size()); 258 Key += CPU; 259 Key += FS; 260 261 // FIXME: This is related to the code below to reset the target options, 262 // we need to know whether or not the soft float flag is set on the 263 // function before we can generate a subtarget. We also need to use 264 // it as a key for the subtarget since that can be the only difference 265 // between two functions. 266 bool SoftFloat = 267 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 268 // If the soft float attribute is set on the function turn on the soft float 269 // subtarget feature. 270 if (SoftFloat) 271 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 272 273 // Keep track of the key width after all features are added so we can extract 274 // the feature string out later. 275 unsigned CPUFSWidth = Key.size(); 276 277 // Extract prefer-vector-width attribute. 278 unsigned PreferVectorWidthOverride = 0; 279 if (F.hasFnAttribute("prefer-vector-width")) { 280 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 281 unsigned Width; 282 if (!Val.getAsInteger(0, Width)) { 283 Key += ",prefer-vector-width="; 284 Key += Val; 285 PreferVectorWidthOverride = Width; 286 } 287 } 288 289 // Extract min-legal-vector-width attribute. 290 unsigned RequiredVectorWidth = UINT32_MAX; 291 if (F.hasFnAttribute("min-legal-vector-width")) { 292 StringRef Val = 293 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 294 unsigned Width; 295 if (!Val.getAsInteger(0, Width)) { 296 Key += ",min-legal-vector-width="; 297 Key += Val; 298 RequiredVectorWidth = Width; 299 } 300 } 301 302 // Extracted here so that we make sure there is backing for the StringRef. If 303 // we assigned earlier, its possible the SmallString reallocated leaving a 304 // dangling StringRef. 305 FS = Key.slice(CPU.size(), CPUFSWidth); 306 307 auto &I = SubtargetMap[Key]; 308 if (!I) { 309 // This needs to be done before we create a new subtarget since any 310 // creation will depend on the TM and the code generation flags on the 311 // function that reside in TargetOptions. 312 resetTargetOptions(F); 313 I = std::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 314 Options.StackAlignmentOverride, 315 PreferVectorWidthOverride, 316 RequiredVectorWidth); 317 } 318 return I.get(); 319 } 320 321 bool X86TargetMachine::isCompatibleDataLayout( 322 const DataLayout &Candidate) const { 323 // Maintain compatibility with datalayouts that don't have address space 324 // pointer sizes. 325 return DL == Candidate || DLNoAddrSpaces == Candidate; 326 } 327 328 //===----------------------------------------------------------------------===// 329 // Command line options for x86 330 //===----------------------------------------------------------------------===// 331 static cl::opt<bool> 332 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 333 cl::desc("Minimize AVX to SSE transition penalty"), 334 cl::init(true)); 335 336 //===----------------------------------------------------------------------===// 337 // X86 TTI query. 338 //===----------------------------------------------------------------------===// 339 340 TargetTransformInfo 341 X86TargetMachine::getTargetTransformInfo(const Function &F) { 342 return TargetTransformInfo(X86TTIImpl(this, F)); 343 } 344 345 //===----------------------------------------------------------------------===// 346 // Pass Pipeline Configuration 347 //===----------------------------------------------------------------------===// 348 349 namespace { 350 351 /// X86 Code Generator Pass Configuration Options. 352 class X86PassConfig : public TargetPassConfig { 353 public: 354 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 355 : TargetPassConfig(TM, PM) {} 356 357 X86TargetMachine &getX86TargetMachine() const { 358 return getTM<X86TargetMachine>(); 359 } 360 361 ScheduleDAGInstrs * 362 createMachineScheduler(MachineSchedContext *C) const override { 363 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 364 DAG->addMutation(createX86MacroFusionDAGMutation()); 365 return DAG; 366 } 367 368 ScheduleDAGInstrs * 369 createPostMachineScheduler(MachineSchedContext *C) const override { 370 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 371 DAG->addMutation(createX86MacroFusionDAGMutation()); 372 return DAG; 373 } 374 375 void addIRPasses() override; 376 bool addInstSelector() override; 377 bool addIRTranslator() override; 378 bool addLegalizeMachineIR() override; 379 bool addRegBankSelect() override; 380 bool addGlobalInstructionSelect() override; 381 bool addILPOpts() override; 382 bool addPreISel() override; 383 void addMachineSSAOptimization() override; 384 void addPreRegAlloc() override; 385 void addPostRegAlloc() override; 386 void addPreEmitPass() override; 387 void addPreEmitPass2() override; 388 void addPreSched2() override; 389 390 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 391 }; 392 393 class X86ExecutionDomainFix : public ExecutionDomainFix { 394 public: 395 static char ID; 396 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 397 StringRef getPassName() const override { 398 return "X86 Execution Dependency Fix"; 399 } 400 }; 401 char X86ExecutionDomainFix::ID; 402 403 } // end anonymous namespace 404 405 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 406 "X86 Execution Domain Fix", false, false) 407 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 408 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 409 "X86 Execution Domain Fix", false, false) 410 411 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 412 return new X86PassConfig(*this, PM); 413 } 414 415 void X86PassConfig::addIRPasses() { 416 addPass(createAtomicExpandPass()); 417 418 TargetPassConfig::addIRPasses(); 419 420 if (TM->getOptLevel() != CodeGenOpt::None) 421 addPass(createInterleavedAccessPass()); 422 423 // Add passes that handle indirect branch removal and insertion of a retpoline 424 // thunk. These will be a no-op unless a function subtarget has the retpoline 425 // feature enabled. 426 addPass(createIndirectBrExpandPass()); 427 } 428 429 bool X86PassConfig::addInstSelector() { 430 // Install an instruction selector. 431 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 432 433 // For ELF, cleanup any local-dynamic TLS accesses. 434 if (TM->getTargetTriple().isOSBinFormatELF() && 435 getOptLevel() != CodeGenOpt::None) 436 addPass(createCleanupLocalDynamicTLSPass()); 437 438 addPass(createX86GlobalBaseRegPass()); 439 return false; 440 } 441 442 bool X86PassConfig::addIRTranslator() { 443 addPass(new IRTranslator()); 444 return false; 445 } 446 447 bool X86PassConfig::addLegalizeMachineIR() { 448 addPass(new Legalizer()); 449 return false; 450 } 451 452 bool X86PassConfig::addRegBankSelect() { 453 addPass(new RegBankSelect()); 454 return false; 455 } 456 457 bool X86PassConfig::addGlobalInstructionSelect() { 458 addPass(new InstructionSelect()); 459 return false; 460 } 461 462 bool X86PassConfig::addILPOpts() { 463 if (EnableCondBrFoldingPass) 464 addPass(createX86CondBrFolding()); 465 addPass(&EarlyIfConverterID); 466 if (EnableMachineCombinerPass) 467 addPass(&MachineCombinerID); 468 addPass(createX86CmovConverterPass()); 469 return true; 470 } 471 472 bool X86PassConfig::addPreISel() { 473 // Only add this pass for 32-bit x86 Windows. 474 const Triple &TT = TM->getTargetTriple(); 475 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 476 addPass(createX86WinEHStatePass()); 477 return true; 478 } 479 480 void X86PassConfig::addPreRegAlloc() { 481 if (getOptLevel() != CodeGenOpt::None) { 482 addPass(&LiveRangeShrinkID); 483 addPass(createX86FixupSetCC()); 484 addPass(createX86OptimizeLEAs()); 485 addPass(createX86CallFrameOptimization()); 486 addPass(createX86AvoidStoreForwardingBlocks()); 487 } 488 489 addPass(createX86SpeculativeLoadHardeningPass()); 490 addPass(createX86FlagsCopyLoweringPass()); 491 addPass(createX86WinAllocaExpander()); 492 } 493 void X86PassConfig::addMachineSSAOptimization() { 494 addPass(createX86DomainReassignmentPass()); 495 TargetPassConfig::addMachineSSAOptimization(); 496 } 497 498 void X86PassConfig::addPostRegAlloc() { 499 addPass(createX86FloatingPointStackifierPass()); 500 } 501 502 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 503 504 void X86PassConfig::addPreEmitPass() { 505 if (getOptLevel() != CodeGenOpt::None) { 506 addPass(new X86ExecutionDomainFix()); 507 addPass(createBreakFalseDeps()); 508 } 509 510 addPass(createX86IndirectBranchTrackingPass()); 511 512 if (UseVZeroUpper) 513 addPass(createX86IssueVZeroUpperPass()); 514 515 if (getOptLevel() != CodeGenOpt::None) { 516 addPass(createX86FixupBWInsts()); 517 addPass(createX86PadShortFunctions()); 518 addPass(createX86FixupLEAs()); 519 addPass(createX86EvexToVexInsts()); 520 } 521 addPass(createX86DiscriminateMemOpsPass()); 522 addPass(createX86InsertPrefetchPass()); 523 } 524 525 void X86PassConfig::addPreEmitPass2() { 526 const Triple &TT = TM->getTargetTriple(); 527 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 528 529 addPass(createX86RetpolineThunksPass()); 530 531 // Insert extra int3 instructions after trailing call instructions to avoid 532 // issues in the unwinder. 533 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 534 addPass(createX86AvoidTrailingCallPass()); 535 536 // Verify basic block incoming and outgoing cfa offset and register values and 537 // correct CFA calculation rule where needed by inserting appropriate CFI 538 // instructions. 539 if (!TT.isOSDarwin() && 540 (!TT.isOSWindows() || 541 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 542 addPass(createCFIInstrInserter()); 543 } 544 545 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 546 return getStandardCSEConfigForOpt(TM->getOptLevel()); 547 } 548