1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86InstructionSelector.h" 19 #ifdef LLVM_BUILD_GLOBAL_ISEL 20 #include "X86RegisterBankInfo.h" 21 #endif 22 #include "X86MacroFusion.h" 23 #include "X86Subtarget.h" 24 #include "X86TargetMachine.h" 25 #include "X86TargetObjectFile.h" 26 #include "X86TargetTransformInfo.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/Triple.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 34 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h" 35 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 36 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 37 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 38 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/Passes.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 namespace llvm { 62 63 void initializeWinEHStatePassPass(PassRegistry &); 64 65 } // end namespace llvm 66 67 extern "C" void LLVMInitializeX86Target() { 68 // Register the target. 69 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 70 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 71 72 PassRegistry &PR = *PassRegistry::getPassRegistry(); 73 initializeGlobalISel(PR); 74 initializeWinEHStatePassPass(PR); 75 initializeFixupBWInstPassPass(PR); 76 initializeEvexToVexInstPassPass(PR); 77 } 78 79 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 80 if (TT.isOSBinFormatMachO()) { 81 if (TT.getArch() == Triple::x86_64) 82 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 83 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 84 } 85 86 if (TT.isOSFreeBSD()) 87 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 88 if (TT.isOSLinux() || TT.isOSNaCl()) 89 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 90 if (TT.isOSFuchsia()) 91 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 92 if (TT.isOSBinFormatELF()) 93 return llvm::make_unique<X86ELFTargetObjectFile>(); 94 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 95 return llvm::make_unique<X86WindowsTargetObjectFile>(); 96 if (TT.isOSBinFormatCOFF()) 97 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 98 llvm_unreachable("unknown subtarget type"); 99 } 100 101 static std::string computeDataLayout(const Triple &TT) { 102 // X86 is little endian 103 std::string Ret = "e"; 104 105 Ret += DataLayout::getManglingComponent(TT); 106 // X86 and x32 have 32 bit pointers. 107 if ((TT.isArch64Bit() && 108 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 109 !TT.isArch64Bit()) 110 Ret += "-p:32:32"; 111 112 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 113 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 114 Ret += "-i64:64"; 115 else if (TT.isOSIAMCU()) 116 Ret += "-i64:32-f64:32"; 117 else 118 Ret += "-f64:32:64"; 119 120 // Some ABIs align long double to 128 bits, others to 32. 121 if (TT.isOSNaCl() || TT.isOSIAMCU()) 122 ; // No f80 123 else if (TT.isArch64Bit() || TT.isOSDarwin()) 124 Ret += "-f80:128"; 125 else 126 Ret += "-f80:32"; 127 128 if (TT.isOSIAMCU()) 129 Ret += "-f128:32"; 130 131 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 132 if (TT.isArch64Bit()) 133 Ret += "-n8:16:32:64"; 134 else 135 Ret += "-n8:16:32"; 136 137 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 138 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 139 Ret += "-a:0:32-S32"; 140 else 141 Ret += "-S128"; 142 143 return Ret; 144 } 145 146 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 147 Optional<Reloc::Model> RM) { 148 bool is64Bit = TT.getArch() == Triple::x86_64; 149 if (!RM.hasValue()) { 150 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 151 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 152 // use static relocation model by default. 153 if (TT.isOSDarwin()) { 154 if (is64Bit) 155 return Reloc::PIC_; 156 return Reloc::DynamicNoPIC; 157 } 158 if (TT.isOSWindows() && is64Bit) 159 return Reloc::PIC_; 160 return Reloc::Static; 161 } 162 163 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 164 // is defined as a model for code which may be used in static or dynamic 165 // executables but not necessarily a shared library. On X86-32 we just 166 // compile in -static mode, in x86-64 we use PIC. 167 if (*RM == Reloc::DynamicNoPIC) { 168 if (is64Bit) 169 return Reloc::PIC_; 170 if (!TT.isOSDarwin()) 171 return Reloc::Static; 172 } 173 174 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 175 // the Mach-O file format doesn't support it. 176 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 177 return Reloc::PIC_; 178 179 return *RM; 180 } 181 182 /// Create an X86 target. 183 /// 184 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 185 StringRef CPU, StringRef FS, 186 const TargetOptions &Options, 187 Optional<Reloc::Model> RM, 188 CodeModel::Model CM, CodeGenOpt::Level OL) 189 : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, 190 getEffectiveRelocModel(TT, RM), CM, OL), 191 TLOF(createTLOF(getTargetTriple())) { 192 // Windows stack unwinder gets confused when execution flow "falls through" 193 // after a call to 'noreturn' function. 194 // To prevent that, we emit a trap for 'unreachable' IR instructions. 195 // (which on X86, happens to be the 'ud2' instruction) 196 // On PS4, the "return address" of a 'noreturn' call must still be within 197 // the calling function, and TrapUnreachable is an easy way to get that. 198 // The check here for 64-bit windows is a bit icky, but as we're unlikely 199 // to ever want to mix 32 and 64-bit windows code in a single module 200 // this should be fine. 201 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4()) 202 this->Options.TrapUnreachable = true; 203 204 initAsmInfo(); 205 } 206 207 X86TargetMachine::~X86TargetMachine() = default; 208 209 #ifdef LLVM_BUILD_GLOBAL_ISEL 210 namespace { 211 212 struct X86GISelActualAccessor : public GISelAccessor { 213 std::unique_ptr<CallLowering> CallLoweringInfo; 214 std::unique_ptr<LegalizerInfo> Legalizer; 215 std::unique_ptr<RegisterBankInfo> RegBankInfo; 216 std::unique_ptr<InstructionSelector> InstSelector; 217 218 const CallLowering *getCallLowering() const override { 219 return CallLoweringInfo.get(); 220 } 221 222 const InstructionSelector *getInstructionSelector() const override { 223 return InstSelector.get(); 224 } 225 226 const LegalizerInfo *getLegalizerInfo() const override { 227 return Legalizer.get(); 228 } 229 230 const RegisterBankInfo *getRegBankInfo() const override { 231 return RegBankInfo.get(); 232 } 233 }; 234 235 } // end anonymous namespace 236 #endif 237 238 const X86Subtarget * 239 X86TargetMachine::getSubtargetImpl(const Function &F) const { 240 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 241 Attribute FSAttr = F.getFnAttribute("target-features"); 242 243 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 244 ? CPUAttr.getValueAsString() 245 : (StringRef)TargetCPU; 246 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 247 ? FSAttr.getValueAsString() 248 : (StringRef)TargetFS; 249 250 SmallString<512> Key; 251 Key.reserve(CPU.size() + FS.size()); 252 Key += CPU; 253 Key += FS; 254 255 // FIXME: This is related to the code below to reset the target options, 256 // we need to know whether or not the soft float flag is set on the 257 // function before we can generate a subtarget. We also need to use 258 // it as a key for the subtarget since that can be the only difference 259 // between two functions. 260 bool SoftFloat = 261 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 262 // If the soft float attribute is set on the function turn on the soft float 263 // subtarget feature. 264 if (SoftFloat) 265 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 266 267 FS = Key.substr(CPU.size()); 268 269 auto &I = SubtargetMap[Key]; 270 if (!I) { 271 // This needs to be done before we create a new subtarget since any 272 // creation will depend on the TM and the code generation flags on the 273 // function that reside in TargetOptions. 274 resetTargetOptions(F); 275 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 276 Options.StackAlignmentOverride); 277 #ifndef LLVM_BUILD_GLOBAL_ISEL 278 GISelAccessor *GISel = new GISelAccessor(); 279 #else 280 X86GISelActualAccessor *GISel = new X86GISelActualAccessor(); 281 282 GISel->CallLoweringInfo.reset(new X86CallLowering(*I->getTargetLowering())); 283 GISel->Legalizer.reset(new X86LegalizerInfo(*I)); 284 285 auto *RBI = new X86RegisterBankInfo(*I->getRegisterInfo()); 286 GISel->RegBankInfo.reset(RBI); 287 GISel->InstSelector.reset(new X86InstructionSelector(*I, *RBI)); 288 289 #endif 290 I->setGISelAccessor(*GISel); 291 } 292 return I.get(); 293 } 294 295 //===----------------------------------------------------------------------===// 296 // Command line options for x86 297 //===----------------------------------------------------------------------===// 298 static cl::opt<bool> 299 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 300 cl::desc("Minimize AVX to SSE transition penalty"), 301 cl::init(true)); 302 303 //===----------------------------------------------------------------------===// 304 // X86 TTI query. 305 //===----------------------------------------------------------------------===// 306 307 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 308 return TargetIRAnalysis([this](const Function &F) { 309 return TargetTransformInfo(X86TTIImpl(this, F)); 310 }); 311 } 312 313 //===----------------------------------------------------------------------===// 314 // Pass Pipeline Configuration 315 //===----------------------------------------------------------------------===// 316 317 namespace { 318 319 /// X86 Code Generator Pass Configuration Options. 320 class X86PassConfig : public TargetPassConfig { 321 public: 322 X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM) 323 : TargetPassConfig(TM, PM) {} 324 325 X86TargetMachine &getX86TargetMachine() const { 326 return getTM<X86TargetMachine>(); 327 } 328 329 ScheduleDAGInstrs * 330 createMachineScheduler(MachineSchedContext *C) const override { 331 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 332 DAG->addMutation(createX86MacroFusionDAGMutation()); 333 return DAG; 334 } 335 336 void addIRPasses() override; 337 bool addInstSelector() override; 338 #ifdef LLVM_BUILD_GLOBAL_ISEL 339 bool addIRTranslator() override; 340 bool addLegalizeMachineIR() override; 341 bool addRegBankSelect() override; 342 bool addGlobalInstructionSelect() override; 343 #endif 344 bool addILPOpts() override; 345 bool addPreISel() override; 346 void addPreRegAlloc() override; 347 void addPostRegAlloc() override; 348 void addPreEmitPass() override; 349 void addPreSched2() override; 350 }; 351 352 } // end anonymous namespace 353 354 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 355 return new X86PassConfig(this, PM); 356 } 357 358 void X86PassConfig::addIRPasses() { 359 addPass(createAtomicExpandPass(&getX86TargetMachine())); 360 361 TargetPassConfig::addIRPasses(); 362 363 if (TM->getOptLevel() != CodeGenOpt::None) 364 addPass(createInterleavedAccessPass(TM)); 365 } 366 367 bool X86PassConfig::addInstSelector() { 368 // Install an instruction selector. 369 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 370 371 // For ELF, cleanup any local-dynamic TLS accesses. 372 if (TM->getTargetTriple().isOSBinFormatELF() && 373 getOptLevel() != CodeGenOpt::None) 374 addPass(createCleanupLocalDynamicTLSPass()); 375 376 addPass(createX86GlobalBaseRegPass()); 377 return false; 378 } 379 380 #ifdef LLVM_BUILD_GLOBAL_ISEL 381 bool X86PassConfig::addIRTranslator() { 382 addPass(new IRTranslator()); 383 return false; 384 } 385 386 bool X86PassConfig::addLegalizeMachineIR() { 387 addPass(new Legalizer()); 388 return false; 389 } 390 391 bool X86PassConfig::addRegBankSelect() { 392 addPass(new RegBankSelect()); 393 return false; 394 } 395 396 bool X86PassConfig::addGlobalInstructionSelect() { 397 addPass(new InstructionSelect()); 398 return false; 399 } 400 #endif 401 402 bool X86PassConfig::addILPOpts() { 403 addPass(&EarlyIfConverterID); 404 if (EnableMachineCombinerPass) 405 addPass(&MachineCombinerID); 406 return true; 407 } 408 409 bool X86PassConfig::addPreISel() { 410 // Only add this pass for 32-bit x86 Windows. 411 const Triple &TT = TM->getTargetTriple(); 412 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 413 addPass(createX86WinEHStatePass()); 414 return true; 415 } 416 417 void X86PassConfig::addPreRegAlloc() { 418 if (getOptLevel() != CodeGenOpt::None) { 419 addPass(createX86FixupSetCC()); 420 addPass(createX86OptimizeLEAs()); 421 addPass(createX86CallFrameOptimization()); 422 } 423 424 addPass(createX86WinAllocaExpander()); 425 } 426 427 void X86PassConfig::addPostRegAlloc() { 428 addPass(createX86FloatingPointStackifierPass()); 429 } 430 431 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 432 433 void X86PassConfig::addPreEmitPass() { 434 if (getOptLevel() != CodeGenOpt::None) 435 addPass(createExecutionDependencyFixPass(&X86::VR128XRegClass)); 436 437 if (UseVZeroUpper) 438 addPass(createX86IssueVZeroUpperPass()); 439 440 if (getOptLevel() != CodeGenOpt::None) { 441 addPass(createX86FixupBWInsts()); 442 addPass(createX86PadShortFunctions()); 443 addPass(createX86FixupLEAs()); 444 addPass(createX86EvexToVexInsts()); 445 } 446 } 447