1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetObjectFile.h" 21 #include "X86TargetTransformInfo.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/CodeGen/ExecutionDomainFix.h" 29 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MachineScheduler.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <memory> 48 #include <string> 49 50 using namespace llvm; 51 52 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 53 cl::desc("Enable the machine combiner pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 57 cl::desc("Enable the conditional branch " 58 "folding pass"), 59 cl::init(false), cl::Hidden); 60 61 extern "C" void LLVMInitializeX86Target() { 62 // Register the target. 63 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 64 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 65 66 PassRegistry &PR = *PassRegistry::getPassRegistry(); 67 initializeGlobalISel(PR); 68 initializeWinEHStatePassPass(PR); 69 initializeFixupBWInstPassPass(PR); 70 initializeEvexToVexInstPassPass(PR); 71 initializeFixupLEAPassPass(PR); 72 initializeX86CallFrameOptimizationPass(PR); 73 initializeX86CmovConverterPassPass(PR); 74 initializeX86ExpandPseudoPass(PR); 75 initializeX86ExecutionDomainFixPass(PR); 76 initializeX86DomainReassignmentPass(PR); 77 initializeX86AvoidSFBPassPass(PR); 78 initializeX86SpeculativeLoadHardeningPassPass(PR); 79 initializeX86FlagsCopyLoweringPassPass(PR); 80 initializeX86CondBrFoldingPassPass(PR); 81 } 82 83 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 84 if (TT.isOSBinFormatMachO()) { 85 if (TT.getArch() == Triple::x86_64) 86 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 87 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 88 } 89 90 if (TT.isOSFreeBSD()) 91 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 92 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 93 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 94 if (TT.isOSSolaris()) 95 return llvm::make_unique<X86SolarisTargetObjectFile>(); 96 if (TT.isOSFuchsia()) 97 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 98 if (TT.isOSBinFormatELF()) 99 return llvm::make_unique<X86ELFTargetObjectFile>(); 100 if (TT.isOSBinFormatCOFF()) 101 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 102 llvm_unreachable("unknown subtarget type"); 103 } 104 105 static std::string computeDataLayout(const Triple &TT) { 106 // X86 is little endian 107 std::string Ret = "e"; 108 109 Ret += DataLayout::getManglingComponent(TT); 110 // X86 and x32 have 32 bit pointers. 111 if ((TT.isArch64Bit() && 112 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 113 !TT.isArch64Bit()) 114 Ret += "-p:32:32"; 115 116 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 117 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 118 Ret += "-i64:64"; 119 else if (TT.isOSIAMCU()) 120 Ret += "-i64:32-f64:32"; 121 else 122 Ret += "-f64:32:64"; 123 124 // Some ABIs align long double to 128 bits, others to 32. 125 if (TT.isOSNaCl() || TT.isOSIAMCU()) 126 ; // No f80 127 else if (TT.isArch64Bit() || TT.isOSDarwin()) 128 Ret += "-f80:128"; 129 else 130 Ret += "-f80:32"; 131 132 if (TT.isOSIAMCU()) 133 Ret += "-f128:32"; 134 135 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 136 if (TT.isArch64Bit()) 137 Ret += "-n8:16:32:64"; 138 else 139 Ret += "-n8:16:32"; 140 141 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 142 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 143 Ret += "-a:0:32-S32"; 144 else 145 Ret += "-S128"; 146 147 return Ret; 148 } 149 150 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 151 bool JIT, 152 Optional<Reloc::Model> RM) { 153 bool is64Bit = TT.getArch() == Triple::x86_64; 154 if (!RM.hasValue()) { 155 // JIT codegen should use static relocations by default, since it's 156 // typically executed in process and not relocatable. 157 if (JIT) 158 return Reloc::Static; 159 160 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 161 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 162 // use static relocation model by default. 163 if (TT.isOSDarwin()) { 164 if (is64Bit) 165 return Reloc::PIC_; 166 return Reloc::DynamicNoPIC; 167 } 168 if (TT.isOSWindows() && is64Bit) 169 return Reloc::PIC_; 170 return Reloc::Static; 171 } 172 173 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 174 // is defined as a model for code which may be used in static or dynamic 175 // executables but not necessarily a shared library. On X86-32 we just 176 // compile in -static mode, in x86-64 we use PIC. 177 if (*RM == Reloc::DynamicNoPIC) { 178 if (is64Bit) 179 return Reloc::PIC_; 180 if (!TT.isOSDarwin()) 181 return Reloc::Static; 182 } 183 184 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 185 // the Mach-O file format doesn't support it. 186 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 187 return Reloc::PIC_; 188 189 return *RM; 190 } 191 192 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 193 bool JIT, bool Is64Bit) { 194 if (CM) { 195 if (*CM == CodeModel::Tiny) 196 report_fatal_error("Target does not support the tiny CodeModel"); 197 return *CM; 198 } 199 if (JIT) 200 return Is64Bit ? CodeModel::Large : CodeModel::Small; 201 return CodeModel::Small; 202 } 203 204 /// Create an X86 target. 205 /// 206 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 207 StringRef CPU, StringRef FS, 208 const TargetOptions &Options, 209 Optional<Reloc::Model> RM, 210 Optional<CodeModel::Model> CM, 211 CodeGenOpt::Level OL, bool JIT) 212 : LLVMTargetMachine( 213 T, computeDataLayout(TT), TT, CPU, FS, Options, 214 getEffectiveRelocModel(TT, JIT, RM), 215 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 216 OL), 217 TLOF(createTLOF(getTargetTriple())) { 218 // Windows stack unwinder gets confused when execution flow "falls through" 219 // after a call to 'noreturn' function. 220 // To prevent that, we emit a trap for 'unreachable' IR instructions. 221 // (which on X86, happens to be the 'ud2' instruction) 222 // On PS4, the "return address" of a 'noreturn' call must still be within 223 // the calling function, and TrapUnreachable is an easy way to get that. 224 // The check here for 64-bit windows is a bit icky, but as we're unlikely 225 // to ever want to mix 32 and 64-bit windows code in a single module 226 // this should be fine. 227 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() || 228 TT.isOSBinFormatMachO()) { 229 this->Options.TrapUnreachable = true; 230 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 231 } 232 233 // Outlining is available for x86-64. 234 if (TT.getArch() == Triple::x86_64) 235 setMachineOutliner(true); 236 237 initAsmInfo(); 238 } 239 240 X86TargetMachine::~X86TargetMachine() = default; 241 242 const X86Subtarget * 243 X86TargetMachine::getSubtargetImpl(const Function &F) const { 244 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 245 Attribute FSAttr = F.getFnAttribute("target-features"); 246 247 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 248 ? CPUAttr.getValueAsString() 249 : (StringRef)TargetCPU; 250 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 251 ? FSAttr.getValueAsString() 252 : (StringRef)TargetFS; 253 254 SmallString<512> Key; 255 Key.reserve(CPU.size() + FS.size()); 256 Key += CPU; 257 Key += FS; 258 259 // FIXME: This is related to the code below to reset the target options, 260 // we need to know whether or not the soft float flag is set on the 261 // function before we can generate a subtarget. We also need to use 262 // it as a key for the subtarget since that can be the only difference 263 // between two functions. 264 bool SoftFloat = 265 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 266 // If the soft float attribute is set on the function turn on the soft float 267 // subtarget feature. 268 if (SoftFloat) 269 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 270 271 // Keep track of the key width after all features are added so we can extract 272 // the feature string out later. 273 unsigned CPUFSWidth = Key.size(); 274 275 // Extract prefer-vector-width attribute. 276 unsigned PreferVectorWidthOverride = 0; 277 if (F.hasFnAttribute("prefer-vector-width")) { 278 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 279 unsigned Width; 280 if (!Val.getAsInteger(0, Width)) { 281 Key += ",prefer-vector-width="; 282 Key += Val; 283 PreferVectorWidthOverride = Width; 284 } 285 } 286 287 // Extract min-legal-vector-width attribute. 288 unsigned RequiredVectorWidth = UINT32_MAX; 289 if (F.hasFnAttribute("min-legal-vector-width")) { 290 StringRef Val = 291 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 292 unsigned Width; 293 if (!Val.getAsInteger(0, Width)) { 294 Key += ",min-legal-vector-width="; 295 Key += Val; 296 RequiredVectorWidth = Width; 297 } 298 } 299 300 // Extracted here so that we make sure there is backing for the StringRef. If 301 // we assigned earlier, its possible the SmallString reallocated leaving a 302 // dangling StringRef. 303 FS = Key.slice(CPU.size(), CPUFSWidth); 304 305 auto &I = SubtargetMap[Key]; 306 if (!I) { 307 // This needs to be done before we create a new subtarget since any 308 // creation will depend on the TM and the code generation flags on the 309 // function that reside in TargetOptions. 310 resetTargetOptions(F); 311 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 312 Options.StackAlignmentOverride, 313 PreferVectorWidthOverride, 314 RequiredVectorWidth); 315 } 316 return I.get(); 317 } 318 319 //===----------------------------------------------------------------------===// 320 // Command line options for x86 321 //===----------------------------------------------------------------------===// 322 static cl::opt<bool> 323 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 324 cl::desc("Minimize AVX to SSE transition penalty"), 325 cl::init(true)); 326 327 //===----------------------------------------------------------------------===// 328 // X86 TTI query. 329 //===----------------------------------------------------------------------===// 330 331 TargetTransformInfo 332 X86TargetMachine::getTargetTransformInfo(const Function &F) { 333 return TargetTransformInfo(X86TTIImpl(this, F)); 334 } 335 336 //===----------------------------------------------------------------------===// 337 // Pass Pipeline Configuration 338 //===----------------------------------------------------------------------===// 339 340 namespace { 341 342 /// X86 Code Generator Pass Configuration Options. 343 class X86PassConfig : public TargetPassConfig { 344 public: 345 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 346 : TargetPassConfig(TM, PM) {} 347 348 X86TargetMachine &getX86TargetMachine() const { 349 return getTM<X86TargetMachine>(); 350 } 351 352 ScheduleDAGInstrs * 353 createMachineScheduler(MachineSchedContext *C) const override { 354 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 355 DAG->addMutation(createX86MacroFusionDAGMutation()); 356 return DAG; 357 } 358 359 ScheduleDAGInstrs * 360 createPostMachineScheduler(MachineSchedContext *C) const override { 361 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 362 DAG->addMutation(createX86MacroFusionDAGMutation()); 363 return DAG; 364 } 365 366 void addIRPasses() override; 367 bool addInstSelector() override; 368 bool addIRTranslator() override; 369 bool addLegalizeMachineIR() override; 370 bool addRegBankSelect() override; 371 bool addGlobalInstructionSelect() override; 372 bool addILPOpts() override; 373 bool addPreISel() override; 374 void addMachineSSAOptimization() override; 375 void addPreRegAlloc() override; 376 void addPostRegAlloc() override; 377 void addPreEmitPass() override; 378 void addPreEmitPass2() override; 379 void addPreSched2() override; 380 }; 381 382 class X86ExecutionDomainFix : public ExecutionDomainFix { 383 public: 384 static char ID; 385 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 386 StringRef getPassName() const override { 387 return "X86 Execution Dependency Fix"; 388 } 389 }; 390 char X86ExecutionDomainFix::ID; 391 392 } // end anonymous namespace 393 394 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 395 "X86 Execution Domain Fix", false, false) 396 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 397 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 398 "X86 Execution Domain Fix", false, false) 399 400 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 401 return new X86PassConfig(*this, PM); 402 } 403 404 void X86PassConfig::addIRPasses() { 405 addPass(createAtomicExpandPass()); 406 407 TargetPassConfig::addIRPasses(); 408 409 if (TM->getOptLevel() != CodeGenOpt::None) 410 addPass(createInterleavedAccessPass()); 411 412 // Add passes that handle indirect branch removal and insertion of a retpoline 413 // thunk. These will be a no-op unless a function subtarget has the retpoline 414 // feature enabled. 415 addPass(createIndirectBrExpandPass()); 416 } 417 418 bool X86PassConfig::addInstSelector() { 419 // Install an instruction selector. 420 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 421 422 // For ELF, cleanup any local-dynamic TLS accesses. 423 if (TM->getTargetTriple().isOSBinFormatELF() && 424 getOptLevel() != CodeGenOpt::None) 425 addPass(createCleanupLocalDynamicTLSPass()); 426 427 addPass(createX86GlobalBaseRegPass()); 428 return false; 429 } 430 431 bool X86PassConfig::addIRTranslator() { 432 addPass(new IRTranslator()); 433 return false; 434 } 435 436 bool X86PassConfig::addLegalizeMachineIR() { 437 addPass(new Legalizer()); 438 return false; 439 } 440 441 bool X86PassConfig::addRegBankSelect() { 442 addPass(new RegBankSelect()); 443 return false; 444 } 445 446 bool X86PassConfig::addGlobalInstructionSelect() { 447 addPass(new InstructionSelect()); 448 return false; 449 } 450 451 bool X86PassConfig::addILPOpts() { 452 if (EnableCondBrFoldingPass) 453 addPass(createX86CondBrFolding()); 454 addPass(&EarlyIfConverterID); 455 if (EnableMachineCombinerPass) 456 addPass(&MachineCombinerID); 457 addPass(createX86CmovConverterPass()); 458 return true; 459 } 460 461 bool X86PassConfig::addPreISel() { 462 // Only add this pass for 32-bit x86 Windows. 463 const Triple &TT = TM->getTargetTriple(); 464 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 465 addPass(createX86WinEHStatePass()); 466 return true; 467 } 468 469 void X86PassConfig::addPreRegAlloc() { 470 if (getOptLevel() != CodeGenOpt::None) { 471 addPass(&LiveRangeShrinkID); 472 addPass(createX86FixupSetCC()); 473 addPass(createX86OptimizeLEAs()); 474 addPass(createX86CallFrameOptimization()); 475 addPass(createX86AvoidStoreForwardingBlocks()); 476 } 477 478 addPass(createX86SpeculativeLoadHardeningPass()); 479 addPass(createX86FlagsCopyLoweringPass()); 480 addPass(createX86WinAllocaExpander()); 481 } 482 void X86PassConfig::addMachineSSAOptimization() { 483 addPass(createX86DomainReassignmentPass()); 484 TargetPassConfig::addMachineSSAOptimization(); 485 } 486 487 void X86PassConfig::addPostRegAlloc() { 488 addPass(createX86FloatingPointStackifierPass()); 489 } 490 491 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 492 493 void X86PassConfig::addPreEmitPass() { 494 if (getOptLevel() != CodeGenOpt::None) { 495 addPass(new X86ExecutionDomainFix()); 496 addPass(createBreakFalseDeps()); 497 } 498 499 addPass(createX86IndirectBranchTrackingPass()); 500 501 if (UseVZeroUpper) 502 addPass(createX86IssueVZeroUpperPass()); 503 504 if (getOptLevel() != CodeGenOpt::None) { 505 addPass(createX86FixupBWInsts()); 506 addPass(createX86PadShortFunctions()); 507 addPass(createX86FixupLEAs()); 508 addPass(createX86EvexToVexInsts()); 509 } 510 addPass(createX86DiscriminateMemOpsPass()); 511 addPass(createX86InsertPrefetchPass()); 512 } 513 514 void X86PassConfig::addPreEmitPass2() { 515 addPass(createX86RetpolineThunksPass()); 516 // Verify basic block incoming and outgoing cfa offset and register values and 517 // correct CFA calculation rule where needed by inserting appropriate CFI 518 // instructions. 519 const Triple &TT = TM->getTargetTriple(); 520 if (!TT.isOSDarwin() && !TT.isOSWindows()) 521 addPass(createCFIInstrInserter()); 522 } 523