1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include <memory> 51 #include <string> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 60 // Register the target. 61 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 62 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 63 64 PassRegistry &PR = *PassRegistry::getPassRegistry(); 65 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 66 initializeX86LowerAMXTypeLegacyPassPass(PR); 67 initializeGlobalISel(PR); 68 initializeWinEHStatePassPass(PR); 69 initializeFixupBWInstPassPass(PR); 70 initializeEvexToVexInstPassPass(PR); 71 initializeFixupLEAPassPass(PR); 72 initializeFPSPass(PR); 73 initializeX86FixupSetCCPassPass(PR); 74 initializeX86CallFrameOptimizationPass(PR); 75 initializeX86CmovConverterPassPass(PR); 76 initializeX86TileConfigPass(PR); 77 initializeX86LowerTileCopyPass(PR); 78 initializeX86ExpandPseudoPass(PR); 79 initializeX86ExecutionDomainFixPass(PR); 80 initializeX86DomainReassignmentPass(PR); 81 initializeX86AvoidSFBPassPass(PR); 82 initializeX86AvoidTrailingCallPassPass(PR); 83 initializeX86SpeculativeLoadHardeningPassPass(PR); 84 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 85 initializeX86FlagsCopyLoweringPassPass(PR); 86 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 87 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 88 initializeX86OptimizeLEAPassPass(PR); 89 initializeX86PartialReductionPass(PR); 90 initializePseudoProbeInserterPass(PR); 91 } 92 93 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 94 if (TT.isOSBinFormatMachO()) { 95 if (TT.getArch() == Triple::x86_64) 96 return std::make_unique<X86_64MachoTargetObjectFile>(); 97 return std::make_unique<TargetLoweringObjectFileMachO>(); 98 } 99 100 if (TT.isOSBinFormatCOFF()) 101 return std::make_unique<TargetLoweringObjectFileCOFF>(); 102 return std::make_unique<X86ELFTargetObjectFile>(); 103 } 104 105 static std::string computeDataLayout(const Triple &TT) { 106 // X86 is little endian 107 std::string Ret = "e"; 108 109 Ret += DataLayout::getManglingComponent(TT); 110 // X86 and x32 have 32 bit pointers. 111 if ((TT.isArch64Bit() && 112 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 113 !TT.isArch64Bit()) 114 Ret += "-p:32:32"; 115 116 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 117 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 118 119 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 120 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 121 Ret += "-i64:64"; 122 else if (TT.isOSIAMCU()) 123 Ret += "-i64:32-f64:32"; 124 else 125 Ret += "-f64:32:64"; 126 127 // Some ABIs align long double to 128 bits, others to 32. 128 if (TT.isOSNaCl() || TT.isOSIAMCU()) 129 ; // No f80 130 else if (TT.isArch64Bit() || TT.isOSDarwin()) 131 Ret += "-f80:128"; 132 else 133 Ret += "-f80:32"; 134 135 if (TT.isOSIAMCU()) 136 Ret += "-f128:32"; 137 138 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 139 if (TT.isArch64Bit()) 140 Ret += "-n8:16:32:64"; 141 else 142 Ret += "-n8:16:32"; 143 144 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 145 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 146 Ret += "-a:0:32-S32"; 147 else 148 Ret += "-S128"; 149 150 return Ret; 151 } 152 153 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 154 bool JIT, 155 Optional<Reloc::Model> RM) { 156 bool is64Bit = TT.getArch() == Triple::x86_64; 157 if (!RM.hasValue()) { 158 // JIT codegen should use static relocations by default, since it's 159 // typically executed in process and not relocatable. 160 if (JIT) 161 return Reloc::Static; 162 163 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 164 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 165 // use static relocation model by default. 166 if (TT.isOSDarwin()) { 167 if (is64Bit) 168 return Reloc::PIC_; 169 return Reloc::DynamicNoPIC; 170 } 171 if (TT.isOSWindows() && is64Bit) 172 return Reloc::PIC_; 173 return Reloc::Static; 174 } 175 176 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 177 // is defined as a model for code which may be used in static or dynamic 178 // executables but not necessarily a shared library. On X86-32 we just 179 // compile in -static mode, in x86-64 we use PIC. 180 if (*RM == Reloc::DynamicNoPIC) { 181 if (is64Bit) 182 return Reloc::PIC_; 183 if (!TT.isOSDarwin()) 184 return Reloc::Static; 185 } 186 187 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 188 // the Mach-O file format doesn't support it. 189 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 190 return Reloc::PIC_; 191 192 return *RM; 193 } 194 195 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 196 bool JIT, bool Is64Bit) { 197 if (CM) { 198 if (*CM == CodeModel::Tiny) 199 report_fatal_error("Target does not support the tiny CodeModel", false); 200 return *CM; 201 } 202 if (JIT) 203 return Is64Bit ? CodeModel::Large : CodeModel::Small; 204 return CodeModel::Small; 205 } 206 207 /// Create an X86 target. 208 /// 209 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 210 StringRef CPU, StringRef FS, 211 const TargetOptions &Options, 212 Optional<Reloc::Model> RM, 213 Optional<CodeModel::Model> CM, 214 CodeGenOpt::Level OL, bool JIT) 215 : LLVMTargetMachine( 216 T, computeDataLayout(TT), TT, CPU, FS, Options, 217 getEffectiveRelocModel(TT, JIT, RM), 218 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 219 OL), 220 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 221 // On PS4, the "return address" of a 'noreturn' call must still be within 222 // the calling function, and TrapUnreachable is an easy way to get that. 223 if (TT.isPS4() || TT.isOSBinFormatMachO()) { 224 this->Options.TrapUnreachable = true; 225 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 226 } 227 228 setMachineOutliner(true); 229 230 // x86 supports the debug entry values. 231 setSupportsDebugEntryValues(true); 232 233 initAsmInfo(); 234 } 235 236 X86TargetMachine::~X86TargetMachine() = default; 237 238 const X86Subtarget * 239 X86TargetMachine::getSubtargetImpl(const Function &F) const { 240 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 241 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 242 Attribute FSAttr = F.getFnAttribute("target-features"); 243 244 StringRef CPU = 245 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 246 StringRef TuneCPU = 247 TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU; 248 StringRef FS = 249 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 250 251 SmallString<512> Key; 252 // The additions here are ordered so that the definitely short strings are 253 // added first so we won't exceed the small size. We append the 254 // much longer FS string at the end so that we only heap allocate at most 255 // one time. 256 257 // Extract prefer-vector-width attribute. 258 unsigned PreferVectorWidthOverride = 0; 259 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 260 if (PreferVecWidthAttr.isValid()) { 261 StringRef Val = PreferVecWidthAttr.getValueAsString(); 262 unsigned Width; 263 if (!Val.getAsInteger(0, Width)) { 264 Key += 'p'; 265 Key += Val; 266 PreferVectorWidthOverride = Width; 267 } 268 } 269 270 // Extract min-legal-vector-width attribute. 271 unsigned RequiredVectorWidth = UINT32_MAX; 272 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 273 if (MinLegalVecWidthAttr.isValid()) { 274 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 275 unsigned Width; 276 if (!Val.getAsInteger(0, Width)) { 277 Key += 'm'; 278 Key += Val; 279 RequiredVectorWidth = Width; 280 } 281 } 282 283 // Add CPU to the Key. 284 Key += CPU; 285 286 // Add tune CPU to the Key. 287 Key += TuneCPU; 288 289 // Keep track of the start of the feature portion of the string. 290 unsigned FSStart = Key.size(); 291 292 // FIXME: This is related to the code below to reset the target options, 293 // we need to know whether or not the soft float flag is set on the 294 // function before we can generate a subtarget. We also need to use 295 // it as a key for the subtarget since that can be the only difference 296 // between two functions. 297 bool SoftFloat = 298 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 299 // If the soft float attribute is set on the function turn on the soft float 300 // subtarget feature. 301 if (SoftFloat) 302 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 303 304 Key += FS; 305 306 // We may have added +soft-float to the features so move the StringRef to 307 // point to the full string in the Key. 308 FS = Key.substr(FSStart); 309 310 auto &I = SubtargetMap[Key]; 311 if (!I) { 312 // This needs to be done before we create a new subtarget since any 313 // creation will depend on the TM and the code generation flags on the 314 // function that reside in TargetOptions. 315 resetTargetOptions(F); 316 I = std::make_unique<X86Subtarget>( 317 TargetTriple, CPU, TuneCPU, FS, *this, 318 MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride, 319 RequiredVectorWidth); 320 } 321 return I.get(); 322 } 323 324 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 325 unsigned DestAS) const { 326 assert(SrcAS != DestAS && "Expected different address spaces!"); 327 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 328 return false; 329 return SrcAS < 256 && DestAS < 256; 330 } 331 332 //===----------------------------------------------------------------------===// 333 // X86 TTI query. 334 //===----------------------------------------------------------------------===// 335 336 TargetTransformInfo 337 X86TargetMachine::getTargetTransformInfo(const Function &F) { 338 return TargetTransformInfo(X86TTIImpl(this, F)); 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Pass Pipeline Configuration 343 //===----------------------------------------------------------------------===// 344 345 namespace { 346 347 /// X86 Code Generator Pass Configuration Options. 348 class X86PassConfig : public TargetPassConfig { 349 public: 350 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 351 : TargetPassConfig(TM, PM) {} 352 353 X86TargetMachine &getX86TargetMachine() const { 354 return getTM<X86TargetMachine>(); 355 } 356 357 ScheduleDAGInstrs * 358 createMachineScheduler(MachineSchedContext *C) const override { 359 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 360 DAG->addMutation(createX86MacroFusionDAGMutation()); 361 return DAG; 362 } 363 364 ScheduleDAGInstrs * 365 createPostMachineScheduler(MachineSchedContext *C) const override { 366 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 367 DAG->addMutation(createX86MacroFusionDAGMutation()); 368 return DAG; 369 } 370 371 void addIRPasses() override; 372 bool addInstSelector() override; 373 bool addIRTranslator() override; 374 bool addLegalizeMachineIR() override; 375 bool addRegBankSelect() override; 376 bool addGlobalInstructionSelect() override; 377 bool addILPOpts() override; 378 bool addPreISel() override; 379 void addMachineSSAOptimization() override; 380 void addPreRegAlloc() override; 381 void addPostRegAlloc() override; 382 void addPreEmitPass() override; 383 void addPreEmitPass2() override; 384 void addPreSched2() override; 385 bool addPreRewrite() override; 386 387 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 388 }; 389 390 class X86ExecutionDomainFix : public ExecutionDomainFix { 391 public: 392 static char ID; 393 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 394 StringRef getPassName() const override { 395 return "X86 Execution Dependency Fix"; 396 } 397 }; 398 char X86ExecutionDomainFix::ID; 399 400 } // end anonymous namespace 401 402 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 403 "X86 Execution Domain Fix", false, false) 404 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 405 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 406 "X86 Execution Domain Fix", false, false) 407 408 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 409 return new X86PassConfig(*this, PM); 410 } 411 412 void X86PassConfig::addIRPasses() { 413 addPass(createAtomicExpandPass()); 414 415 // We add both pass anyway and when these two passes run, we skip the pass 416 // based on the option level and option attribute. 417 addPass(createX86LowerAMXIntrinsicsPass()); 418 addPass(createX86LowerAMXTypePass()); 419 420 TargetPassConfig::addIRPasses(); 421 422 if (TM->getOptLevel() != CodeGenOpt::None) { 423 addPass(createInterleavedAccessPass()); 424 addPass(createX86PartialReductionPass()); 425 } 426 427 // Add passes that handle indirect branch removal and insertion of a retpoline 428 // thunk. These will be a no-op unless a function subtarget has the retpoline 429 // feature enabled. 430 addPass(createIndirectBrExpandPass()); 431 432 // Add Control Flow Guard checks. 433 const Triple &TT = TM->getTargetTriple(); 434 if (TT.isOSWindows()) { 435 if (TT.getArch() == Triple::x86_64) { 436 addPass(createCFGuardDispatchPass()); 437 } else { 438 addPass(createCFGuardCheckPass()); 439 } 440 } 441 } 442 443 bool X86PassConfig::addInstSelector() { 444 // Install an instruction selector. 445 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 446 447 // For ELF, cleanup any local-dynamic TLS accesses. 448 if (TM->getTargetTriple().isOSBinFormatELF() && 449 getOptLevel() != CodeGenOpt::None) 450 addPass(createCleanupLocalDynamicTLSPass()); 451 452 addPass(createX86GlobalBaseRegPass()); 453 return false; 454 } 455 456 bool X86PassConfig::addIRTranslator() { 457 addPass(new IRTranslator(getOptLevel())); 458 return false; 459 } 460 461 bool X86PassConfig::addLegalizeMachineIR() { 462 addPass(new Legalizer()); 463 return false; 464 } 465 466 bool X86PassConfig::addRegBankSelect() { 467 addPass(new RegBankSelect()); 468 return false; 469 } 470 471 bool X86PassConfig::addGlobalInstructionSelect() { 472 addPass(new InstructionSelect(getOptLevel())); 473 return false; 474 } 475 476 bool X86PassConfig::addILPOpts() { 477 addPass(&EarlyIfConverterID); 478 if (EnableMachineCombinerPass) 479 addPass(&MachineCombinerID); 480 addPass(createX86CmovConverterPass()); 481 return true; 482 } 483 484 bool X86PassConfig::addPreISel() { 485 // Only add this pass for 32-bit x86 Windows. 486 const Triple &TT = TM->getTargetTriple(); 487 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 488 addPass(createX86WinEHStatePass()); 489 return true; 490 } 491 492 void X86PassConfig::addPreRegAlloc() { 493 if (getOptLevel() != CodeGenOpt::None) { 494 addPass(&LiveRangeShrinkID); 495 addPass(createX86FixupSetCC()); 496 addPass(createX86OptimizeLEAs()); 497 addPass(createX86CallFrameOptimization()); 498 addPass(createX86AvoidStoreForwardingBlocks()); 499 } 500 501 addPass(createX86SpeculativeLoadHardeningPass()); 502 addPass(createX86FlagsCopyLoweringPass()); 503 addPass(createX86WinAllocaExpander()); 504 505 if (getOptLevel() != CodeGenOpt::None) { 506 addPass(createX86PreTileConfigPass()); 507 } 508 } 509 510 void X86PassConfig::addMachineSSAOptimization() { 511 addPass(createX86DomainReassignmentPass()); 512 TargetPassConfig::addMachineSSAOptimization(); 513 } 514 515 void X86PassConfig::addPostRegAlloc() { 516 addPass(createX86LowerTileCopyPass()); 517 addPass(createX86FloatingPointStackifierPass()); 518 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 519 // to using the Speculative Execution Side Effect Suppression pass for 520 // mitigation. This is to prevent slow downs due to 521 // analyses needed by the LVIHardening pass when compiling at -O0. 522 if (getOptLevel() != CodeGenOpt::None) 523 addPass(createX86LoadValueInjectionLoadHardeningPass()); 524 } 525 526 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 527 528 void X86PassConfig::addPreEmitPass() { 529 if (getOptLevel() != CodeGenOpt::None) { 530 addPass(new X86ExecutionDomainFix()); 531 addPass(createBreakFalseDeps()); 532 } 533 534 addPass(createX86IndirectBranchTrackingPass()); 535 536 addPass(createX86IssueVZeroUpperPass()); 537 538 if (getOptLevel() != CodeGenOpt::None) { 539 addPass(createX86FixupBWInsts()); 540 addPass(createX86PadShortFunctions()); 541 addPass(createX86FixupLEAs()); 542 } 543 addPass(createX86EvexToVexInsts()); 544 addPass(createX86DiscriminateMemOpsPass()); 545 addPass(createX86InsertPrefetchPass()); 546 addPass(createX86InsertX87waitPass()); 547 } 548 549 void X86PassConfig::addPreEmitPass2() { 550 const Triple &TT = TM->getTargetTriple(); 551 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 552 553 // The X86 Speculative Execution Pass must run after all control 554 // flow graph modifying passes. As a result it was listed to run right before 555 // the X86 Retpoline Thunks pass. The reason it must run after control flow 556 // graph modifications is that the model of LFENCE in LLVM has to be updated 557 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 558 // placement of this pass was hand checked to ensure that the subsequent 559 // passes don't move the code around the LFENCEs in a way that will hurt the 560 // correctness of this pass. This placement has been shown to work based on 561 // hand inspection of the codegen output. 562 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 563 addPass(createX86IndirectThunksPass()); 564 565 // Insert extra int3 instructions after trailing call instructions to avoid 566 // issues in the unwinder. 567 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 568 addPass(createX86AvoidTrailingCallPass()); 569 570 // Verify basic block incoming and outgoing cfa offset and register values and 571 // correct CFA calculation rule where needed by inserting appropriate CFI 572 // instructions. 573 if (!TT.isOSDarwin() && 574 (!TT.isOSWindows() || 575 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 576 addPass(createCFIInstrInserter()); 577 578 if (TT.isOSWindows()) { 579 // Identify valid longjmp targets for Windows Control Flow Guard. 580 addPass(createCFGuardLongjmpPass()); 581 // Identify valid eh continuation targets for Windows EHCont Guard. 582 addPass(createEHContGuardCatchretPass()); 583 } 584 addPass(createX86LoadValueInjectionRetHardeningPass()); 585 } 586 587 bool X86PassConfig::addPreRewrite() { 588 addPass(createX86TileConfigPass()); 589 return true; 590 } 591 592 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 593 return getStandardCSEConfigForOpt(TM->getOptLevel()); 594 } 595