1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CodeGen.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <memory> 50 #include <string> 51 52 using namespace llvm; 53 54 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 55 cl::desc("Enable the machine combiner pass"), 56 cl::init(true), cl::Hidden); 57 58 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 59 cl::desc("Enable the conditional branch " 60 "folding pass"), 61 cl::init(false), cl::Hidden); 62 63 extern "C" void LLVMInitializeX86Target() { 64 // Register the target. 65 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 66 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 67 68 PassRegistry &PR = *PassRegistry::getPassRegistry(); 69 initializeGlobalISel(PR); 70 initializeWinEHStatePassPass(PR); 71 initializeFixupBWInstPassPass(PR); 72 initializeEvexToVexInstPassPass(PR); 73 initializeFixupLEAPassPass(PR); 74 initializeFPSPass(PR); 75 initializeX86CallFrameOptimizationPass(PR); 76 initializeX86CmovConverterPassPass(PR); 77 initializeX86ExpandPseudoPass(PR); 78 initializeX86ExecutionDomainFixPass(PR); 79 initializeX86DomainReassignmentPass(PR); 80 initializeX86AvoidSFBPassPass(PR); 81 initializeX86SpeculativeLoadHardeningPassPass(PR); 82 initializeX86FlagsCopyLoweringPassPass(PR); 83 initializeX86CondBrFoldingPassPass(PR); 84 initializeX86OptimizeLEAPassPass(PR); 85 } 86 87 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 88 if (TT.isOSBinFormatMachO()) { 89 if (TT.getArch() == Triple::x86_64) 90 return std::make_unique<X86_64MachoTargetObjectFile>(); 91 return std::make_unique<TargetLoweringObjectFileMachO>(); 92 } 93 94 if (TT.isOSFreeBSD()) 95 return std::make_unique<X86FreeBSDTargetObjectFile>(); 96 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 97 return std::make_unique<X86LinuxNaClTargetObjectFile>(); 98 if (TT.isOSSolaris()) 99 return std::make_unique<X86SolarisTargetObjectFile>(); 100 if (TT.isOSFuchsia()) 101 return std::make_unique<X86FuchsiaTargetObjectFile>(); 102 if (TT.isOSBinFormatELF()) 103 return std::make_unique<X86ELFTargetObjectFile>(); 104 if (TT.isOSBinFormatCOFF()) 105 return std::make_unique<TargetLoweringObjectFileCOFF>(); 106 llvm_unreachable("unknown subtarget type"); 107 } 108 109 static std::string computeDataLayout(const Triple &TT) { 110 // X86 is little endian 111 std::string Ret = "e"; 112 113 Ret += DataLayout::getManglingComponent(TT); 114 // X86 and x32 have 32 bit pointers. 115 if ((TT.isArch64Bit() && 116 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 117 !TT.isArch64Bit()) 118 Ret += "-p:32:32"; 119 120 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 121 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 122 Ret += "-i64:64"; 123 else if (TT.isOSIAMCU()) 124 Ret += "-i64:32-f64:32"; 125 else 126 Ret += "-f64:32:64"; 127 128 // Some ABIs align long double to 128 bits, others to 32. 129 if (TT.isOSNaCl() || TT.isOSIAMCU()) 130 ; // No f80 131 else if (TT.isArch64Bit() || TT.isOSDarwin()) 132 Ret += "-f80:128"; 133 else 134 Ret += "-f80:32"; 135 136 if (TT.isOSIAMCU()) 137 Ret += "-f128:32"; 138 139 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 140 if (TT.isArch64Bit()) 141 Ret += "-n8:16:32:64"; 142 else 143 Ret += "-n8:16:32"; 144 145 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 146 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 147 Ret += "-a:0:32-S32"; 148 else 149 Ret += "-S128"; 150 151 return Ret; 152 } 153 154 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 155 bool JIT, 156 Optional<Reloc::Model> RM) { 157 bool is64Bit = TT.getArch() == Triple::x86_64; 158 if (!RM.hasValue()) { 159 // JIT codegen should use static relocations by default, since it's 160 // typically executed in process and not relocatable. 161 if (JIT) 162 return Reloc::Static; 163 164 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 165 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 166 // use static relocation model by default. 167 if (TT.isOSDarwin()) { 168 if (is64Bit) 169 return Reloc::PIC_; 170 return Reloc::DynamicNoPIC; 171 } 172 if (TT.isOSWindows() && is64Bit) 173 return Reloc::PIC_; 174 return Reloc::Static; 175 } 176 177 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 178 // is defined as a model for code which may be used in static or dynamic 179 // executables but not necessarily a shared library. On X86-32 we just 180 // compile in -static mode, in x86-64 we use PIC. 181 if (*RM == Reloc::DynamicNoPIC) { 182 if (is64Bit) 183 return Reloc::PIC_; 184 if (!TT.isOSDarwin()) 185 return Reloc::Static; 186 } 187 188 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 189 // the Mach-O file format doesn't support it. 190 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 191 return Reloc::PIC_; 192 193 return *RM; 194 } 195 196 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 197 bool JIT, bool Is64Bit) { 198 if (CM) { 199 if (*CM == CodeModel::Tiny) 200 report_fatal_error("Target does not support the tiny CodeModel", false); 201 return *CM; 202 } 203 if (JIT) 204 return Is64Bit ? CodeModel::Large : CodeModel::Small; 205 return CodeModel::Small; 206 } 207 208 /// Create an X86 target. 209 /// 210 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 211 StringRef CPU, StringRef FS, 212 const TargetOptions &Options, 213 Optional<Reloc::Model> RM, 214 Optional<CodeModel::Model> CM, 215 CodeGenOpt::Level OL, bool JIT) 216 : LLVMTargetMachine( 217 T, computeDataLayout(TT), TT, CPU, FS, Options, 218 getEffectiveRelocModel(TT, JIT, RM), 219 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 220 OL), 221 TLOF(createTLOF(getTargetTriple())) { 222 // Windows stack unwinder gets confused when execution flow "falls through" 223 // after a call to 'noreturn' function. 224 // To prevent that, we emit a trap for 'unreachable' IR instructions. 225 // (which on X86, happens to be the 'ud2' instruction) 226 // On PS4, the "return address" of a 'noreturn' call must still be within 227 // the calling function, and TrapUnreachable is an easy way to get that. 228 // The check here for 64-bit windows is a bit icky, but as we're unlikely 229 // to ever want to mix 32 and 64-bit windows code in a single module 230 // this should be fine. 231 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() || 232 TT.isOSBinFormatMachO()) { 233 this->Options.TrapUnreachable = true; 234 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 235 } 236 237 // Outlining is available for x86-64. 238 if (TT.getArch() == Triple::x86_64) 239 setMachineOutliner(true); 240 241 initAsmInfo(); 242 } 243 244 X86TargetMachine::~X86TargetMachine() = default; 245 246 const X86Subtarget * 247 X86TargetMachine::getSubtargetImpl(const Function &F) const { 248 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 249 Attribute FSAttr = F.getFnAttribute("target-features"); 250 251 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 252 ? CPUAttr.getValueAsString() 253 : (StringRef)TargetCPU; 254 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 255 ? FSAttr.getValueAsString() 256 : (StringRef)TargetFS; 257 258 SmallString<512> Key; 259 Key.reserve(CPU.size() + FS.size()); 260 Key += CPU; 261 Key += FS; 262 263 // FIXME: This is related to the code below to reset the target options, 264 // we need to know whether or not the soft float flag is set on the 265 // function before we can generate a subtarget. We also need to use 266 // it as a key for the subtarget since that can be the only difference 267 // between two functions. 268 bool SoftFloat = 269 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 270 // If the soft float attribute is set on the function turn on the soft float 271 // subtarget feature. 272 if (SoftFloat) 273 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 274 275 // Keep track of the key width after all features are added so we can extract 276 // the feature string out later. 277 unsigned CPUFSWidth = Key.size(); 278 279 // Extract prefer-vector-width attribute. 280 unsigned PreferVectorWidthOverride = 0; 281 if (F.hasFnAttribute("prefer-vector-width")) { 282 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 283 unsigned Width; 284 if (!Val.getAsInteger(0, Width)) { 285 Key += ",prefer-vector-width="; 286 Key += Val; 287 PreferVectorWidthOverride = Width; 288 } 289 } 290 291 // Extract min-legal-vector-width attribute. 292 unsigned RequiredVectorWidth = UINT32_MAX; 293 if (F.hasFnAttribute("min-legal-vector-width")) { 294 StringRef Val = 295 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 296 unsigned Width; 297 if (!Val.getAsInteger(0, Width)) { 298 Key += ",min-legal-vector-width="; 299 Key += Val; 300 RequiredVectorWidth = Width; 301 } 302 } 303 304 // Extracted here so that we make sure there is backing for the StringRef. If 305 // we assigned earlier, its possible the SmallString reallocated leaving a 306 // dangling StringRef. 307 FS = Key.slice(CPU.size(), CPUFSWidth); 308 309 auto &I = SubtargetMap[Key]; 310 if (!I) { 311 // This needs to be done before we create a new subtarget since any 312 // creation will depend on the TM and the code generation flags on the 313 // function that reside in TargetOptions. 314 resetTargetOptions(F); 315 I = std::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 316 Options.StackAlignmentOverride, 317 PreferVectorWidthOverride, 318 RequiredVectorWidth); 319 } 320 return I.get(); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // Command line options for x86 325 //===----------------------------------------------------------------------===// 326 static cl::opt<bool> 327 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 328 cl::desc("Minimize AVX to SSE transition penalty"), 329 cl::init(true)); 330 331 //===----------------------------------------------------------------------===// 332 // X86 TTI query. 333 //===----------------------------------------------------------------------===// 334 335 TargetTransformInfo 336 X86TargetMachine::getTargetTransformInfo(const Function &F) { 337 return TargetTransformInfo(X86TTIImpl(this, F)); 338 } 339 340 //===----------------------------------------------------------------------===// 341 // Pass Pipeline Configuration 342 //===----------------------------------------------------------------------===// 343 344 namespace { 345 346 /// X86 Code Generator Pass Configuration Options. 347 class X86PassConfig : public TargetPassConfig { 348 public: 349 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 350 : TargetPassConfig(TM, PM) {} 351 352 X86TargetMachine &getX86TargetMachine() const { 353 return getTM<X86TargetMachine>(); 354 } 355 356 ScheduleDAGInstrs * 357 createMachineScheduler(MachineSchedContext *C) const override { 358 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 359 DAG->addMutation(createX86MacroFusionDAGMutation()); 360 return DAG; 361 } 362 363 ScheduleDAGInstrs * 364 createPostMachineScheduler(MachineSchedContext *C) const override { 365 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 366 DAG->addMutation(createX86MacroFusionDAGMutation()); 367 return DAG; 368 } 369 370 void addIRPasses() override; 371 bool addInstSelector() override; 372 bool addIRTranslator() override; 373 bool addLegalizeMachineIR() override; 374 bool addRegBankSelect() override; 375 bool addGlobalInstructionSelect() override; 376 bool addILPOpts() override; 377 bool addPreISel() override; 378 void addMachineSSAOptimization() override; 379 void addPreRegAlloc() override; 380 void addPostRegAlloc() override; 381 void addPreEmitPass() override; 382 void addPreEmitPass2() override; 383 void addPreSched2() override; 384 385 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 386 }; 387 388 class X86ExecutionDomainFix : public ExecutionDomainFix { 389 public: 390 static char ID; 391 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 392 StringRef getPassName() const override { 393 return "X86 Execution Dependency Fix"; 394 } 395 }; 396 char X86ExecutionDomainFix::ID; 397 398 } // end anonymous namespace 399 400 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 401 "X86 Execution Domain Fix", false, false) 402 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 403 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 404 "X86 Execution Domain Fix", false, false) 405 406 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 407 return new X86PassConfig(*this, PM); 408 } 409 410 void X86PassConfig::addIRPasses() { 411 addPass(createAtomicExpandPass()); 412 413 TargetPassConfig::addIRPasses(); 414 415 if (TM->getOptLevel() != CodeGenOpt::None) 416 addPass(createInterleavedAccessPass()); 417 418 // Add passes that handle indirect branch removal and insertion of a retpoline 419 // thunk. These will be a no-op unless a function subtarget has the retpoline 420 // feature enabled. 421 addPass(createIndirectBrExpandPass()); 422 } 423 424 bool X86PassConfig::addInstSelector() { 425 // Install an instruction selector. 426 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 427 428 // For ELF, cleanup any local-dynamic TLS accesses. 429 if (TM->getTargetTriple().isOSBinFormatELF() && 430 getOptLevel() != CodeGenOpt::None) 431 addPass(createCleanupLocalDynamicTLSPass()); 432 433 addPass(createX86GlobalBaseRegPass()); 434 return false; 435 } 436 437 bool X86PassConfig::addIRTranslator() { 438 addPass(new IRTranslator()); 439 return false; 440 } 441 442 bool X86PassConfig::addLegalizeMachineIR() { 443 addPass(new Legalizer()); 444 return false; 445 } 446 447 bool X86PassConfig::addRegBankSelect() { 448 addPass(new RegBankSelect()); 449 return false; 450 } 451 452 bool X86PassConfig::addGlobalInstructionSelect() { 453 addPass(new InstructionSelect()); 454 return false; 455 } 456 457 bool X86PassConfig::addILPOpts() { 458 if (EnableCondBrFoldingPass) 459 addPass(createX86CondBrFolding()); 460 addPass(&EarlyIfConverterID); 461 if (EnableMachineCombinerPass) 462 addPass(&MachineCombinerID); 463 addPass(createX86CmovConverterPass()); 464 return true; 465 } 466 467 bool X86PassConfig::addPreISel() { 468 // Only add this pass for 32-bit x86 Windows. 469 const Triple &TT = TM->getTargetTriple(); 470 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 471 addPass(createX86WinEHStatePass()); 472 return true; 473 } 474 475 void X86PassConfig::addPreRegAlloc() { 476 if (getOptLevel() != CodeGenOpt::None) { 477 addPass(&LiveRangeShrinkID); 478 addPass(createX86FixupSetCC()); 479 addPass(createX86OptimizeLEAs()); 480 addPass(createX86CallFrameOptimization()); 481 addPass(createX86AvoidStoreForwardingBlocks()); 482 } 483 484 addPass(createX86SpeculativeLoadHardeningPass()); 485 addPass(createX86FlagsCopyLoweringPass()); 486 addPass(createX86WinAllocaExpander()); 487 } 488 void X86PassConfig::addMachineSSAOptimization() { 489 addPass(createX86DomainReassignmentPass()); 490 TargetPassConfig::addMachineSSAOptimization(); 491 } 492 493 void X86PassConfig::addPostRegAlloc() { 494 addPass(createX86FloatingPointStackifierPass()); 495 } 496 497 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 498 499 void X86PassConfig::addPreEmitPass() { 500 if (getOptLevel() != CodeGenOpt::None) { 501 addPass(new X86ExecutionDomainFix()); 502 addPass(createBreakFalseDeps()); 503 } 504 505 addPass(createX86IndirectBranchTrackingPass()); 506 507 if (UseVZeroUpper) 508 addPass(createX86IssueVZeroUpperPass()); 509 510 if (getOptLevel() != CodeGenOpt::None) { 511 addPass(createX86FixupBWInsts()); 512 addPass(createX86PadShortFunctions()); 513 addPass(createX86FixupLEAs()); 514 addPass(createX86EvexToVexInsts()); 515 } 516 addPass(createX86DiscriminateMemOpsPass()); 517 addPass(createX86InsertPrefetchPass()); 518 } 519 520 void X86PassConfig::addPreEmitPass2() { 521 addPass(createX86RetpolineThunksPass()); 522 // Verify basic block incoming and outgoing cfa offset and register values and 523 // correct CFA calculation rule where needed by inserting appropriate CFI 524 // instructions. 525 const Triple &TT = TM->getTargetTriple(); 526 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 527 if (!TT.isOSDarwin() && 528 (!TT.isOSWindows() || 529 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 530 addPass(createCFIInstrInserter()); 531 } 532 533 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 534 return getStandardCSEConfigForOpt(TM->getOptLevel()); 535 } 536