1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #include "X86MacroFusion.h" 19 #include "X86Subtarget.h" 20 #include "X86TargetObjectFile.h" 21 #include "X86TargetTransformInfo.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Analysis/TargetTransformInfo.h" 28 #include "llvm/CodeGen/ExecutionDomainFix.h" 29 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MachineScheduler.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Target/TargetOptions.h" 47 #include <memory> 48 #include <string> 49 50 using namespace llvm; 51 52 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 53 cl::desc("Enable the machine combiner pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding", 57 cl::desc("Enable the conditional branch " 58 "folding pass"), 59 cl::init(false), cl::Hidden); 60 61 extern "C" void LLVMInitializeX86Target() { 62 // Register the target. 63 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 64 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 65 66 PassRegistry &PR = *PassRegistry::getPassRegistry(); 67 initializeGlobalISel(PR); 68 initializeWinEHStatePassPass(PR); 69 initializeFixupBWInstPassPass(PR); 70 initializeEvexToVexInstPassPass(PR); 71 initializeFixupLEAPassPass(PR); 72 initializeX86CallFrameOptimizationPass(PR); 73 initializeX86CmovConverterPassPass(PR); 74 initializeX86ExecutionDomainFixPass(PR); 75 initializeX86DomainReassignmentPass(PR); 76 initializeX86AvoidSFBPassPass(PR); 77 initializeX86SpeculativeLoadHardeningPassPass(PR); 78 initializeX86FlagsCopyLoweringPassPass(PR); 79 initializeX86CondBrFoldingPassPass(PR); 80 } 81 82 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 83 if (TT.isOSBinFormatMachO()) { 84 if (TT.getArch() == Triple::x86_64) 85 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 86 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 87 } 88 89 if (TT.isOSFreeBSD()) 90 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 91 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 92 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 93 if (TT.isOSSolaris()) 94 return llvm::make_unique<X86SolarisTargetObjectFile>(); 95 if (TT.isOSFuchsia()) 96 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 97 if (TT.isOSBinFormatELF()) 98 return llvm::make_unique<X86ELFTargetObjectFile>(); 99 if (TT.isOSBinFormatCOFF()) 100 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 101 llvm_unreachable("unknown subtarget type"); 102 } 103 104 static std::string computeDataLayout(const Triple &TT) { 105 // X86 is little endian 106 std::string Ret = "e"; 107 108 Ret += DataLayout::getManglingComponent(TT); 109 // X86 and x32 have 32 bit pointers. 110 if ((TT.isArch64Bit() && 111 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 112 !TT.isArch64Bit()) 113 Ret += "-p:32:32"; 114 115 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 116 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 117 Ret += "-i64:64"; 118 else if (TT.isOSIAMCU()) 119 Ret += "-i64:32-f64:32"; 120 else 121 Ret += "-f64:32:64"; 122 123 // Some ABIs align long double to 128 bits, others to 32. 124 if (TT.isOSNaCl() || TT.isOSIAMCU()) 125 ; // No f80 126 else if (TT.isArch64Bit() || TT.isOSDarwin()) 127 Ret += "-f80:128"; 128 else 129 Ret += "-f80:32"; 130 131 if (TT.isOSIAMCU()) 132 Ret += "-f128:32"; 133 134 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 135 if (TT.isArch64Bit()) 136 Ret += "-n8:16:32:64"; 137 else 138 Ret += "-n8:16:32"; 139 140 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 141 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 142 Ret += "-a:0:32-S32"; 143 else 144 Ret += "-S128"; 145 146 return Ret; 147 } 148 149 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 150 bool JIT, 151 Optional<Reloc::Model> RM) { 152 bool is64Bit = TT.getArch() == Triple::x86_64; 153 if (!RM.hasValue()) { 154 // JIT codegen should use static relocations by default, since it's 155 // typically executed in process and not relocatable. 156 if (JIT) 157 return Reloc::Static; 158 159 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 160 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 161 // use static relocation model by default. 162 if (TT.isOSDarwin()) { 163 if (is64Bit) 164 return Reloc::PIC_; 165 return Reloc::DynamicNoPIC; 166 } 167 if (TT.isOSWindows() && is64Bit) 168 return Reloc::PIC_; 169 return Reloc::Static; 170 } 171 172 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 173 // is defined as a model for code which may be used in static or dynamic 174 // executables but not necessarily a shared library. On X86-32 we just 175 // compile in -static mode, in x86-64 we use PIC. 176 if (*RM == Reloc::DynamicNoPIC) { 177 if (is64Bit) 178 return Reloc::PIC_; 179 if (!TT.isOSDarwin()) 180 return Reloc::Static; 181 } 182 183 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 184 // the Mach-O file format doesn't support it. 185 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 186 return Reloc::PIC_; 187 188 return *RM; 189 } 190 191 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 192 bool JIT, bool Is64Bit) { 193 if (CM) { 194 if (*CM == CodeModel::Tiny) 195 report_fatal_error("Target does not support the tiny CodeModel"); 196 return *CM; 197 } 198 if (JIT) 199 return Is64Bit ? CodeModel::Large : CodeModel::Small; 200 return CodeModel::Small; 201 } 202 203 /// Create an X86 target. 204 /// 205 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 206 StringRef CPU, StringRef FS, 207 const TargetOptions &Options, 208 Optional<Reloc::Model> RM, 209 Optional<CodeModel::Model> CM, 210 CodeGenOpt::Level OL, bool JIT) 211 : LLVMTargetMachine( 212 T, computeDataLayout(TT), TT, CPU, FS, Options, 213 getEffectiveRelocModel(TT, JIT, RM), 214 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 215 OL), 216 TLOF(createTLOF(getTargetTriple())) { 217 // Windows stack unwinder gets confused when execution flow "falls through" 218 // after a call to 'noreturn' function. 219 // To prevent that, we emit a trap for 'unreachable' IR instructions. 220 // (which on X86, happens to be the 'ud2' instruction) 221 // On PS4, the "return address" of a 'noreturn' call must still be within 222 // the calling function, and TrapUnreachable is an easy way to get that. 223 // The check here for 64-bit windows is a bit icky, but as we're unlikely 224 // to ever want to mix 32 and 64-bit windows code in a single module 225 // this should be fine. 226 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() || 227 TT.isOSBinFormatMachO()) { 228 this->Options.TrapUnreachable = true; 229 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 230 } 231 232 // Outlining is available for x86-64. 233 if (TT.getArch() == Triple::x86_64) 234 setMachineOutliner(true); 235 236 initAsmInfo(); 237 } 238 239 X86TargetMachine::~X86TargetMachine() = default; 240 241 const X86Subtarget * 242 X86TargetMachine::getSubtargetImpl(const Function &F) const { 243 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 244 Attribute FSAttr = F.getFnAttribute("target-features"); 245 246 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 247 ? CPUAttr.getValueAsString() 248 : (StringRef)TargetCPU; 249 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 250 ? FSAttr.getValueAsString() 251 : (StringRef)TargetFS; 252 253 SmallString<512> Key; 254 Key.reserve(CPU.size() + FS.size()); 255 Key += CPU; 256 Key += FS; 257 258 // FIXME: This is related to the code below to reset the target options, 259 // we need to know whether or not the soft float flag is set on the 260 // function before we can generate a subtarget. We also need to use 261 // it as a key for the subtarget since that can be the only difference 262 // between two functions. 263 bool SoftFloat = 264 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 265 // If the soft float attribute is set on the function turn on the soft float 266 // subtarget feature. 267 if (SoftFloat) 268 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 269 270 // Keep track of the key width after all features are added so we can extract 271 // the feature string out later. 272 unsigned CPUFSWidth = Key.size(); 273 274 // Extract prefer-vector-width attribute. 275 unsigned PreferVectorWidthOverride = 0; 276 if (F.hasFnAttribute("prefer-vector-width")) { 277 StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString(); 278 unsigned Width; 279 if (!Val.getAsInteger(0, Width)) { 280 Key += ",prefer-vector-width="; 281 Key += Val; 282 PreferVectorWidthOverride = Width; 283 } 284 } 285 286 // Extract min-legal-vector-width attribute. 287 unsigned RequiredVectorWidth = UINT32_MAX; 288 if (F.hasFnAttribute("min-legal-vector-width")) { 289 StringRef Val = 290 F.getFnAttribute("min-legal-vector-width").getValueAsString(); 291 unsigned Width; 292 if (!Val.getAsInteger(0, Width)) { 293 Key += ",min-legal-vector-width="; 294 Key += Val; 295 RequiredVectorWidth = Width; 296 } 297 } 298 299 // Extracted here so that we make sure there is backing for the StringRef. If 300 // we assigned earlier, its possible the SmallString reallocated leaving a 301 // dangling StringRef. 302 FS = Key.slice(CPU.size(), CPUFSWidth); 303 304 auto &I = SubtargetMap[Key]; 305 if (!I) { 306 // This needs to be done before we create a new subtarget since any 307 // creation will depend on the TM and the code generation flags on the 308 // function that reside in TargetOptions. 309 resetTargetOptions(F); 310 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 311 Options.StackAlignmentOverride, 312 PreferVectorWidthOverride, 313 RequiredVectorWidth); 314 } 315 return I.get(); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // Command line options for x86 320 //===----------------------------------------------------------------------===// 321 static cl::opt<bool> 322 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 323 cl::desc("Minimize AVX to SSE transition penalty"), 324 cl::init(true)); 325 326 //===----------------------------------------------------------------------===// 327 // X86 TTI query. 328 //===----------------------------------------------------------------------===// 329 330 TargetTransformInfo 331 X86TargetMachine::getTargetTransformInfo(const Function &F) { 332 return TargetTransformInfo(X86TTIImpl(this, F)); 333 } 334 335 //===----------------------------------------------------------------------===// 336 // Pass Pipeline Configuration 337 //===----------------------------------------------------------------------===// 338 339 namespace { 340 341 /// X86 Code Generator Pass Configuration Options. 342 class X86PassConfig : public TargetPassConfig { 343 public: 344 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 345 : TargetPassConfig(TM, PM) {} 346 347 X86TargetMachine &getX86TargetMachine() const { 348 return getTM<X86TargetMachine>(); 349 } 350 351 ScheduleDAGInstrs * 352 createMachineScheduler(MachineSchedContext *C) const override { 353 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 354 DAG->addMutation(createX86MacroFusionDAGMutation()); 355 return DAG; 356 } 357 358 void addIRPasses() override; 359 bool addInstSelector() override; 360 bool addIRTranslator() override; 361 bool addLegalizeMachineIR() override; 362 bool addRegBankSelect() override; 363 bool addGlobalInstructionSelect() override; 364 bool addILPOpts() override; 365 bool addPreISel() override; 366 void addMachineSSAOptimization() override; 367 void addPreRegAlloc() override; 368 void addPostRegAlloc() override; 369 void addPreEmitPass() override; 370 void addPreEmitPass2() override; 371 void addPreSched2() override; 372 }; 373 374 class X86ExecutionDomainFix : public ExecutionDomainFix { 375 public: 376 static char ID; 377 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 378 StringRef getPassName() const override { 379 return "X86 Execution Dependency Fix"; 380 } 381 }; 382 char X86ExecutionDomainFix::ID; 383 384 } // end anonymous namespace 385 386 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 387 "X86 Execution Domain Fix", false, false) 388 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 389 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 390 "X86 Execution Domain Fix", false, false) 391 392 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 393 return new X86PassConfig(*this, PM); 394 } 395 396 void X86PassConfig::addIRPasses() { 397 addPass(createAtomicExpandPass()); 398 399 TargetPassConfig::addIRPasses(); 400 401 if (TM->getOptLevel() != CodeGenOpt::None) 402 addPass(createInterleavedAccessPass()); 403 404 // Add passes that handle indirect branch removal and insertion of a retpoline 405 // thunk. These will be a no-op unless a function subtarget has the retpoline 406 // feature enabled. 407 addPass(createIndirectBrExpandPass()); 408 } 409 410 bool X86PassConfig::addInstSelector() { 411 // Install an instruction selector. 412 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 413 414 // For ELF, cleanup any local-dynamic TLS accesses. 415 if (TM->getTargetTriple().isOSBinFormatELF() && 416 getOptLevel() != CodeGenOpt::None) 417 addPass(createCleanupLocalDynamicTLSPass()); 418 419 addPass(createX86GlobalBaseRegPass()); 420 return false; 421 } 422 423 bool X86PassConfig::addIRTranslator() { 424 addPass(new IRTranslator()); 425 return false; 426 } 427 428 bool X86PassConfig::addLegalizeMachineIR() { 429 addPass(new Legalizer()); 430 return false; 431 } 432 433 bool X86PassConfig::addRegBankSelect() { 434 addPass(new RegBankSelect()); 435 return false; 436 } 437 438 bool X86PassConfig::addGlobalInstructionSelect() { 439 addPass(new InstructionSelect()); 440 return false; 441 } 442 443 bool X86PassConfig::addILPOpts() { 444 if (EnableCondBrFoldingPass) 445 addPass(createX86CondBrFolding()); 446 addPass(&EarlyIfConverterID); 447 if (EnableMachineCombinerPass) 448 addPass(&MachineCombinerID); 449 addPass(createX86CmovConverterPass()); 450 return true; 451 } 452 453 bool X86PassConfig::addPreISel() { 454 // Only add this pass for 32-bit x86 Windows. 455 const Triple &TT = TM->getTargetTriple(); 456 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 457 addPass(createX86WinEHStatePass()); 458 return true; 459 } 460 461 void X86PassConfig::addPreRegAlloc() { 462 if (getOptLevel() != CodeGenOpt::None) { 463 addPass(&LiveRangeShrinkID); 464 addPass(createX86FixupSetCC()); 465 addPass(createX86OptimizeLEAs()); 466 addPass(createX86CallFrameOptimization()); 467 addPass(createX86AvoidStoreForwardingBlocks()); 468 } 469 470 addPass(createX86SpeculativeLoadHardeningPass()); 471 addPass(createX86FlagsCopyLoweringPass()); 472 addPass(createX86WinAllocaExpander()); 473 } 474 void X86PassConfig::addMachineSSAOptimization() { 475 addPass(createX86DomainReassignmentPass()); 476 TargetPassConfig::addMachineSSAOptimization(); 477 } 478 479 void X86PassConfig::addPostRegAlloc() { 480 addPass(createX86FloatingPointStackifierPass()); 481 } 482 483 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 484 485 void X86PassConfig::addPreEmitPass() { 486 if (getOptLevel() != CodeGenOpt::None) { 487 addPass(new X86ExecutionDomainFix()); 488 addPass(createBreakFalseDeps()); 489 } 490 491 addPass(createX86IndirectBranchTrackingPass()); 492 493 if (UseVZeroUpper) 494 addPass(createX86IssueVZeroUpperPass()); 495 496 if (getOptLevel() != CodeGenOpt::None) { 497 addPass(createX86FixupBWInsts()); 498 addPass(createX86PadShortFunctions()); 499 addPass(createX86FixupLEAs()); 500 addPass(createX86EvexToVexInsts()); 501 } 502 addPass(createX86DiscriminateMemOpsPass()); 503 addPass(createX86InsertPrefetchPass()); 504 } 505 506 void X86PassConfig::addPreEmitPass2() { 507 addPass(createX86RetpolineThunksPass()); 508 // Verify basic block incoming and outgoing cfa offset and register values and 509 // correct CFA calculation rule where needed by inserting appropriate CFI 510 // instructions. 511 const Triple &TT = TM->getTargetTriple(); 512 if (!TT.isOSDarwin() && !TT.isOSWindows()) 513 addPass(createCFIInstrInserter()); 514 } 515