1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the X86 specific subclass of TargetMachine. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "X86.h" 16 #include "X86CallLowering.h" 17 #include "X86LegalizerInfo.h" 18 #ifdef LLVM_BUILD_GLOBAL_ISEL 19 #include "X86RegisterBankInfo.h" 20 #endif 21 #include "X86MacroFusion.h" 22 #include "X86Subtarget.h" 23 #include "X86TargetMachine.h" 24 #include "X86TargetObjectFile.h" 25 #include "X86TargetTransformInfo.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/Analysis/TargetTransformInfo.h" 32 #include "llvm/CodeGen/ExecutionDepsFix.h" 33 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 34 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h" 35 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 36 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 37 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 38 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/Passes.h" 41 #include "llvm/CodeGen/TargetPassConfig.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include <memory> 53 #include <string> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 58 cl::desc("Enable the machine combiner pass"), 59 cl::init(true), cl::Hidden); 60 61 namespace llvm { 62 63 void initializeWinEHStatePassPass(PassRegistry &); 64 void initializeFixupLEAPassPass(PassRegistry &); 65 void initializeX86ExecutionDepsFixPass(PassRegistry &); 66 67 } // end namespace llvm 68 69 extern "C" void LLVMInitializeX86Target() { 70 // Register the target. 71 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 72 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 73 74 PassRegistry &PR = *PassRegistry::getPassRegistry(); 75 initializeGlobalISel(PR); 76 initializeWinEHStatePassPass(PR); 77 initializeFixupBWInstPassPass(PR); 78 initializeEvexToVexInstPassPass(PR); 79 initializeFixupLEAPassPass(PR); 80 initializeX86ExecutionDepsFixPass(PR); 81 } 82 83 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 84 if (TT.isOSBinFormatMachO()) { 85 if (TT.getArch() == Triple::x86_64) 86 return llvm::make_unique<X86_64MachoTargetObjectFile>(); 87 return llvm::make_unique<TargetLoweringObjectFileMachO>(); 88 } 89 90 if (TT.isOSFreeBSD()) 91 return llvm::make_unique<X86FreeBSDTargetObjectFile>(); 92 if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU()) 93 return llvm::make_unique<X86LinuxNaClTargetObjectFile>(); 94 if (TT.isOSFuchsia()) 95 return llvm::make_unique<X86FuchsiaTargetObjectFile>(); 96 if (TT.isOSBinFormatELF()) 97 return llvm::make_unique<X86ELFTargetObjectFile>(); 98 if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment()) 99 return llvm::make_unique<X86WindowsTargetObjectFile>(); 100 if (TT.isOSBinFormatCOFF()) 101 return llvm::make_unique<TargetLoweringObjectFileCOFF>(); 102 llvm_unreachable("unknown subtarget type"); 103 } 104 105 static std::string computeDataLayout(const Triple &TT) { 106 // X86 is little endian 107 std::string Ret = "e"; 108 109 Ret += DataLayout::getManglingComponent(TT); 110 // X86 and x32 have 32 bit pointers. 111 if ((TT.isArch64Bit() && 112 (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) || 113 !TT.isArch64Bit()) 114 Ret += "-p:32:32"; 115 116 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 117 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 118 Ret += "-i64:64"; 119 else if (TT.isOSIAMCU()) 120 Ret += "-i64:32-f64:32"; 121 else 122 Ret += "-f64:32:64"; 123 124 // Some ABIs align long double to 128 bits, others to 32. 125 if (TT.isOSNaCl() || TT.isOSIAMCU()) 126 ; // No f80 127 else if (TT.isArch64Bit() || TT.isOSDarwin()) 128 Ret += "-f80:128"; 129 else 130 Ret += "-f80:32"; 131 132 if (TT.isOSIAMCU()) 133 Ret += "-f128:32"; 134 135 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 136 if (TT.isArch64Bit()) 137 Ret += "-n8:16:32:64"; 138 else 139 Ret += "-n8:16:32"; 140 141 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 142 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 143 Ret += "-a:0:32-S32"; 144 else 145 Ret += "-S128"; 146 147 return Ret; 148 } 149 150 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 151 Optional<Reloc::Model> RM) { 152 bool is64Bit = TT.getArch() == Triple::x86_64; 153 if (!RM.hasValue()) { 154 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 155 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 156 // use static relocation model by default. 157 if (TT.isOSDarwin()) { 158 if (is64Bit) 159 return Reloc::PIC_; 160 return Reloc::DynamicNoPIC; 161 } 162 if (TT.isOSWindows() && is64Bit) 163 return Reloc::PIC_; 164 return Reloc::Static; 165 } 166 167 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 168 // is defined as a model for code which may be used in static or dynamic 169 // executables but not necessarily a shared library. On X86-32 we just 170 // compile in -static mode, in x86-64 we use PIC. 171 if (*RM == Reloc::DynamicNoPIC) { 172 if (is64Bit) 173 return Reloc::PIC_; 174 if (!TT.isOSDarwin()) 175 return Reloc::Static; 176 } 177 178 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 179 // the Mach-O file format doesn't support it. 180 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 181 return Reloc::PIC_; 182 183 return *RM; 184 } 185 186 /// Create an X86 target. 187 /// 188 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 189 StringRef CPU, StringRef FS, 190 const TargetOptions &Options, 191 Optional<Reloc::Model> RM, 192 CodeModel::Model CM, CodeGenOpt::Level OL) 193 : LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options, 194 getEffectiveRelocModel(TT, RM), CM, OL), 195 TLOF(createTLOF(getTargetTriple())) { 196 // Windows stack unwinder gets confused when execution flow "falls through" 197 // after a call to 'noreturn' function. 198 // To prevent that, we emit a trap for 'unreachable' IR instructions. 199 // (which on X86, happens to be the 'ud2' instruction) 200 // On PS4, the "return address" of a 'noreturn' call must still be within 201 // the calling function, and TrapUnreachable is an easy way to get that. 202 // The check here for 64-bit windows is a bit icky, but as we're unlikely 203 // to ever want to mix 32 and 64-bit windows code in a single module 204 // this should be fine. 205 if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4()) 206 this->Options.TrapUnreachable = true; 207 208 initAsmInfo(); 209 } 210 211 X86TargetMachine::~X86TargetMachine() = default; 212 213 #ifdef LLVM_BUILD_GLOBAL_ISEL 214 namespace { 215 216 struct X86GISelActualAccessor : public GISelAccessor { 217 std::unique_ptr<CallLowering> CallLoweringInfo; 218 std::unique_ptr<LegalizerInfo> Legalizer; 219 std::unique_ptr<RegisterBankInfo> RegBankInfo; 220 std::unique_ptr<InstructionSelector> InstSelector; 221 222 const CallLowering *getCallLowering() const override { 223 return CallLoweringInfo.get(); 224 } 225 226 const InstructionSelector *getInstructionSelector() const override { 227 return InstSelector.get(); 228 } 229 230 const LegalizerInfo *getLegalizerInfo() const override { 231 return Legalizer.get(); 232 } 233 234 const RegisterBankInfo *getRegBankInfo() const override { 235 return RegBankInfo.get(); 236 } 237 }; 238 239 } // end anonymous namespace 240 #endif 241 242 const X86Subtarget * 243 X86TargetMachine::getSubtargetImpl(const Function &F) const { 244 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 245 Attribute FSAttr = F.getFnAttribute("target-features"); 246 247 StringRef CPU = !CPUAttr.hasAttribute(Attribute::None) 248 ? CPUAttr.getValueAsString() 249 : (StringRef)TargetCPU; 250 StringRef FS = !FSAttr.hasAttribute(Attribute::None) 251 ? FSAttr.getValueAsString() 252 : (StringRef)TargetFS; 253 254 SmallString<512> Key; 255 Key.reserve(CPU.size() + FS.size()); 256 Key += CPU; 257 Key += FS; 258 259 // FIXME: This is related to the code below to reset the target options, 260 // we need to know whether or not the soft float flag is set on the 261 // function before we can generate a subtarget. We also need to use 262 // it as a key for the subtarget since that can be the only difference 263 // between two functions. 264 bool SoftFloat = 265 F.getFnAttribute("use-soft-float").getValueAsString() == "true"; 266 // If the soft float attribute is set on the function turn on the soft float 267 // subtarget feature. 268 if (SoftFloat) 269 Key += FS.empty() ? "+soft-float" : ",+soft-float"; 270 271 FS = Key.substr(CPU.size()); 272 273 auto &I = SubtargetMap[Key]; 274 if (!I) { 275 // This needs to be done before we create a new subtarget since any 276 // creation will depend on the TM and the code generation flags on the 277 // function that reside in TargetOptions. 278 resetTargetOptions(F); 279 I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this, 280 Options.StackAlignmentOverride); 281 #ifndef LLVM_BUILD_GLOBAL_ISEL 282 GISelAccessor *GISel = new GISelAccessor(); 283 #else 284 X86GISelActualAccessor *GISel = new X86GISelActualAccessor(); 285 286 GISel->CallLoweringInfo.reset(new X86CallLowering(*I->getTargetLowering())); 287 GISel->Legalizer.reset(new X86LegalizerInfo(*I, *this)); 288 289 auto *RBI = new X86RegisterBankInfo(*I->getRegisterInfo()); 290 GISel->RegBankInfo.reset(RBI); 291 GISel->InstSelector.reset(createX86InstructionSelector( 292 *this, *I, *RBI)); 293 #endif 294 I->setGISelAccessor(*GISel); 295 } 296 return I.get(); 297 } 298 299 //===----------------------------------------------------------------------===// 300 // Command line options for x86 301 //===----------------------------------------------------------------------===// 302 static cl::opt<bool> 303 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden, 304 cl::desc("Minimize AVX to SSE transition penalty"), 305 cl::init(true)); 306 307 //===----------------------------------------------------------------------===// 308 // X86 TTI query. 309 //===----------------------------------------------------------------------===// 310 311 TargetIRAnalysis X86TargetMachine::getTargetIRAnalysis() { 312 return TargetIRAnalysis([this](const Function &F) { 313 return TargetTransformInfo(X86TTIImpl(this, F)); 314 }); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Pass Pipeline Configuration 319 //===----------------------------------------------------------------------===// 320 321 namespace { 322 323 /// X86 Code Generator Pass Configuration Options. 324 class X86PassConfig : public TargetPassConfig { 325 public: 326 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 327 : TargetPassConfig(TM, PM) {} 328 329 X86TargetMachine &getX86TargetMachine() const { 330 return getTM<X86TargetMachine>(); 331 } 332 333 ScheduleDAGInstrs * 334 createMachineScheduler(MachineSchedContext *C) const override { 335 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 336 DAG->addMutation(createX86MacroFusionDAGMutation()); 337 return DAG; 338 } 339 340 void addIRPasses() override; 341 bool addInstSelector() override; 342 #ifdef LLVM_BUILD_GLOBAL_ISEL 343 bool addIRTranslator() override; 344 bool addLegalizeMachineIR() override; 345 bool addRegBankSelect() override; 346 bool addGlobalInstructionSelect() override; 347 #endif 348 bool addILPOpts() override; 349 bool addPreISel() override; 350 void addPreRegAlloc() override; 351 void addPostRegAlloc() override; 352 void addPreEmitPass() override; 353 void addPreSched2() override; 354 }; 355 356 class X86ExecutionDepsFix : public ExecutionDepsFix { 357 public: 358 static char ID; 359 X86ExecutionDepsFix() : ExecutionDepsFix(ID, X86::VR128XRegClass) {} 360 StringRef getPassName() const override { 361 return "X86 Execution Dependency Fix"; 362 } 363 }; 364 char X86ExecutionDepsFix::ID; 365 366 } // end anonymous namespace 367 368 INITIALIZE_PASS(X86ExecutionDepsFix, "x86-execution-deps-fix", 369 "X86 Execution Dependency Fix", false, false) 370 371 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 372 return new X86PassConfig(*this, PM); 373 } 374 375 void X86PassConfig::addIRPasses() { 376 addPass(createAtomicExpandPass()); 377 378 TargetPassConfig::addIRPasses(); 379 380 if (TM->getOptLevel() != CodeGenOpt::None) 381 addPass(createInterleavedAccessPass()); 382 } 383 384 bool X86PassConfig::addInstSelector() { 385 // Install an instruction selector. 386 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 387 388 // For ELF, cleanup any local-dynamic TLS accesses. 389 if (TM->getTargetTriple().isOSBinFormatELF() && 390 getOptLevel() != CodeGenOpt::None) 391 addPass(createCleanupLocalDynamicTLSPass()); 392 393 addPass(createX86GlobalBaseRegPass()); 394 return false; 395 } 396 397 #ifdef LLVM_BUILD_GLOBAL_ISEL 398 bool X86PassConfig::addIRTranslator() { 399 addPass(new IRTranslator()); 400 return false; 401 } 402 403 bool X86PassConfig::addLegalizeMachineIR() { 404 addPass(new Legalizer()); 405 return false; 406 } 407 408 bool X86PassConfig::addRegBankSelect() { 409 addPass(new RegBankSelect()); 410 return false; 411 } 412 413 bool X86PassConfig::addGlobalInstructionSelect() { 414 addPass(new InstructionSelect()); 415 return false; 416 } 417 #endif 418 419 bool X86PassConfig::addILPOpts() { 420 addPass(&EarlyIfConverterID); 421 if (EnableMachineCombinerPass) 422 addPass(&MachineCombinerID); 423 return true; 424 } 425 426 bool X86PassConfig::addPreISel() { 427 // Only add this pass for 32-bit x86 Windows. 428 const Triple &TT = TM->getTargetTriple(); 429 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 430 addPass(createX86WinEHStatePass()); 431 return true; 432 } 433 434 void X86PassConfig::addPreRegAlloc() { 435 if (getOptLevel() != CodeGenOpt::None) { 436 addPass(&LiveRangeShrinkID); 437 addPass(createX86FixupSetCC()); 438 addPass(createX86OptimizeLEAs()); 439 addPass(createX86CallFrameOptimization()); 440 } 441 442 addPass(createX86WinAllocaExpander()); 443 } 444 445 void X86PassConfig::addPostRegAlloc() { 446 addPass(createX86FloatingPointStackifierPass()); 447 } 448 449 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 450 451 void X86PassConfig::addPreEmitPass() { 452 if (getOptLevel() != CodeGenOpt::None) 453 addPass(new X86ExecutionDepsFix()); 454 455 if (UseVZeroUpper) 456 addPass(createX86IssueVZeroUpperPass()); 457 458 if (getOptLevel() != CodeGenOpt::None) { 459 addPass(createX86FixupBWInsts()); 460 addPass(createX86PadShortFunctions()); 461 addPass(createX86FixupLEAs()); 462 addPass(createX86EvexToVexInsts()); 463 } 464 } 465