1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the X86 specific subclass of TargetMachine. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "X86TargetMachine.h" 14 #include "MCTargetDesc/X86MCTargetDesc.h" 15 #include "TargetInfo/X86TargetInfo.h" 16 #include "X86.h" 17 #include "X86CallLowering.h" 18 #include "X86LegalizerInfo.h" 19 #include "X86MacroFusion.h" 20 #include "X86Subtarget.h" 21 #include "X86TargetObjectFile.h" 22 #include "X86TargetTransformInfo.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/CodeGen/ExecutionDomainFix.h" 30 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 31 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" 35 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MachineScheduler.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/RegAllocRegistry.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/MC/MCAsmInfo.h" 45 #include "llvm/MC/TargetRegistry.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/CodeGen.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Transforms/CFGuard.h" 53 #include <memory> 54 #include <string> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner", 59 cl::desc("Enable the machine combiner pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> 63 EnableTileRAPass("x86-tile-ra", 64 cl::desc("Enable the tile register allocation pass"), 65 cl::init(true), cl::Hidden); 66 67 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() { 68 // Register the target. 69 RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target()); 70 RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target()); 71 72 PassRegistry &PR = *PassRegistry::getPassRegistry(); 73 initializeX86LowerAMXIntrinsicsLegacyPassPass(PR); 74 initializeX86LowerAMXTypeLegacyPassPass(PR); 75 initializeX86PreAMXConfigPassPass(PR); 76 initializeX86PreTileConfigPass(PR); 77 initializeGlobalISel(PR); 78 initializeWinEHStatePassPass(PR); 79 initializeFixupBWInstPassPass(PR); 80 initializeEvexToVexInstPassPass(PR); 81 initializeFixupLEAPassPass(PR); 82 initializeFPSPass(PR); 83 initializeX86FixupSetCCPassPass(PR); 84 initializeX86CallFrameOptimizationPass(PR); 85 initializeX86CmovConverterPassPass(PR); 86 initializeX86TileConfigPass(PR); 87 initializeX86FastPreTileConfigPass(PR); 88 initializeX86FastTileConfigPass(PR); 89 initializeX86LowerTileCopyPass(PR); 90 initializeX86ExpandPseudoPass(PR); 91 initializeX86ExecutionDomainFixPass(PR); 92 initializeX86DomainReassignmentPass(PR); 93 initializeX86AvoidSFBPassPass(PR); 94 initializeX86AvoidTrailingCallPassPass(PR); 95 initializeX86SpeculativeLoadHardeningPassPass(PR); 96 initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR); 97 initializeX86FlagsCopyLoweringPassPass(PR); 98 initializeX86LoadValueInjectionLoadHardeningPassPass(PR); 99 initializeX86LoadValueInjectionRetHardeningPassPass(PR); 100 initializeX86OptimizeLEAPassPass(PR); 101 initializeX86PartialReductionPass(PR); 102 initializePseudoProbeInserterPass(PR); 103 } 104 105 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 106 if (TT.isOSBinFormatMachO()) { 107 if (TT.getArch() == Triple::x86_64) 108 return std::make_unique<X86_64MachoTargetObjectFile>(); 109 return std::make_unique<TargetLoweringObjectFileMachO>(); 110 } 111 112 if (TT.isOSBinFormatCOFF()) 113 return std::make_unique<TargetLoweringObjectFileCOFF>(); 114 return std::make_unique<X86ELFTargetObjectFile>(); 115 } 116 117 static std::string computeDataLayout(const Triple &TT) { 118 // X86 is little endian 119 std::string Ret = "e"; 120 121 Ret += DataLayout::getManglingComponent(TT); 122 // X86 and x32 have 32 bit pointers. 123 if (!TT.isArch64Bit() || TT.isX32() || TT.isOSNaCl()) 124 Ret += "-p:32:32"; 125 126 // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers. 127 Ret += "-p270:32:32-p271:32:32-p272:64:64"; 128 129 // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32. 130 if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl()) 131 Ret += "-i64:64"; 132 else if (TT.isOSIAMCU()) 133 Ret += "-i64:32-f64:32"; 134 else 135 Ret += "-f64:32:64"; 136 137 // Some ABIs align long double to 128 bits, others to 32. 138 if (TT.isOSNaCl() || TT.isOSIAMCU()) 139 ; // No f80 140 else if (TT.isArch64Bit() || TT.isOSDarwin() || TT.isWindowsMSVCEnvironment()) 141 Ret += "-f80:128"; 142 else 143 Ret += "-f80:32"; 144 145 if (TT.isOSIAMCU()) 146 Ret += "-f128:32"; 147 148 // The registers can hold 8, 16, 32 or, in x86-64, 64 bits. 149 if (TT.isArch64Bit()) 150 Ret += "-n8:16:32:64"; 151 else 152 Ret += "-n8:16:32"; 153 154 // The stack is aligned to 32 bits on some ABIs and 128 bits on others. 155 if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU()) 156 Ret += "-a:0:32-S32"; 157 else 158 Ret += "-S128"; 159 160 return Ret; 161 } 162 163 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 164 bool JIT, 165 Optional<Reloc::Model> RM) { 166 bool is64Bit = TT.getArch() == Triple::x86_64; 167 if (!RM) { 168 // JIT codegen should use static relocations by default, since it's 169 // typically executed in process and not relocatable. 170 if (JIT) 171 return Reloc::Static; 172 173 // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. 174 // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we 175 // use static relocation model by default. 176 if (TT.isOSDarwin()) { 177 if (is64Bit) 178 return Reloc::PIC_; 179 return Reloc::DynamicNoPIC; 180 } 181 if (TT.isOSWindows() && is64Bit) 182 return Reloc::PIC_; 183 return Reloc::Static; 184 } 185 186 // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC 187 // is defined as a model for code which may be used in static or dynamic 188 // executables but not necessarily a shared library. On X86-32 we just 189 // compile in -static mode, in x86-64 we use PIC. 190 if (*RM == Reloc::DynamicNoPIC) { 191 if (is64Bit) 192 return Reloc::PIC_; 193 if (!TT.isOSDarwin()) 194 return Reloc::Static; 195 } 196 197 // If we are on Darwin, disallow static relocation model in X86-64 mode, since 198 // the Mach-O file format doesn't support it. 199 if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit) 200 return Reloc::PIC_; 201 202 return *RM; 203 } 204 205 static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM, 206 bool JIT, bool Is64Bit) { 207 if (CM) { 208 if (*CM == CodeModel::Tiny) 209 report_fatal_error("Target does not support the tiny CodeModel", false); 210 return *CM; 211 } 212 if (JIT) 213 return Is64Bit ? CodeModel::Large : CodeModel::Small; 214 return CodeModel::Small; 215 } 216 217 /// Create an X86 target. 218 /// 219 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT, 220 StringRef CPU, StringRef FS, 221 const TargetOptions &Options, 222 Optional<Reloc::Model> RM, 223 Optional<CodeModel::Model> CM, 224 CodeGenOpt::Level OL, bool JIT) 225 : LLVMTargetMachine( 226 T, computeDataLayout(TT), TT, CPU, FS, Options, 227 getEffectiveRelocModel(TT, JIT, RM), 228 getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64), 229 OL), 230 TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) { 231 // On PS4/PS5, the "return address" of a 'noreturn' call must still be within 232 // the calling function, and TrapUnreachable is an easy way to get that. 233 if (TT.isPS() || TT.isOSBinFormatMachO()) { 234 this->Options.TrapUnreachable = true; 235 this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO(); 236 } 237 238 setMachineOutliner(true); 239 240 // x86 supports the debug entry values. 241 setSupportsDebugEntryValues(true); 242 243 initAsmInfo(); 244 } 245 246 X86TargetMachine::~X86TargetMachine() = default; 247 248 const X86Subtarget * 249 X86TargetMachine::getSubtargetImpl(const Function &F) const { 250 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 251 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 252 Attribute FSAttr = F.getFnAttribute("target-features"); 253 254 StringRef CPU = 255 CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU; 256 StringRef TuneCPU = 257 TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU; 258 StringRef FS = 259 FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS; 260 261 SmallString<512> Key; 262 // The additions here are ordered so that the definitely short strings are 263 // added first so we won't exceed the small size. We append the 264 // much longer FS string at the end so that we only heap allocate at most 265 // one time. 266 267 // Extract prefer-vector-width attribute. 268 unsigned PreferVectorWidthOverride = 0; 269 Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width"); 270 if (PreferVecWidthAttr.isValid()) { 271 StringRef Val = PreferVecWidthAttr.getValueAsString(); 272 unsigned Width; 273 if (!Val.getAsInteger(0, Width)) { 274 Key += 'p'; 275 Key += Val; 276 PreferVectorWidthOverride = Width; 277 } 278 } 279 280 // Extract min-legal-vector-width attribute. 281 unsigned RequiredVectorWidth = UINT32_MAX; 282 Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width"); 283 if (MinLegalVecWidthAttr.isValid()) { 284 StringRef Val = MinLegalVecWidthAttr.getValueAsString(); 285 unsigned Width; 286 if (!Val.getAsInteger(0, Width)) { 287 Key += 'm'; 288 Key += Val; 289 RequiredVectorWidth = Width; 290 } 291 } 292 293 // Add CPU to the Key. 294 Key += CPU; 295 296 // Add tune CPU to the Key. 297 Key += TuneCPU; 298 299 // Keep track of the start of the feature portion of the string. 300 unsigned FSStart = Key.size(); 301 302 // FIXME: This is related to the code below to reset the target options, 303 // we need to know whether or not the soft float flag is set on the 304 // function before we can generate a subtarget. We also need to use 305 // it as a key for the subtarget since that can be the only difference 306 // between two functions. 307 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool(); 308 // If the soft float attribute is set on the function turn on the soft float 309 // subtarget feature. 310 if (SoftFloat) 311 Key += FS.empty() ? "+soft-float" : "+soft-float,"; 312 313 Key += FS; 314 315 // We may have added +soft-float to the features so move the StringRef to 316 // point to the full string in the Key. 317 FS = Key.substr(FSStart); 318 319 auto &I = SubtargetMap[Key]; 320 if (!I) { 321 // This needs to be done before we create a new subtarget since any 322 // creation will depend on the TM and the code generation flags on the 323 // function that reside in TargetOptions. 324 resetTargetOptions(F); 325 I = std::make_unique<X86Subtarget>( 326 TargetTriple, CPU, TuneCPU, FS, *this, 327 MaybeAlign(F.getParent()->getOverrideStackAlignment()), 328 PreferVectorWidthOverride, RequiredVectorWidth); 329 } 330 return I.get(); 331 } 332 333 bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 334 unsigned DestAS) const { 335 assert(SrcAS != DestAS && "Expected different address spaces!"); 336 if (getPointerSize(SrcAS) != getPointerSize(DestAS)) 337 return false; 338 return SrcAS < 256 && DestAS < 256; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // X86 TTI query. 343 //===----------------------------------------------------------------------===// 344 345 TargetTransformInfo 346 X86TargetMachine::getTargetTransformInfo(const Function &F) const { 347 return TargetTransformInfo(X86TTIImpl(this, F)); 348 } 349 350 //===----------------------------------------------------------------------===// 351 // Pass Pipeline Configuration 352 //===----------------------------------------------------------------------===// 353 354 namespace { 355 356 /// X86 Code Generator Pass Configuration Options. 357 class X86PassConfig : public TargetPassConfig { 358 public: 359 X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM) 360 : TargetPassConfig(TM, PM) {} 361 362 X86TargetMachine &getX86TargetMachine() const { 363 return getTM<X86TargetMachine>(); 364 } 365 366 ScheduleDAGInstrs * 367 createMachineScheduler(MachineSchedContext *C) const override { 368 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 369 DAG->addMutation(createX86MacroFusionDAGMutation()); 370 return DAG; 371 } 372 373 ScheduleDAGInstrs * 374 createPostMachineScheduler(MachineSchedContext *C) const override { 375 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 376 DAG->addMutation(createX86MacroFusionDAGMutation()); 377 return DAG; 378 } 379 380 void addIRPasses() override; 381 bool addInstSelector() override; 382 bool addIRTranslator() override; 383 bool addLegalizeMachineIR() override; 384 bool addRegBankSelect() override; 385 bool addGlobalInstructionSelect() override; 386 bool addILPOpts() override; 387 bool addPreISel() override; 388 void addMachineSSAOptimization() override; 389 void addPreRegAlloc() override; 390 bool addPostFastRegAllocRewrite() override; 391 void addPostRegAlloc() override; 392 void addPreEmitPass() override; 393 void addPreEmitPass2() override; 394 void addPreSched2() override; 395 bool addRegAssignAndRewriteOptimized() override; 396 397 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 398 }; 399 400 class X86ExecutionDomainFix : public ExecutionDomainFix { 401 public: 402 static char ID; 403 X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {} 404 StringRef getPassName() const override { 405 return "X86 Execution Dependency Fix"; 406 } 407 }; 408 char X86ExecutionDomainFix::ID; 409 410 } // end anonymous namespace 411 412 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix", 413 "X86 Execution Domain Fix", false, false) 414 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis) 415 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix", 416 "X86 Execution Domain Fix", false, false) 417 418 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) { 419 return new X86PassConfig(*this, PM); 420 } 421 422 void X86PassConfig::addIRPasses() { 423 addPass(createAtomicExpandPass()); 424 425 // We add both pass anyway and when these two passes run, we skip the pass 426 // based on the option level and option attribute. 427 addPass(createX86LowerAMXIntrinsicsPass()); 428 addPass(createX86LowerAMXTypePass()); 429 430 TargetPassConfig::addIRPasses(); 431 432 if (TM->getOptLevel() != CodeGenOpt::None) { 433 addPass(createInterleavedAccessPass()); 434 addPass(createX86PartialReductionPass()); 435 } 436 437 // Add passes that handle indirect branch removal and insertion of a retpoline 438 // thunk. These will be a no-op unless a function subtarget has the retpoline 439 // feature enabled. 440 addPass(createIndirectBrExpandPass()); 441 442 // Add Control Flow Guard checks. 443 const Triple &TT = TM->getTargetTriple(); 444 if (TT.isOSWindows()) { 445 if (TT.getArch() == Triple::x86_64) { 446 addPass(createCFGuardDispatchPass()); 447 } else { 448 addPass(createCFGuardCheckPass()); 449 } 450 } 451 452 if (TM->Options.JMCInstrument) 453 addPass(createJMCInstrumenterPass()); 454 } 455 456 bool X86PassConfig::addInstSelector() { 457 // Install an instruction selector. 458 addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel())); 459 460 // For ELF, cleanup any local-dynamic TLS accesses. 461 if (TM->getTargetTriple().isOSBinFormatELF() && 462 getOptLevel() != CodeGenOpt::None) 463 addPass(createCleanupLocalDynamicTLSPass()); 464 465 addPass(createX86GlobalBaseRegPass()); 466 return false; 467 } 468 469 bool X86PassConfig::addIRTranslator() { 470 addPass(new IRTranslator(getOptLevel())); 471 return false; 472 } 473 474 bool X86PassConfig::addLegalizeMachineIR() { 475 addPass(new Legalizer()); 476 return false; 477 } 478 479 bool X86PassConfig::addRegBankSelect() { 480 addPass(new RegBankSelect()); 481 return false; 482 } 483 484 bool X86PassConfig::addGlobalInstructionSelect() { 485 addPass(new InstructionSelect(getOptLevel())); 486 return false; 487 } 488 489 bool X86PassConfig::addILPOpts() { 490 addPass(&EarlyIfConverterID); 491 if (EnableMachineCombinerPass) 492 addPass(&MachineCombinerID); 493 addPass(createX86CmovConverterPass()); 494 return true; 495 } 496 497 bool X86PassConfig::addPreISel() { 498 // Only add this pass for 32-bit x86 Windows. 499 const Triple &TT = TM->getTargetTriple(); 500 if (TT.isOSWindows() && TT.getArch() == Triple::x86) 501 addPass(createX86WinEHStatePass()); 502 return true; 503 } 504 505 void X86PassConfig::addPreRegAlloc() { 506 if (getOptLevel() != CodeGenOpt::None) { 507 addPass(&LiveRangeShrinkID); 508 addPass(createX86FixupSetCC()); 509 addPass(createX86OptimizeLEAs()); 510 addPass(createX86CallFrameOptimization()); 511 addPass(createX86AvoidStoreForwardingBlocks()); 512 } 513 514 addPass(createX86SpeculativeLoadHardeningPass()); 515 addPass(createX86FlagsCopyLoweringPass()); 516 addPass(createX86DynAllocaExpander()); 517 518 if (getOptLevel() != CodeGenOpt::None) 519 addPass(createX86PreTileConfigPass()); 520 else 521 addPass(createX86FastPreTileConfigPass()); 522 } 523 524 void X86PassConfig::addMachineSSAOptimization() { 525 addPass(createX86DomainReassignmentPass()); 526 TargetPassConfig::addMachineSSAOptimization(); 527 } 528 529 void X86PassConfig::addPostRegAlloc() { 530 addPass(createX86LowerTileCopyPass()); 531 addPass(createX86FloatingPointStackifierPass()); 532 // When -O0 is enabled, the Load Value Injection Hardening pass will fall back 533 // to using the Speculative Execution Side Effect Suppression pass for 534 // mitigation. This is to prevent slow downs due to 535 // analyses needed by the LVIHardening pass when compiling at -O0. 536 if (getOptLevel() != CodeGenOpt::None) 537 addPass(createX86LoadValueInjectionLoadHardeningPass()); 538 } 539 540 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); } 541 542 void X86PassConfig::addPreEmitPass() { 543 if (getOptLevel() != CodeGenOpt::None) { 544 addPass(new X86ExecutionDomainFix()); 545 addPass(createBreakFalseDeps()); 546 } 547 548 addPass(createX86IndirectBranchTrackingPass()); 549 550 addPass(createX86IssueVZeroUpperPass()); 551 552 if (getOptLevel() != CodeGenOpt::None) { 553 addPass(createX86FixupBWInsts()); 554 addPass(createX86PadShortFunctions()); 555 addPass(createX86FixupLEAs()); 556 } 557 addPass(createX86EvexToVexInsts()); 558 addPass(createX86DiscriminateMemOpsPass()); 559 addPass(createX86InsertPrefetchPass()); 560 addPass(createX86InsertX87waitPass()); 561 } 562 563 void X86PassConfig::addPreEmitPass2() { 564 const Triple &TT = TM->getTargetTriple(); 565 const MCAsmInfo *MAI = TM->getMCAsmInfo(); 566 567 // The X86 Speculative Execution Pass must run after all control 568 // flow graph modifying passes. As a result it was listed to run right before 569 // the X86 Retpoline Thunks pass. The reason it must run after control flow 570 // graph modifications is that the model of LFENCE in LLVM has to be updated 571 // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the 572 // placement of this pass was hand checked to ensure that the subsequent 573 // passes don't move the code around the LFENCEs in a way that will hurt the 574 // correctness of this pass. This placement has been shown to work based on 575 // hand inspection of the codegen output. 576 addPass(createX86SpeculativeExecutionSideEffectSuppression()); 577 addPass(createX86IndirectThunksPass()); 578 579 // Insert extra int3 instructions after trailing call instructions to avoid 580 // issues in the unwinder. 581 if (TT.isOSWindows() && TT.getArch() == Triple::x86_64) 582 addPass(createX86AvoidTrailingCallPass()); 583 584 // Verify basic block incoming and outgoing cfa offset and register values and 585 // correct CFA calculation rule where needed by inserting appropriate CFI 586 // instructions. 587 if (!TT.isOSDarwin() && 588 (!TT.isOSWindows() || 589 MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI)) 590 addPass(createCFIInstrInserter()); 591 592 if (TT.isOSWindows()) { 593 // Identify valid longjmp targets for Windows Control Flow Guard. 594 addPass(createCFGuardLongjmpPass()); 595 // Identify valid eh continuation targets for Windows EHCont Guard. 596 addPass(createEHContGuardCatchretPass()); 597 } 598 addPass(createX86LoadValueInjectionRetHardeningPass()); 599 600 // Insert pseudo probe annotation for callsite profiling 601 addPass(createPseudoProbeInserter()); 602 603 // On Darwin platforms, BLR_RVMARKER pseudo instructions are lowered to 604 // bundles. 605 if (TT.isOSDarwin()) 606 addPass(createUnpackMachineBundles([](const MachineFunction &MF) { 607 // Only run bundle expansion if there are relevant ObjC runtime functions 608 // present in the module. 609 const Function &F = MF.getFunction(); 610 const Module *M = F.getParent(); 611 return M->getFunction("objc_retainAutoreleasedReturnValue") || 612 M->getFunction("objc_unsafeClaimAutoreleasedReturnValue"); 613 })); 614 } 615 616 bool X86PassConfig::addPostFastRegAllocRewrite() { 617 addPass(createX86FastTileConfigPass()); 618 return true; 619 } 620 621 std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const { 622 return getStandardCSEConfigForOpt(TM->getOptLevel()); 623 } 624 625 static bool onlyAllocateTileRegisters(const TargetRegisterInfo &TRI, 626 const TargetRegisterClass &RC) { 627 return static_cast<const X86RegisterInfo &>(TRI).isTileRegisterClass(&RC); 628 } 629 630 bool X86PassConfig::addRegAssignAndRewriteOptimized() { 631 // Don't support tile RA when RA is specified by command line "-regalloc". 632 if (!isCustomizedRegAlloc() && EnableTileRAPass) { 633 // Allocate tile register first. 634 addPass(createGreedyRegisterAllocator(onlyAllocateTileRegisters)); 635 addPass(createX86TileConfigPass()); 636 } 637 return TargetPassConfig::addRegAssignAndRewriteOptimized(); 638 } 639