1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86TargetMachine.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetRegistry.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <memory>
49 #include <string>
50 
51 using namespace llvm;
52 
53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
54                                cl::desc("Enable the machine combiner pass"),
55                                cl::init(true), cl::Hidden);
56 
57 namespace llvm {
58 
59 void initializeWinEHStatePassPass(PassRegistry &);
60 void initializeFixupLEAPassPass(PassRegistry &);
61 void initializeShadowCallStackPass(PassRegistry &);
62 void initializeX86CallFrameOptimizationPass(PassRegistry &);
63 void initializeX86CmovConverterPassPass(PassRegistry &);
64 void initializeX86ExecutionDomainFixPass(PassRegistry &);
65 void initializeX86DomainReassignmentPass(PassRegistry &);
66 void initializeX86AvoidSFBPassPass(PassRegistry &);
67 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
68 
69 } // end namespace llvm
70 
71 extern "C" void LLVMInitializeX86Target() {
72   // Register the target.
73   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
74   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
75 
76   PassRegistry &PR = *PassRegistry::getPassRegistry();
77   initializeGlobalISel(PR);
78   initializeWinEHStatePassPass(PR);
79   initializeFixupBWInstPassPass(PR);
80   initializeEvexToVexInstPassPass(PR);
81   initializeFixupLEAPassPass(PR);
82   initializeShadowCallStackPass(PR);
83   initializeX86CallFrameOptimizationPass(PR);
84   initializeX86CmovConverterPassPass(PR);
85   initializeX86ExecutionDomainFixPass(PR);
86   initializeX86DomainReassignmentPass(PR);
87   initializeX86AvoidSFBPassPass(PR);
88   initializeX86FlagsCopyLoweringPassPass(PR);
89 }
90 
91 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
92   if (TT.isOSBinFormatMachO()) {
93     if (TT.getArch() == Triple::x86_64)
94       return llvm::make_unique<X86_64MachoTargetObjectFile>();
95     return llvm::make_unique<TargetLoweringObjectFileMachO>();
96   }
97 
98   if (TT.isOSFreeBSD())
99     return llvm::make_unique<X86FreeBSDTargetObjectFile>();
100   if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
101     return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
102   if (TT.isOSSolaris())
103     return llvm::make_unique<X86SolarisTargetObjectFile>();
104   if (TT.isOSFuchsia())
105     return llvm::make_unique<X86FuchsiaTargetObjectFile>();
106   if (TT.isOSBinFormatELF())
107     return llvm::make_unique<X86ELFTargetObjectFile>();
108   if (TT.isKnownWindowsMSVCEnvironment() || TT.isWindowsCoreCLREnvironment())
109     return llvm::make_unique<X86WindowsTargetObjectFile>();
110   if (TT.isOSBinFormatCOFF())
111     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
112   llvm_unreachable("unknown subtarget type");
113 }
114 
115 static std::string computeDataLayout(const Triple &TT) {
116   // X86 is little endian
117   std::string Ret = "e";
118 
119   Ret += DataLayout::getManglingComponent(TT);
120   // X86 and x32 have 32 bit pointers.
121   if ((TT.isArch64Bit() &&
122        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
123       !TT.isArch64Bit())
124     Ret += "-p:32:32";
125 
126   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
127   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
128     Ret += "-i64:64";
129   else if (TT.isOSIAMCU())
130     Ret += "-i64:32-f64:32";
131   else
132     Ret += "-f64:32:64";
133 
134   // Some ABIs align long double to 128 bits, others to 32.
135   if (TT.isOSNaCl() || TT.isOSIAMCU())
136     ; // No f80
137   else if (TT.isArch64Bit() || TT.isOSDarwin())
138     Ret += "-f80:128";
139   else
140     Ret += "-f80:32";
141 
142   if (TT.isOSIAMCU())
143     Ret += "-f128:32";
144 
145   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
146   if (TT.isArch64Bit())
147     Ret += "-n8:16:32:64";
148   else
149     Ret += "-n8:16:32";
150 
151   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
152   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
153     Ret += "-a:0:32-S32";
154   else
155     Ret += "-S128";
156 
157   return Ret;
158 }
159 
160 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
161                                            Optional<Reloc::Model> RM) {
162   bool is64Bit = TT.getArch() == Triple::x86_64;
163   if (!RM.hasValue()) {
164     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
165     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
166     // use static relocation model by default.
167     if (TT.isOSDarwin()) {
168       if (is64Bit)
169         return Reloc::PIC_;
170       return Reloc::DynamicNoPIC;
171     }
172     if (TT.isOSWindows() && is64Bit)
173       return Reloc::PIC_;
174     return Reloc::Static;
175   }
176 
177   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
178   // is defined as a model for code which may be used in static or dynamic
179   // executables but not necessarily a shared library. On X86-32 we just
180   // compile in -static mode, in x86-64 we use PIC.
181   if (*RM == Reloc::DynamicNoPIC) {
182     if (is64Bit)
183       return Reloc::PIC_;
184     if (!TT.isOSDarwin())
185       return Reloc::Static;
186   }
187 
188   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
189   // the Mach-O file format doesn't support it.
190   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
191     return Reloc::PIC_;
192 
193   return *RM;
194 }
195 
196 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
197                                               bool JIT, bool Is64Bit) {
198   if (CM)
199     return *CM;
200   if (JIT)
201     return Is64Bit ? CodeModel::Large : CodeModel::Small;
202   return CodeModel::Small;
203 }
204 
205 /// Create an X86 target.
206 ///
207 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
208                                    StringRef CPU, StringRef FS,
209                                    const TargetOptions &Options,
210                                    Optional<Reloc::Model> RM,
211                                    Optional<CodeModel::Model> CM,
212                                    CodeGenOpt::Level OL, bool JIT)
213     : LLVMTargetMachine(
214           T, computeDataLayout(TT), TT, CPU, FS, Options,
215           getEffectiveRelocModel(TT, RM),
216           getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL),
217       TLOF(createTLOF(getTargetTriple())) {
218   // Windows stack unwinder gets confused when execution flow "falls through"
219   // after a call to 'noreturn' function.
220   // To prevent that, we emit a trap for 'unreachable' IR instructions.
221   // (which on X86, happens to be the 'ud2' instruction)
222   // On PS4, the "return address" of a 'noreturn' call must still be within
223   // the calling function, and TrapUnreachable is an easy way to get that.
224   // The check here for 64-bit windows is a bit icky, but as we're unlikely
225   // to ever want to mix 32 and 64-bit windows code in a single module
226   // this should be fine.
227   if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
228       TT.isOSBinFormatMachO())
229     this->Options.TrapUnreachable = true;
230 
231   initAsmInfo();
232 }
233 
234 X86TargetMachine::~X86TargetMachine() = default;
235 
236 const X86Subtarget *
237 X86TargetMachine::getSubtargetImpl(const Function &F) const {
238   Attribute CPUAttr = F.getFnAttribute("target-cpu");
239   Attribute FSAttr = F.getFnAttribute("target-features");
240 
241   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
242                       ? CPUAttr.getValueAsString()
243                       : (StringRef)TargetCPU;
244   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
245                      ? FSAttr.getValueAsString()
246                      : (StringRef)TargetFS;
247 
248   SmallString<512> Key;
249   Key.reserve(CPU.size() + FS.size());
250   Key += CPU;
251   Key += FS;
252 
253   // FIXME: This is related to the code below to reset the target options,
254   // we need to know whether or not the soft float flag is set on the
255   // function before we can generate a subtarget. We also need to use
256   // it as a key for the subtarget since that can be the only difference
257   // between two functions.
258   bool SoftFloat =
259       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
260   // If the soft float attribute is set on the function turn on the soft float
261   // subtarget feature.
262   if (SoftFloat)
263     Key += FS.empty() ? "+soft-float" : ",+soft-float";
264 
265   // Keep track of the key width after all features are added so we can extract
266   // the feature string out later.
267   unsigned CPUFSWidth = Key.size();
268 
269   // Extract prefer-vector-width attribute.
270   unsigned PreferVectorWidthOverride = 0;
271   if (F.hasFnAttribute("prefer-vector-width")) {
272     StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
273     unsigned Width;
274     if (!Val.getAsInteger(0, Width)) {
275       Key += ",prefer-vector-width=";
276       Key += Val;
277       PreferVectorWidthOverride = Width;
278     }
279   }
280 
281   // Extract required-vector-width attribute.
282   unsigned RequiredVectorWidth = UINT32_MAX;
283   if (F.hasFnAttribute("required-vector-width")) {
284     StringRef Val = F.getFnAttribute("required-vector-width").getValueAsString();
285     unsigned Width;
286     if (!Val.getAsInteger(0, Width)) {
287       Key += ",required-vector-width=";
288       Key += Val;
289       RequiredVectorWidth = Width;
290     }
291   }
292 
293   // Extracted here so that we make sure there is backing for the StringRef. If
294   // we assigned earlier, its possible the SmallString reallocated leaving a
295   // dangling StringRef.
296   FS = Key.slice(CPU.size(), CPUFSWidth);
297 
298   auto &I = SubtargetMap[Key];
299   if (!I) {
300     // This needs to be done before we create a new subtarget since any
301     // creation will depend on the TM and the code generation flags on the
302     // function that reside in TargetOptions.
303     resetTargetOptions(F);
304     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
305                                         Options.StackAlignmentOverride,
306                                         PreferVectorWidthOverride,
307                                         RequiredVectorWidth);
308   }
309   return I.get();
310 }
311 
312 //===----------------------------------------------------------------------===//
313 // Command line options for x86
314 //===----------------------------------------------------------------------===//
315 static cl::opt<bool>
316 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
317   cl::desc("Minimize AVX to SSE transition penalty"),
318   cl::init(true));
319 
320 //===----------------------------------------------------------------------===//
321 // X86 TTI query.
322 //===----------------------------------------------------------------------===//
323 
324 TargetTransformInfo
325 X86TargetMachine::getTargetTransformInfo(const Function &F) {
326   return TargetTransformInfo(X86TTIImpl(this, F));
327 }
328 
329 //===----------------------------------------------------------------------===//
330 // Pass Pipeline Configuration
331 //===----------------------------------------------------------------------===//
332 
333 namespace {
334 
335 /// X86 Code Generator Pass Configuration Options.
336 class X86PassConfig : public TargetPassConfig {
337 public:
338   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
339     : TargetPassConfig(TM, PM) {}
340 
341   X86TargetMachine &getX86TargetMachine() const {
342     return getTM<X86TargetMachine>();
343   }
344 
345   ScheduleDAGInstrs *
346   createMachineScheduler(MachineSchedContext *C) const override {
347     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
348     DAG->addMutation(createX86MacroFusionDAGMutation());
349     return DAG;
350   }
351 
352   void addIRPasses() override;
353   bool addInstSelector() override;
354   bool addIRTranslator() override;
355   bool addLegalizeMachineIR() override;
356   bool addRegBankSelect() override;
357   bool addGlobalInstructionSelect() override;
358   bool addILPOpts() override;
359   bool addPreISel() override;
360   void addMachineSSAOptimization() override;
361   void addPreRegAlloc() override;
362   void addPostRegAlloc() override;
363   void addPreEmitPass() override;
364   void addPreEmitPass2() override;
365   void addPreSched2() override;
366 };
367 
368 class X86ExecutionDomainFix : public ExecutionDomainFix {
369 public:
370   static char ID;
371   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
372   StringRef getPassName() const override {
373     return "X86 Execution Dependency Fix";
374   }
375 };
376 char X86ExecutionDomainFix::ID;
377 
378 } // end anonymous namespace
379 
380 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
381   "X86 Execution Domain Fix", false, false)
382 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
383 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
384   "X86 Execution Domain Fix", false, false)
385 
386 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
387   return new X86PassConfig(*this, PM);
388 }
389 
390 void X86PassConfig::addIRPasses() {
391   addPass(createAtomicExpandPass());
392 
393   TargetPassConfig::addIRPasses();
394 
395   if (TM->getOptLevel() != CodeGenOpt::None)
396     addPass(createInterleavedAccessPass());
397 
398   // Add passes that handle indirect branch removal and insertion of a retpoline
399   // thunk. These will be a no-op unless a function subtarget has the retpoline
400   // feature enabled.
401   addPass(createIndirectBrExpandPass());
402 }
403 
404 bool X86PassConfig::addInstSelector() {
405   // Install an instruction selector.
406   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
407 
408   // For ELF, cleanup any local-dynamic TLS accesses.
409   if (TM->getTargetTriple().isOSBinFormatELF() &&
410       getOptLevel() != CodeGenOpt::None)
411     addPass(createCleanupLocalDynamicTLSPass());
412 
413   addPass(createX86GlobalBaseRegPass());
414   return false;
415 }
416 
417 bool X86PassConfig::addIRTranslator() {
418   addPass(new IRTranslator());
419   return false;
420 }
421 
422 bool X86PassConfig::addLegalizeMachineIR() {
423   addPass(new Legalizer());
424   return false;
425 }
426 
427 bool X86PassConfig::addRegBankSelect() {
428   addPass(new RegBankSelect());
429   return false;
430 }
431 
432 bool X86PassConfig::addGlobalInstructionSelect() {
433   addPass(new InstructionSelect());
434   return false;
435 }
436 
437 bool X86PassConfig::addILPOpts() {
438   addPass(&EarlyIfConverterID);
439   if (EnableMachineCombinerPass)
440     addPass(&MachineCombinerID);
441   addPass(createX86CmovConverterPass());
442   return true;
443 }
444 
445 bool X86PassConfig::addPreISel() {
446   // Only add this pass for 32-bit x86 Windows.
447   const Triple &TT = TM->getTargetTriple();
448   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
449     addPass(createX86WinEHStatePass());
450   return true;
451 }
452 
453 void X86PassConfig::addPreRegAlloc() {
454   if (getOptLevel() != CodeGenOpt::None) {
455     addPass(&LiveRangeShrinkID);
456     addPass(createX86FixupSetCC());
457     addPass(createX86OptimizeLEAs());
458     addPass(createX86CallFrameOptimization());
459     addPass(createX86AvoidStoreForwardingBlocks());
460   }
461 
462   addPass(createX86FlagsCopyLoweringPass());
463   addPass(createX86WinAllocaExpander());
464 }
465 void X86PassConfig::addMachineSSAOptimization() {
466   addPass(createX86DomainReassignmentPass());
467   TargetPassConfig::addMachineSSAOptimization();
468 }
469 
470 void X86PassConfig::addPostRegAlloc() {
471   addPass(createX86FloatingPointStackifierPass());
472 }
473 
474 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
475 
476 void X86PassConfig::addPreEmitPass() {
477   if (getOptLevel() != CodeGenOpt::None) {
478     addPass(new X86ExecutionDomainFix());
479     addPass(createBreakFalseDeps());
480   }
481 
482   addPass(createShadowCallStackPass());
483   addPass(createX86IndirectBranchTrackingPass());
484 
485   if (UseVZeroUpper)
486     addPass(createX86IssueVZeroUpperPass());
487 
488   if (getOptLevel() != CodeGenOpt::None) {
489     addPass(createX86FixupBWInsts());
490     addPass(createX86PadShortFunctions());
491     addPass(createX86FixupLEAs());
492     addPass(createX86EvexToVexInsts());
493   }
494 }
495 
496 void X86PassConfig::addPreEmitPass2() {
497   addPass(createX86RetpolineThunksPass());
498 }
499