1 //===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the pass that performs some optimizations with LEA 11 // instructions in order to improve performance and code size. 12 // Currently, it does two things: 13 // 1) If there are two LEA instructions calculating addresses which only differ 14 // by displacement inside a basic block, one of them is removed. 15 // 2) Address calculations in load and store instructions are replaced by 16 // existing LEA def registers where possible. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "X86.h" 21 #include "X86InstrInfo.h" 22 #include "X86Subtarget.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/LiveVariables.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Target/TargetInstrInfo.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "x86-optimize-LEAs" 38 39 static cl::opt<bool> 40 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden, 41 cl::desc("X86: Disable LEA optimizations."), 42 cl::init(false)); 43 44 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); 45 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); 46 47 /// \brief Returns true if two machine operands are identical and they are not 48 /// physical registers. 49 static inline bool isIdenticalOp(const MachineOperand &MO1, 50 const MachineOperand &MO2); 51 52 /// \brief Returns true if two address displacement operands are of the same 53 /// type and use the same symbol/index/address regardless of the offset. 54 static bool isSimilarDispOp(const MachineOperand &MO1, 55 const MachineOperand &MO2); 56 57 /// \brief Returns true if the instruction is LEA. 58 static inline bool isLEA(const MachineInstr &MI); 59 60 namespace { 61 /// A key based on instruction's memory operands. 62 class MemOpKey { 63 public: 64 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale, 65 const MachineOperand *Index, const MachineOperand *Segment, 66 const MachineOperand *Disp) 67 : Disp(Disp) { 68 Operands[0] = Base; 69 Operands[1] = Scale; 70 Operands[2] = Index; 71 Operands[3] = Segment; 72 } 73 74 bool operator==(const MemOpKey &Other) const { 75 // Addresses' bases, scales, indices and segments must be identical. 76 for (int i = 0; i < 4; ++i) 77 if (!isIdenticalOp(*Operands[i], *Other.Operands[i])) 78 return false; 79 80 // Addresses' displacements don't have to be exactly the same. It only 81 // matters that they use the same symbol/index/address. Immediates' or 82 // offsets' differences will be taken care of during instruction 83 // substitution. 84 return isSimilarDispOp(*Disp, *Other.Disp); 85 } 86 87 // Address' base, scale, index and segment operands. 88 const MachineOperand *Operands[4]; 89 90 // Address' displacement operand. 91 const MachineOperand *Disp; 92 }; 93 } // end anonymous namespace 94 95 /// Provide DenseMapInfo for MemOpKey. 96 namespace llvm { 97 template <> struct DenseMapInfo<MemOpKey> { 98 typedef DenseMapInfo<const MachineOperand *> PtrInfo; 99 100 static inline MemOpKey getEmptyKey() { 101 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), 102 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(), 103 PtrInfo::getEmptyKey()); 104 } 105 106 static inline MemOpKey getTombstoneKey() { 107 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), 108 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(), 109 PtrInfo::getTombstoneKey()); 110 } 111 112 static unsigned getHashValue(const MemOpKey &Val) { 113 // Checking any field of MemOpKey is enough to determine if the key is 114 // empty or tombstone. 115 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key"); 116 assert(Val.Disp != PtrInfo::getTombstoneKey() && 117 "Cannot hash the tombstone key"); 118 119 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1], 120 *Val.Operands[2], *Val.Operands[3]); 121 122 // If the address displacement is an immediate, it should not affect the 123 // hash so that memory operands which differ only be immediate displacement 124 // would have the same hash. If the address displacement is something else, 125 // we should reflect symbol/index/address in the hash. 126 switch (Val.Disp->getType()) { 127 case MachineOperand::MO_Immediate: 128 break; 129 case MachineOperand::MO_ConstantPoolIndex: 130 case MachineOperand::MO_JumpTableIndex: 131 Hash = hash_combine(Hash, Val.Disp->getIndex()); 132 break; 133 case MachineOperand::MO_ExternalSymbol: 134 Hash = hash_combine(Hash, Val.Disp->getSymbolName()); 135 break; 136 case MachineOperand::MO_GlobalAddress: 137 Hash = hash_combine(Hash, Val.Disp->getGlobal()); 138 break; 139 case MachineOperand::MO_BlockAddress: 140 Hash = hash_combine(Hash, Val.Disp->getBlockAddress()); 141 break; 142 case MachineOperand::MO_MCSymbol: 143 Hash = hash_combine(Hash, Val.Disp->getMCSymbol()); 144 break; 145 case MachineOperand::MO_MachineBasicBlock: 146 Hash = hash_combine(Hash, Val.Disp->getMBB()); 147 break; 148 default: 149 llvm_unreachable("Invalid address displacement operand"); 150 } 151 152 return (unsigned)Hash; 153 } 154 155 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) { 156 // Checking any field of MemOpKey is enough to determine if the key is 157 // empty or tombstone. 158 if (RHS.Disp == PtrInfo::getEmptyKey()) 159 return LHS.Disp == PtrInfo::getEmptyKey(); 160 if (RHS.Disp == PtrInfo::getTombstoneKey()) 161 return LHS.Disp == PtrInfo::getTombstoneKey(); 162 return LHS == RHS; 163 } 164 }; 165 } 166 167 /// \brief Returns a hash table key based on memory operands of \p MI. The 168 /// number of the first memory operand of \p MI is specified through \p N. 169 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) { 170 assert((isLEA(MI) || MI.mayLoadOrStore()) && 171 "The instruction must be a LEA, a load or a store"); 172 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg), 173 &MI.getOperand(N + X86::AddrScaleAmt), 174 &MI.getOperand(N + X86::AddrIndexReg), 175 &MI.getOperand(N + X86::AddrSegmentReg), 176 &MI.getOperand(N + X86::AddrDisp)); 177 } 178 179 static inline bool isIdenticalOp(const MachineOperand &MO1, 180 const MachineOperand &MO2) { 181 return MO1.isIdenticalTo(MO2) && 182 (!MO1.isReg() || 183 !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); 184 } 185 186 #ifndef NDEBUG 187 static bool isValidDispOp(const MachineOperand &MO) { 188 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() || 189 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB(); 190 } 191 #endif 192 193 static bool isSimilarDispOp(const MachineOperand &MO1, 194 const MachineOperand &MO2) { 195 assert(isValidDispOp(MO1) && isValidDispOp(MO2) && 196 "Address displacement operand is not valid"); 197 return (MO1.isImm() && MO2.isImm()) || 198 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) || 199 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) || 200 (MO1.isSymbol() && MO2.isSymbol() && 201 MO1.getSymbolName() == MO2.getSymbolName()) || 202 (MO1.isGlobal() && MO2.isGlobal() && 203 MO1.getGlobal() == MO2.getGlobal()) || 204 (MO1.isBlockAddress() && MO2.isBlockAddress() && 205 MO1.getBlockAddress() == MO2.getBlockAddress()) || 206 (MO1.isMCSymbol() && MO2.isMCSymbol() && 207 MO1.getMCSymbol() == MO2.getMCSymbol()) || 208 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB()); 209 } 210 211 static inline bool isLEA(const MachineInstr &MI) { 212 unsigned Opcode = MI.getOpcode(); 213 return Opcode == X86::LEA16r || Opcode == X86::LEA32r || 214 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; 215 } 216 217 namespace { 218 class OptimizeLEAPass : public MachineFunctionPass { 219 public: 220 OptimizeLEAPass() : MachineFunctionPass(ID) {} 221 222 StringRef getPassName() const override { return "X86 LEA Optimize"; } 223 224 /// \brief Loop over all of the basic blocks, replacing address 225 /// calculations in load and store instructions, if it's already 226 /// been calculated by LEA. Also, remove redundant LEAs. 227 bool runOnMachineFunction(MachineFunction &MF) override; 228 229 private: 230 typedef DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>> MemOpMap; 231 232 /// \brief Returns a distance between two instructions inside one basic block. 233 /// Negative result means, that instructions occur in reverse order. 234 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); 235 236 /// \brief Choose the best \p LEA instruction from the \p List to replace 237 /// address calculation in \p MI instruction. Return the address displacement 238 /// and the distance between \p MI and the choosen \p BestLEA in 239 /// \p AddrDispShift and \p Dist. 240 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, 241 const MachineInstr &MI, MachineInstr *&BestLEA, 242 int64_t &AddrDispShift, int &Dist); 243 244 /// \brief Returns the difference between addresses' displacements of \p MI1 245 /// and \p MI2. The numbers of the first memory operands for the instructions 246 /// are specified through \p N1 and \p N2. 247 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1, 248 const MachineInstr &MI2, unsigned N2) const; 249 250 /// \brief Returns true if the \p Last LEA instruction can be replaced by the 251 /// \p First. The difference between displacements of the addresses calculated 252 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper 253 /// replacement of the \p Last LEA's uses with the \p First's def register. 254 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, 255 int64_t &AddrDispShift) const; 256 257 /// \brief Find all LEA instructions in the basic block. Also, assign position 258 /// numbers to all instructions in the basic block to speed up calculation of 259 /// distance between them. 260 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs); 261 262 /// \brief Removes redundant address calculations. 263 bool removeRedundantAddrCalc(MemOpMap &LEAs); 264 265 /// \brief Removes LEAs which calculate similar addresses. 266 bool removeRedundantLEAs(MemOpMap &LEAs); 267 268 DenseMap<const MachineInstr *, unsigned> InstrPos; 269 270 MachineRegisterInfo *MRI; 271 const X86InstrInfo *TII; 272 const X86RegisterInfo *TRI; 273 274 static char ID; 275 }; 276 char OptimizeLEAPass::ID = 0; 277 } 278 279 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } 280 281 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, 282 const MachineInstr &Last) { 283 // Both instructions must be in the same basic block and they must be 284 // presented in InstrPos. 285 assert(Last.getParent() == First.getParent() && 286 "Instructions are in different basic blocks"); 287 assert(InstrPos.find(&First) != InstrPos.end() && 288 InstrPos.find(&Last) != InstrPos.end() && 289 "Instructions' positions are undefined"); 290 291 return InstrPos[&Last] - InstrPos[&First]; 292 } 293 294 // Find the best LEA instruction in the List to replace address recalculation in 295 // MI. Such LEA must meet these requirements: 296 // 1) The address calculated by the LEA differs only by the displacement from 297 // the address used in MI. 298 // 2) The register class of the definition of the LEA is compatible with the 299 // register class of the address base register of MI. 300 // 3) Displacement of the new memory operand should fit in 1 byte if possible. 301 // 4) The LEA should be as close to MI as possible, and prior to it if 302 // possible. 303 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, 304 const MachineInstr &MI, 305 MachineInstr *&BestLEA, 306 int64_t &AddrDispShift, int &Dist) { 307 const MachineFunction *MF = MI.getParent()->getParent(); 308 const MCInstrDesc &Desc = MI.getDesc(); 309 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) + 310 X86II::getOperandBias(Desc); 311 312 BestLEA = nullptr; 313 314 // Loop over all LEA instructions. 315 for (auto DefMI : List) { 316 // Get new address displacement. 317 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1); 318 319 // Make sure address displacement fits 4 bytes. 320 if (!isInt<32>(AddrDispShiftTemp)) 321 continue; 322 323 // Check that LEA def register can be used as MI address base. Some 324 // instructions can use a limited set of registers as address base, for 325 // example MOV8mr_NOREX. We could constrain the register class of the LEA 326 // def to suit MI, however since this case is very rare and hard to 327 // reproduce in a test it's just more reliable to skip the LEA. 328 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != 329 MRI->getRegClass(DefMI->getOperand(0).getReg())) 330 continue; 331 332 // Choose the closest LEA instruction from the list, prior to MI if 333 // possible. Note that we took into account resulting address displacement 334 // as well. Also note that the list is sorted by the order in which the LEAs 335 // occur, so the break condition is pretty simple. 336 int DistTemp = calcInstrDist(*DefMI, MI); 337 assert(DistTemp != 0 && 338 "The distance between two different instructions cannot be zero"); 339 if (DistTemp > 0 || BestLEA == nullptr) { 340 // Do not update return LEA, if the current one provides a displacement 341 // which fits in 1 byte, while the new candidate does not. 342 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) && 343 isInt<8>(AddrDispShift)) 344 continue; 345 346 BestLEA = DefMI; 347 AddrDispShift = AddrDispShiftTemp; 348 Dist = DistTemp; 349 } 350 351 // FIXME: Maybe we should not always stop at the first LEA after MI. 352 if (DistTemp < 0) 353 break; 354 } 355 356 return BestLEA != nullptr; 357 } 358 359 // Get the difference between the addresses' displacements of the two 360 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are 361 // passed through \p N1 and \p N2. 362 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1, 363 const MachineInstr &MI2, 364 unsigned N2) const { 365 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp); 366 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp); 367 368 assert(isSimilarDispOp(Op1, Op2) && 369 "Address displacement operands are not compatible"); 370 371 // After the assert above we can be sure that both operands are of the same 372 // valid type and use the same symbol/index/address, thus displacement shift 373 // calculation is rather simple. 374 if (Op1.isJTI()) 375 return 0; 376 return Op1.isImm() ? Op1.getImm() - Op2.getImm() 377 : Op1.getOffset() - Op2.getOffset(); 378 } 379 380 // Check that the Last LEA can be replaced by the First LEA. To be so, 381 // these requirements must be met: 382 // 1) Addresses calculated by LEAs differ only by displacement. 383 // 2) Def registers of LEAs belong to the same class. 384 // 3) All uses of the Last LEA def register are replaceable, thus the 385 // register is used only as address base. 386 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, 387 const MachineInstr &Last, 388 int64_t &AddrDispShift) const { 389 assert(isLEA(First) && isLEA(Last) && 390 "The function works only with LEA instructions"); 391 392 // Get new address displacement. 393 AddrDispShift = getAddrDispShift(Last, 1, First, 1); 394 395 // Make sure that LEA def registers belong to the same class. There may be 396 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to 397 // be used as their operands, so we must be sure that replacing one LEA 398 // with another won't lead to putting a wrong register in the instruction. 399 if (MRI->getRegClass(First.getOperand(0).getReg()) != 400 MRI->getRegClass(Last.getOperand(0).getReg())) 401 return false; 402 403 // Loop over all uses of the Last LEA to check that its def register is 404 // used only as address base for memory accesses. If so, it can be 405 // replaced, otherwise - no. 406 for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) { 407 MachineInstr &MI = *MO.getParent(); 408 409 // Get the number of the first memory operand. 410 const MCInstrDesc &Desc = MI.getDesc(); 411 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); 412 413 // If the use instruction has no memory operand - the LEA is not 414 // replaceable. 415 if (MemOpNo < 0) 416 return false; 417 418 MemOpNo += X86II::getOperandBias(Desc); 419 420 // If the address base of the use instruction is not the LEA def register - 421 // the LEA is not replaceable. 422 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) 423 return false; 424 425 // If the LEA def register is used as any other operand of the use 426 // instruction - the LEA is not replaceable. 427 for (unsigned i = 0; i < MI.getNumOperands(); i++) 428 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && 429 isIdenticalOp(MI.getOperand(i), MO)) 430 return false; 431 432 // Check that the new address displacement will fit 4 bytes. 433 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && 434 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + 435 AddrDispShift)) 436 return false; 437 } 438 439 return true; 440 } 441 442 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) { 443 unsigned Pos = 0; 444 for (auto &MI : MBB) { 445 // Assign the position number to the instruction. Note that we are going to 446 // move some instructions during the optimization however there will never 447 // be a need to move two instructions before any selected instruction. So to 448 // avoid multiple positions' updates during moves we just increase position 449 // counter by two leaving a free space for instructions which will be moved. 450 InstrPos[&MI] = Pos += 2; 451 452 if (isLEA(MI)) 453 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI)); 454 } 455 } 456 457 // Try to find load and store instructions which recalculate addresses already 458 // calculated by some LEA and replace their memory operands with its def 459 // register. 460 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) { 461 bool Changed = false; 462 463 assert(!LEAs.empty()); 464 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent(); 465 466 // Process all instructions in basic block. 467 for (auto I = MBB->begin(), E = MBB->end(); I != E;) { 468 MachineInstr &MI = *I++; 469 470 // Instruction must be load or store. 471 if (!MI.mayLoadOrStore()) 472 continue; 473 474 // Get the number of the first memory operand. 475 const MCInstrDesc &Desc = MI.getDesc(); 476 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags); 477 478 // If instruction has no memory operand - skip it. 479 if (MemOpNo < 0) 480 continue; 481 482 MemOpNo += X86II::getOperandBias(Desc); 483 484 // Get the best LEA instruction to replace address calculation. 485 MachineInstr *DefMI; 486 int64_t AddrDispShift; 487 int Dist; 488 if (!chooseBestLEA(LEAs[getMemOpKey(MI, MemOpNo)], MI, DefMI, AddrDispShift, 489 Dist)) 490 continue; 491 492 // If LEA occurs before current instruction, we can freely replace 493 // the instruction. If LEA occurs after, we can lift LEA above the 494 // instruction and this way to be able to replace it. Since LEA and the 495 // instruction have similar memory operands (thus, the same def 496 // instructions for these operands), we can always do that, without 497 // worries of using registers before their defs. 498 if (Dist < 0) { 499 DefMI->removeFromParent(); 500 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); 501 InstrPos[DefMI] = InstrPos[&MI] - 1; 502 503 // Make sure the instructions' position numbers are sane. 504 assert(((InstrPos[DefMI] == 1 && 505 MachineBasicBlock::iterator(DefMI) == MBB->begin()) || 506 InstrPos[DefMI] > 507 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) && 508 "Instruction positioning is broken"); 509 } 510 511 // Since we can possibly extend register lifetime, clear kill flags. 512 MRI->clearKillFlags(DefMI->getOperand(0).getReg()); 513 514 ++NumSubstLEAs; 515 DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); 516 517 // Change instruction operands. 518 MI.getOperand(MemOpNo + X86::AddrBaseReg) 519 .ChangeToRegister(DefMI->getOperand(0).getReg(), false); 520 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); 521 MI.getOperand(MemOpNo + X86::AddrIndexReg) 522 .ChangeToRegister(X86::NoRegister, false); 523 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); 524 MI.getOperand(MemOpNo + X86::AddrSegmentReg) 525 .ChangeToRegister(X86::NoRegister, false); 526 527 DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); 528 529 Changed = true; 530 } 531 532 return Changed; 533 } 534 535 // Try to find similar LEAs in the list and replace one with another. 536 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) { 537 bool Changed = false; 538 539 // Loop over all entries in the table. 540 for (auto &E : LEAs) { 541 auto &List = E.second; 542 543 // Loop over all LEA pairs. 544 auto I1 = List.begin(); 545 while (I1 != List.end()) { 546 MachineInstr &First = **I1; 547 auto I2 = std::next(I1); 548 while (I2 != List.end()) { 549 MachineInstr &Last = **I2; 550 int64_t AddrDispShift; 551 552 // LEAs should be in occurence order in the list, so we can freely 553 // replace later LEAs with earlier ones. 554 assert(calcInstrDist(First, Last) > 0 && 555 "LEAs must be in occurence order in the list"); 556 557 // Check that the Last LEA instruction can be replaced by the First. 558 if (!isReplaceable(First, Last, AddrDispShift)) { 559 ++I2; 560 continue; 561 } 562 563 // Loop over all uses of the Last LEA and update their operands. Note 564 // that the correctness of this has already been checked in the 565 // isReplaceable function. 566 for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()), 567 UE = MRI->use_end(); 568 UI != UE;) { 569 MachineOperand &MO = *UI++; 570 MachineInstr &MI = *MO.getParent(); 571 572 // Get the number of the first memory operand. 573 const MCInstrDesc &Desc = MI.getDesc(); 574 int MemOpNo = 575 X86II::getMemoryOperandNo(Desc.TSFlags) + 576 X86II::getOperandBias(Desc); 577 578 // Update address base. 579 MO.setReg(First.getOperand(0).getReg()); 580 581 // Update address disp. 582 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp); 583 if (Op.isImm()) 584 Op.setImm(Op.getImm() + AddrDispShift); 585 else if (!Op.isJTI()) 586 Op.setOffset(Op.getOffset() + AddrDispShift); 587 } 588 589 // Since we can possibly extend register lifetime, clear kill flags. 590 MRI->clearKillFlags(First.getOperand(0).getReg()); 591 592 ++NumRedundantLEAs; 593 DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump();); 594 595 // By this moment, all of the Last LEA's uses must be replaced. So we 596 // can freely remove it. 597 assert(MRI->use_empty(Last.getOperand(0).getReg()) && 598 "The LEA's def register must have no uses"); 599 Last.eraseFromParent(); 600 601 // Erase removed LEA from the list. 602 I2 = List.erase(I2); 603 604 Changed = true; 605 } 606 ++I1; 607 } 608 } 609 610 return Changed; 611 } 612 613 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { 614 bool Changed = false; 615 616 if (DisableX86LEAOpt || skipFunction(*MF.getFunction())) 617 return false; 618 619 MRI = &MF.getRegInfo(); 620 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 621 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); 622 623 // Process all basic blocks. 624 for (auto &MBB : MF) { 625 MemOpMap LEAs; 626 InstrPos.clear(); 627 628 // Find all LEA instructions in basic block. 629 findLEAs(MBB, LEAs); 630 631 // If current basic block has no LEAs, move on to the next one. 632 if (LEAs.empty()) 633 continue; 634 635 // Remove redundant LEA instructions. 636 Changed |= removeRedundantLEAs(LEAs); 637 638 // Remove redundant address calculations. Do it only for -Os/-Oz since only 639 // a code size gain is expected from this part of the pass. 640 if (MF.getFunction()->optForSize()) 641 Changed |= removeRedundantAddrCalc(LEAs); 642 } 643 644 return Changed; 645 } 646