1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
12 /// flag bits.
13 ///
14 /// We have to do this by carefully analyzing and rewriting the usage of the
15 /// copied EFLAGS register because there is no general way to rematerialize the
16 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
17 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
18 /// and other non-status flags being overwritten. Using sequences involving
19 /// SAHF don't work on all x86 processors and are often quite slow compared to
20 /// directly testing a single status preserved in its own GPR.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "X86.h"
25 #include "X86InstrBuilder.h"
26 #include "X86InstrInfo.h"
27 #include "X86Subtarget.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineDominators.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/CodeGen/MachineSSAUpdater.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSchedule.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/MC/MCSchedule.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define PASS_KEY "x86-flags-copy-lowering"
66 #define DEBUG_TYPE PASS_KEY
67 
68 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
69 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
70 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
71 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
72 
73 namespace llvm {
74 
75 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
76 
77 } // end namespace llvm
78 
79 namespace {
80 
81 // Convenient array type for storing registers associated with each condition.
82 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
83 
84 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
85 public:
86   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
87     initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
88   }
89 
90   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
91   bool runOnMachineFunction(MachineFunction &MF) override;
92   void getAnalysisUsage(AnalysisUsage &AU) const override;
93 
94   /// Pass identification, replacement for typeid.
95   static char ID;
96 
97 private:
98   MachineRegisterInfo *MRI;
99   const X86InstrInfo *TII;
100   const TargetRegisterInfo *TRI;
101   const TargetRegisterClass *PromoteRC;
102   MachineDominatorTree *MDT;
103 
104   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
105                                   MachineInstr &CopyDefI);
106 
107   unsigned promoteCondToReg(MachineBasicBlock &MBB,
108                             MachineBasicBlock::iterator TestPos,
109                             DebugLoc TestLoc, X86::CondCode Cond);
110   std::pair<unsigned, bool>
111   getCondOrInverseInReg(MachineBasicBlock &TestMBB,
112                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
113                         X86::CondCode Cond, CondRegArray &CondRegs);
114   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
115                   DebugLoc Loc, unsigned Reg);
116 
117   void rewriteArithmetic(MachineBasicBlock &TestMBB,
118                          MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
119                          MachineInstr &MI, MachineOperand &FlagUse,
120                          CondRegArray &CondRegs);
121   void rewriteCMov(MachineBasicBlock &TestMBB,
122                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
123                    MachineInstr &CMovI, MachineOperand &FlagUse,
124                    CondRegArray &CondRegs);
125   void rewriteCondJmp(MachineBasicBlock &TestMBB,
126                       MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
127                       MachineInstr &JmpI, CondRegArray &CondRegs);
128   void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
129                    MachineInstr &CopyDefI);
130   void rewriteSetCC(MachineBasicBlock &TestMBB,
131                     MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
132                     MachineInstr &SetCCI, MachineOperand &FlagUse,
133                     CondRegArray &CondRegs);
134 };
135 
136 } // end anonymous namespace
137 
138 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
139                       "X86 EFLAGS copy lowering", false, false)
140 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
141                     "X86 EFLAGS copy lowering", false, false)
142 
143 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
144   return new X86FlagsCopyLoweringPass();
145 }
146 
147 char X86FlagsCopyLoweringPass::ID = 0;
148 
149 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
150   AU.addRequired<MachineDominatorTree>();
151   MachineFunctionPass::getAnalysisUsage(AU);
152 }
153 
154 namespace {
155 /// An enumeration of the arithmetic instruction mnemonics which have
156 /// interesting flag semantics.
157 ///
158 /// We can map instruction opcodes into these mnemonics to make it easy to
159 /// dispatch with specific functionality.
160 enum class FlagArithMnemonic {
161   ADC,
162   ADCX,
163   ADOX,
164   RCL,
165   RCR,
166   SBB,
167 };
168 } // namespace
169 
170 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
171   switch (Opcode) {
172   default:
173     report_fatal_error("No support for lowering a copy into EFLAGS when used "
174                        "by this instruction!");
175 
176 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
177   case X86::MNEMONIC##8##SUFFIX:                                               \
178   case X86::MNEMONIC##16##SUFFIX:                                              \
179   case X86::MNEMONIC##32##SUFFIX:                                              \
180   case X86::MNEMONIC##64##SUFFIX:
181 
182 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
183   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
184   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
185   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
186   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
187   case X86::MNEMONIC##8ri:                                                     \
188   case X86::MNEMONIC##16ri8:                                                   \
189   case X86::MNEMONIC##32ri8:                                                   \
190   case X86::MNEMONIC##64ri8:                                                   \
191   case X86::MNEMONIC##16ri:                                                    \
192   case X86::MNEMONIC##32ri:                                                    \
193   case X86::MNEMONIC##64ri32:                                                  \
194   case X86::MNEMONIC##8mi:                                                     \
195   case X86::MNEMONIC##16mi8:                                                   \
196   case X86::MNEMONIC##32mi8:                                                   \
197   case X86::MNEMONIC##64mi8:                                                   \
198   case X86::MNEMONIC##16mi:                                                    \
199   case X86::MNEMONIC##32mi:                                                    \
200   case X86::MNEMONIC##64mi32:                                                  \
201   case X86::MNEMONIC##8i8:                                                     \
202   case X86::MNEMONIC##16i16:                                                   \
203   case X86::MNEMONIC##32i32:                                                   \
204   case X86::MNEMONIC##64i32:
205 
206     LLVM_EXPAND_ADC_SBB_INSTR(ADC)
207     return FlagArithMnemonic::ADC;
208 
209     LLVM_EXPAND_ADC_SBB_INSTR(SBB)
210     return FlagArithMnemonic::SBB;
211 
212 #undef LLVM_EXPAND_ADC_SBB_INSTR
213 
214     LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
215     LLVM_EXPAND_INSTR_SIZES(RCL, r1)
216     LLVM_EXPAND_INSTR_SIZES(RCL, ri)
217     return FlagArithMnemonic::RCL;
218 
219     LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
220     LLVM_EXPAND_INSTR_SIZES(RCR, r1)
221     LLVM_EXPAND_INSTR_SIZES(RCR, ri)
222     return FlagArithMnemonic::RCR;
223 
224 #undef LLVM_EXPAND_INSTR_SIZES
225 
226   case X86::ADCX32rr:
227   case X86::ADCX64rr:
228   case X86::ADCX32rm:
229   case X86::ADCX64rm:
230     return FlagArithMnemonic::ADCX;
231 
232   case X86::ADOX32rr:
233   case X86::ADOX64rr:
234   case X86::ADOX32rm:
235   case X86::ADOX64rm:
236     return FlagArithMnemonic::ADOX;
237   }
238 }
239 
240 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
241                                      MachineInstr &SplitI,
242                                      const X86InstrInfo &TII) {
243   MachineFunction &MF = *MBB.getParent();
244 
245   assert(SplitI.getParent() == &MBB &&
246          "Split instruction must be in the split block!");
247   assert(SplitI.isBranch() &&
248          "Only designed to split a tail of branch instructions!");
249   assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
250          "Must split on an actual jCC instruction!");
251 
252   // Dig out the previous instruction to the split point.
253   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
254   assert(PrevI.isBranch() && "Must split after a branch!");
255   assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
256          "Must split after an actual jCC instruction!");
257   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
258          "Must only have this one terminator prior to the split!");
259 
260   // Grab the one successor edge that will stay in `MBB`.
261   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
262 
263   // Analyze the original block to see if we are actually splitting an edge
264   // into two edges. This can happen when we have multiple conditional jumps to
265   // the same successor.
266   bool IsEdgeSplit =
267       std::any_of(SplitI.getIterator(), MBB.instr_end(),
268                   [&](MachineInstr &MI) {
269                     assert(MI.isTerminator() &&
270                            "Should only have spliced terminators!");
271                     return llvm::any_of(
272                         MI.operands(), [&](MachineOperand &MOp) {
273                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
274                         });
275                   }) ||
276       MBB.getFallThrough() == &UnsplitSucc;
277 
278   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
279 
280   // Insert the new block immediately after the current one. Any existing
281   // fallthrough will be sunk into this new block anyways.
282   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
283 
284   // Splice the tail of instructions into the new block.
285   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
286 
287   // Copy the necessary succesors (and their probability info) into the new
288   // block.
289   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
290     if (IsEdgeSplit || *SI != &UnsplitSucc)
291       NewMBB.copySuccessor(&MBB, SI);
292   // Normalize the probabilities if we didn't end up splitting the edge.
293   if (!IsEdgeSplit)
294     NewMBB.normalizeSuccProbs();
295 
296   // Now replace all of the moved successors in the original block with the new
297   // block. This will merge their probabilities.
298   for (MachineBasicBlock *Succ : NewMBB.successors())
299     if (Succ != &UnsplitSucc)
300       MBB.replaceSuccessor(Succ, &NewMBB);
301 
302   // We should always end up replacing at least one successor.
303   assert(MBB.isSuccessor(&NewMBB) &&
304          "Failed to make the new block a successor!");
305 
306   // Now update all the PHIs.
307   for (MachineBasicBlock *Succ : NewMBB.successors()) {
308     for (MachineInstr &MI : *Succ) {
309       if (!MI.isPHI())
310         break;
311 
312       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
313            OpIdx += 2) {
314         MachineOperand &OpV = MI.getOperand(OpIdx);
315         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
316         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
317         if (OpMBB.getMBB() != &MBB)
318           continue;
319 
320         // Replace the operand for unsplit successors
321         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
322           OpMBB.setMBB(&NewMBB);
323 
324           // We have to continue scanning as there may be multiple entries in
325           // the PHI.
326           continue;
327         }
328 
329         // When we have split the edge append a new successor.
330         MI.addOperand(MF, OpV);
331         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
332         break;
333       }
334     }
335   }
336 
337   return NewMBB;
338 }
339 
340 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
341   DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
342                << " **********\n");
343 
344   auto &Subtarget = MF.getSubtarget<X86Subtarget>();
345   MRI = &MF.getRegInfo();
346   TII = Subtarget.getInstrInfo();
347   TRI = Subtarget.getRegisterInfo();
348   MDT = &getAnalysis<MachineDominatorTree>();
349   PromoteRC = &X86::GR8RegClass;
350 
351   if (MF.begin() == MF.end())
352     // Nothing to do for a degenerate empty function...
353     return false;
354 
355   SmallVector<MachineInstr *, 4> Copies;
356   for (MachineBasicBlock &MBB : MF)
357     for (MachineInstr &MI : MBB)
358       if (MI.getOpcode() == TargetOpcode::COPY &&
359           MI.getOperand(0).getReg() == X86::EFLAGS)
360         Copies.push_back(&MI);
361 
362   for (MachineInstr *CopyI : Copies) {
363     MachineBasicBlock &MBB = *CopyI->getParent();
364 
365     MachineOperand &VOp = CopyI->getOperand(1);
366     assert(VOp.isReg() &&
367            "The input to the copy for EFLAGS should always be a register!");
368     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
369     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
370       // FIXME: The big likely candidate here are PHI nodes. We could in theory
371       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
372       // enough that it is probably better to change every other part of LLVM
373       // to avoid creating them. The issue is that once we have PHIs we won't
374       // know which original EFLAGS value we need to capture with our setCCs
375       // below. The end result will be computing a complete set of setCCs that
376       // we *might* want, computing them in every place where we copy *out* of
377       // EFLAGS and then doing SSA formation on all of them to insert necessary
378       // PHI nodes and consume those here. Then hoping that somehow we DCE the
379       // unnecessary ones. This DCE seems very unlikely to be successful and so
380       // we will almost certainly end up with a glut of dead setCC
381       // instructions. Until we have a motivating test case and fail to avoid
382       // it by changing other parts of LLVM's lowering, we refuse to handle
383       // this complex case here.
384       DEBUG(dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
385             CopyDefI.dump());
386       report_fatal_error(
387           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
388     }
389 
390     auto Cleanup = make_scope_exit([&] {
391       // All uses of the EFLAGS copy are now rewritten, kill the copy into
392       // eflags and if dead the copy from.
393       CopyI->eraseFromParent();
394       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
395         CopyDefI.eraseFromParent();
396       ++NumCopiesEliminated;
397     });
398 
399     MachineOperand &DOp = CopyI->getOperand(0);
400     assert(DOp.isDef() && "Expected register def!");
401     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
402     if (DOp.isDead())
403       continue;
404 
405     MachineBasicBlock &TestMBB = *CopyDefI.getParent();
406     auto TestPos = CopyDefI.getIterator();
407     DebugLoc TestLoc = CopyDefI.getDebugLoc();
408 
409     DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
410 
411     // Scan for usage of newly set EFLAGS so we can rewrite them. We just buffer
412     // jumps because their usage is very constrained.
413     bool FlagsKilled = false;
414     SmallVector<MachineInstr *, 4> JmpIs;
415 
416     // Gather the condition flags that have already been preserved in
417     // registers. We do this from scratch each time as we expect there to be
418     // very few of them and we expect to not revisit the same copy definition
419     // many times. If either of those change sufficiently we could build a map
420     // of these up front instead.
421     CondRegArray CondRegs = collectCondsInRegs(TestMBB, CopyDefI);
422 
423     // Collect the basic blocks we need to scan. Typically this will just be
424     // a single basic block but we may have to scan multiple blocks if the
425     // EFLAGS copy lives into successors.
426     SmallVector<MachineBasicBlock *, 2> Blocks;
427     SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
428     Blocks.push_back(&MBB);
429     VisitedBlocks.insert(&MBB);
430 
431     do {
432       MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
433 
434       // We currently don't do any PHI insertion and so we require that the
435       // test basic block dominates all of the use basic blocks.
436       //
437       // We could in theory do PHI insertion here if it becomes useful by just
438       // taking undef values in along every edge that we don't trace this
439       // EFLAGS copy along. This isn't as bad as fully general PHI insertion,
440       // but still seems like a great deal of complexity.
441       //
442       // Because it is theoretically possible that some earlier MI pass or
443       // other lowering transformation could induce this to happen, we do
444       // a hard check even in non-debug builds here.
445       if (&TestMBB != &UseMBB && !MDT->dominates(&TestMBB, &UseMBB)) {
446         DEBUG({
447           dbgs() << "ERROR: Encountered use that is not dominated by our test "
448                     "basic block! Rewriting this would require inserting PHI "
449                     "nodes to track the flag state across the CFG.\n\nTest "
450                     "block:\n";
451           TestMBB.dump();
452           dbgs() << "Use block:\n";
453           UseMBB.dump();
454         });
455         report_fatal_error("Cannot lower EFLAGS copy when original copy def "
456                            "does not dominate all uses.");
457       }
458 
459       for (auto MII = &UseMBB == &MBB ? std::next(CopyI->getIterator())
460                                       : UseMBB.instr_begin(),
461                 MIE = UseMBB.instr_end();
462            MII != MIE;) {
463         MachineInstr &MI = *MII++;
464         MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
465         if (!FlagUse) {
466           if (MI.findRegisterDefOperand(X86::EFLAGS)) {
467             // If EFLAGS are defined, it's as-if they were killed. We can stop
468             // scanning here.
469             //
470             // NB!!! Many instructions only modify some flags. LLVM currently
471             // models this as clobbering all flags, but if that ever changes
472             // this will need to be carefully updated to handle that more
473             // complex logic.
474             FlagsKilled = true;
475             break;
476           }
477           continue;
478         }
479 
480         DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
481 
482         // Check the kill flag before we rewrite as that may change it.
483         if (FlagUse->isKill())
484           FlagsKilled = true;
485 
486         // Once we encounter a branch, the rest of the instructions must also be
487         // branches. We can't rewrite in place here, so we handle them below.
488         //
489         // Note that we don't have to handle tail calls here, even conditional
490         // tail calls, as those are not introduced into the X86 MI until post-RA
491         // branch folding or black placement. As a consequence, we get to deal
492         // with the simpler formulation of conditional branches followed by tail
493         // calls.
494         if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
495           auto JmpIt = MI.getIterator();
496           do {
497             JmpIs.push_back(&*JmpIt);
498             ++JmpIt;
499           } while (JmpIt != UseMBB.instr_end() &&
500                    X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
501                        X86::COND_INVALID);
502           break;
503         }
504 
505         // Otherwise we can just rewrite in-place.
506         if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
507           rewriteCMov(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
508         } else if (X86::getCondFromSETOpc(MI.getOpcode()) !=
509                    X86::COND_INVALID) {
510           rewriteSetCC(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
511         } else if (MI.getOpcode() == TargetOpcode::COPY) {
512           rewriteCopy(MI, *FlagUse, CopyDefI);
513         } else {
514           // We assume that arithmetic instructions that use flags also def
515           // them.
516           assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
517                  "Expected a def of EFLAGS for this instruction!");
518 
519           // NB!!! Several arithmetic instructions only *partially* update
520           // flags. Theoretically, we could generate MI code sequences that
521           // would rely on this fact and observe different flags independently.
522           // But currently LLVM models all of these instructions as clobbering
523           // all the flags in an undef way. We rely on that to simplify the
524           // logic.
525           FlagsKilled = true;
526 
527           rewriteArithmetic(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
528           break;
529         }
530 
531         // If this was the last use of the flags, we're done.
532         if (FlagsKilled)
533           break;
534       }
535 
536       // If the flags were killed, we're done with this block.
537       if (FlagsKilled)
538         break;
539 
540       // Otherwise we need to scan successors for ones where the flags live-in
541       // and queue those up for processing.
542       for (MachineBasicBlock *SuccMBB : UseMBB.successors())
543         if (SuccMBB->isLiveIn(X86::EFLAGS) &&
544             VisitedBlocks.insert(SuccMBB).second)
545           Blocks.push_back(SuccMBB);
546     } while (!Blocks.empty());
547 
548     // Now rewrite the jumps that use the flags. These we handle specially
549     // because if there are multiple jumps in a single basic block we'll have
550     // to do surgery on the CFG.
551     MachineBasicBlock *LastJmpMBB = nullptr;
552     for (MachineInstr *JmpI : JmpIs) {
553       // Past the first jump within a basic block we need to split the blocks
554       // apart.
555       if (JmpI->getParent() == LastJmpMBB)
556         splitBlock(*JmpI->getParent(), *JmpI, *TII);
557       else
558         LastJmpMBB = JmpI->getParent();
559 
560       rewriteCondJmp(TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
561     }
562 
563     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
564     // the copy's def operand is itself a kill.
565   }
566 
567 #ifndef NDEBUG
568   for (MachineBasicBlock &MBB : MF)
569     for (MachineInstr &MI : MBB)
570       if (MI.getOpcode() == TargetOpcode::COPY &&
571           (MI.getOperand(0).getReg() == X86::EFLAGS ||
572            MI.getOperand(1).getReg() == X86::EFLAGS)) {
573         DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; MI.dump());
574         llvm_unreachable("Unlowered EFLAGS copy!");
575       }
576 #endif
577 
578   return true;
579 }
580 
581 /// Collect any conditions that have already been set in registers so that we
582 /// can re-use them rather than adding duplicates.
583 CondRegArray
584 X86FlagsCopyLoweringPass::collectCondsInRegs(MachineBasicBlock &MBB,
585                                              MachineInstr &CopyDefI) {
586   CondRegArray CondRegs = {};
587 
588   // Scan backwards across the range of instructions with live EFLAGS.
589   for (MachineInstr &MI : llvm::reverse(
590            llvm::make_range(MBB.instr_begin(), CopyDefI.getIterator()))) {
591     X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
592     if (Cond != X86::COND_INVALID && MI.getOperand(0).isReg() &&
593         TRI->isVirtualRegister(MI.getOperand(0).getReg()))
594       CondRegs[Cond] = MI.getOperand(0).getReg();
595 
596     // Stop scanning when we see the first definition of the EFLAGS as prior to
597     // this we would potentially capture the wrong flag state.
598     if (MI.findRegisterDefOperand(X86::EFLAGS))
599       break;
600   }
601   return CondRegs;
602 }
603 
604 unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
605     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
606     DebugLoc TestLoc, X86::CondCode Cond) {
607   unsigned Reg = MRI->createVirtualRegister(PromoteRC);
608   auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
609                       TII->get(X86::getSETFromCond(Cond)), Reg);
610   (void)SetI;
611   DEBUG(dbgs() << "    save cond: "; SetI->dump());
612   ++NumSetCCsInserted;
613   return Reg;
614 }
615 
616 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
617     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
618     DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
619   unsigned &CondReg = CondRegs[Cond];
620   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
621   if (!CondReg && !InvCondReg)
622     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
623 
624   if (CondReg)
625     return {CondReg, false};
626   else
627     return {InvCondReg, true};
628 }
629 
630 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
631                                           MachineBasicBlock::iterator Pos,
632                                           DebugLoc Loc, unsigned Reg) {
633   // We emit test instructions as register/immediate test against -1. This
634   // allows register allocation to fold a memory operand if needed (that will
635   // happen often due to the places this code is emitted). But hopefully will
636   // also allow us to select a shorter encoding of `testb %reg, %reg` when that
637   // would be equivalent.
638   auto TestI =
639       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
640   (void)TestI;
641   DEBUG(dbgs() << "    test cond: "; TestI->dump());
642   ++NumTestsInserted;
643 }
644 
645 void X86FlagsCopyLoweringPass::rewriteArithmetic(
646     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
647     DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
648     CondRegArray &CondRegs) {
649   // Arithmetic is either reading CF or OF. Figure out which condition we need
650   // to preserve in a register.
651   X86::CondCode Cond;
652 
653   // The addend to use to reset CF or OF when added to the flag value.
654   int Addend;
655 
656   switch (getMnemonicFromOpcode(MI.getOpcode())) {
657   case FlagArithMnemonic::ADC:
658   case FlagArithMnemonic::ADCX:
659   case FlagArithMnemonic::RCL:
660   case FlagArithMnemonic::RCR:
661   case FlagArithMnemonic::SBB:
662     Cond = X86::COND_B; // CF == 1
663     // Set up an addend that when one is added will need a carry due to not
664     // having a higher bit available.
665     Addend = 255;
666     break;
667 
668   case FlagArithMnemonic::ADOX:
669     Cond = X86::COND_O; // OF == 1
670     // Set up an addend that when one is added will turn from positive to
671     // negative and thus overflow in the signed domain.
672     Addend = 127;
673     break;
674   }
675 
676   // Now get a register that contains the value of the flag input to the
677   // arithmetic. We require exactly this flag to simplify the arithmetic
678   // required to materialize it back into the flag.
679   unsigned &CondReg = CondRegs[Cond];
680   if (!CondReg)
681     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
682 
683   MachineBasicBlock &MBB = *MI.getParent();
684 
685   // Insert an instruction that will set the flag back to the desired value.
686   unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
687   auto AddI =
688       BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
689           .addDef(TmpReg, RegState::Dead)
690           .addReg(CondReg)
691           .addImm(Addend);
692   (void)AddI;
693   DEBUG(dbgs() << "    add cond: "; AddI->dump());
694   ++NumAddsInserted;
695   FlagUse.setIsKill(true);
696 }
697 
698 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
699                                            MachineBasicBlock::iterator TestPos,
700                                            DebugLoc TestLoc,
701                                            MachineInstr &CMovI,
702                                            MachineOperand &FlagUse,
703                                            CondRegArray &CondRegs) {
704   // First get the register containing this specific condition.
705   X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
706   unsigned CondReg;
707   bool Inverted;
708   std::tie(CondReg, Inverted) =
709       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
710 
711   MachineBasicBlock &MBB = *CMovI.getParent();
712 
713   // Insert a direct test of the saved register.
714   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
715 
716   // Rewrite the CMov to use the !ZF flag from the test (but match register
717   // size and memory operand), and then kill its use of the flags afterward.
718   auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
719   CMovI.setDesc(TII->get(X86::getCMovFromCond(
720       Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
721       !CMovI.memoperands_empty())));
722   FlagUse.setIsKill(true);
723   DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
724 }
725 
726 void X86FlagsCopyLoweringPass::rewriteCondJmp(
727     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
728     DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
729   // First get the register containing this specific condition.
730   X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
731   unsigned CondReg;
732   bool Inverted;
733   std::tie(CondReg, Inverted) =
734       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
735 
736   MachineBasicBlock &JmpMBB = *JmpI.getParent();
737 
738   // Insert a direct test of the saved register.
739   insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
740 
741   // Rewrite the jump to use the !ZF flag from the test, and kill its use of
742   // flags afterward.
743   JmpI.setDesc(TII->get(
744       X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
745   const int ImplicitEFLAGSOpIdx = 1;
746   JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
747   DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
748 }
749 
750 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
751                                            MachineOperand &FlagUse,
752                                            MachineInstr &CopyDefI) {
753   // Just replace this copy with the original copy def.
754   MRI->replaceRegWith(MI.getOperand(0).getReg(),
755                       CopyDefI.getOperand(0).getReg());
756   MI.eraseFromParent();
757 }
758 
759 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
760                                             MachineBasicBlock::iterator TestPos,
761                                             DebugLoc TestLoc,
762                                             MachineInstr &SetCCI,
763                                             MachineOperand &FlagUse,
764                                             CondRegArray &CondRegs) {
765   X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
766   // Note that we can't usefully rewrite this to the inverse without complex
767   // analysis of the users of the setCC. Largely we rely on duplicates which
768   // could have been avoided already being avoided here.
769   unsigned &CondReg = CondRegs[Cond];
770   if (!CondReg)
771     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
772 
773   // Rewriting a register def is trivial: we just replace the register and
774   // remove the setcc.
775   if (!SetCCI.mayStore()) {
776     assert(SetCCI.getOperand(0).isReg() &&
777            "Cannot have a non-register defined operand to SETcc!");
778     MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
779     SetCCI.eraseFromParent();
780     return;
781   }
782 
783   // Otherwise, we need to emit a store.
784   auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
785                      SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
786   // Copy the address operands.
787   for (int i = 0; i < X86::AddrNumOperands; ++i)
788     MIB.add(SetCCI.getOperand(i));
789 
790   MIB.addReg(CondReg);
791 
792   MIB->setMemRefs(SetCCI.memoperands_begin(), SetCCI.memoperands_end());
793 
794   SetCCI.eraseFromParent();
795   return;
796 }
797