1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
12 /// flag bits.
13 ///
14 /// We have to do this by carefully analyzing and rewriting the usage of the
15 /// copied EFLAGS register because there is no general way to rematerialize the
16 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
17 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
18 /// and other non-status flags being overwritten. Using sequences involving
19 /// SAHF don't work on all x86 processors and are often quite slow compared to
20 /// directly testing a single status preserved in its own GPR.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "X86.h"
25 #include "X86InstrBuilder.h"
26 #include "X86InstrInfo.h"
27 #include "X86Subtarget.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/ScopeExit.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineConstantPool.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/MachineSSAUpdater.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/MC/MCSchedule.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 #define PASS_KEY "x86-flags-copy-lowering"
65 #define DEBUG_TYPE PASS_KEY
66 
67 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
68 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
69 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
70 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
71 
72 namespace llvm {
73 
74 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
75 
76 } // end namespace llvm
77 
78 namespace {
79 
80 // Convenient array type for storing registers associated with each condition.
81 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
82 
83 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
84 public:
85   X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) {
86     initializeX86FlagsCopyLoweringPassPass(*PassRegistry::getPassRegistry());
87   }
88 
89   StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
90   bool runOnMachineFunction(MachineFunction &MF) override;
91   void getAnalysisUsage(AnalysisUsage &AU) const override;
92 
93   /// Pass identification, replacement for typeid.
94   static char ID;
95 
96 private:
97   MachineRegisterInfo *MRI;
98   const X86InstrInfo *TII;
99   const TargetRegisterInfo *TRI;
100   const TargetRegisterClass *PromoteRC;
101 
102   CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
103                                   MachineInstr &CopyDefI);
104 
105   unsigned promoteCondToReg(MachineBasicBlock &MBB,
106                             MachineBasicBlock::iterator TestPos,
107                             DebugLoc TestLoc, X86::CondCode Cond);
108   std::pair<unsigned, bool>
109   getCondOrInverseInReg(MachineBasicBlock &TestMBB,
110                         MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
111                         X86::CondCode Cond, CondRegArray &CondRegs);
112   void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
113                   DebugLoc Loc, unsigned Reg);
114 
115   void rewriteArithmetic(MachineBasicBlock &TestMBB,
116                          MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
117                          MachineInstr &MI, MachineOperand &FlagUse,
118                          CondRegArray &CondRegs);
119   void rewriteCMov(MachineBasicBlock &TestMBB,
120                    MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
121                    MachineInstr &CMovI, MachineOperand &FlagUse,
122                    CondRegArray &CondRegs);
123   void rewriteCondJmp(MachineBasicBlock &TestMBB,
124                       MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
125                       MachineInstr &JmpI, CondRegArray &CondRegs);
126   void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
127                    MachineInstr &CopyDefI);
128   void rewriteSetCC(MachineBasicBlock &TestMBB,
129                     MachineBasicBlock::iterator TestPos, DebugLoc TestLoc,
130                     MachineInstr &SetCCI, MachineOperand &FlagUse,
131                     CondRegArray &CondRegs);
132 };
133 
134 } // end anonymous namespace
135 
136 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
137                       "X86 EFLAGS copy lowering", false, false)
138 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
139                     "X86 EFLAGS copy lowering", false, false)
140 
141 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
142   return new X86FlagsCopyLoweringPass();
143 }
144 
145 char X86FlagsCopyLoweringPass::ID = 0;
146 
147 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
148   MachineFunctionPass::getAnalysisUsage(AU);
149 }
150 
151 namespace {
152 /// An enumeration of the arithmetic instruction mnemonics which have
153 /// interesting flag semantics.
154 ///
155 /// We can map instruction opcodes into these mnemonics to make it easy to
156 /// dispatch with specific functionality.
157 enum class FlagArithMnemonic {
158   ADC,
159   ADCX,
160   ADOX,
161   RCL,
162   RCR,
163   SBB,
164 };
165 } // namespace
166 
167 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
168   switch (Opcode) {
169   default:
170     report_fatal_error("No support for lowering a copy into EFLAGS when used "
171                        "by this instruction!");
172 
173 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX)                              \
174   case X86::MNEMONIC##8##SUFFIX:                                               \
175   case X86::MNEMONIC##16##SUFFIX:                                              \
176   case X86::MNEMONIC##32##SUFFIX:                                              \
177   case X86::MNEMONIC##64##SUFFIX:
178 
179 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC)                                    \
180   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr)                                        \
181   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV)                                    \
182   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm)                                        \
183   LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr)                                        \
184   case X86::MNEMONIC##8ri:                                                     \
185   case X86::MNEMONIC##16ri8:                                                   \
186   case X86::MNEMONIC##32ri8:                                                   \
187   case X86::MNEMONIC##64ri8:                                                   \
188   case X86::MNEMONIC##16ri:                                                    \
189   case X86::MNEMONIC##32ri:                                                    \
190   case X86::MNEMONIC##64ri32:                                                  \
191   case X86::MNEMONIC##8mi:                                                     \
192   case X86::MNEMONIC##16mi8:                                                   \
193   case X86::MNEMONIC##32mi8:                                                   \
194   case X86::MNEMONIC##64mi8:                                                   \
195   case X86::MNEMONIC##16mi:                                                    \
196   case X86::MNEMONIC##32mi:                                                    \
197   case X86::MNEMONIC##64mi32:                                                  \
198   case X86::MNEMONIC##8i8:                                                     \
199   case X86::MNEMONIC##16i16:                                                   \
200   case X86::MNEMONIC##32i32:                                                   \
201   case X86::MNEMONIC##64i32:
202 
203     LLVM_EXPAND_ADC_SBB_INSTR(ADC)
204     return FlagArithMnemonic::ADC;
205 
206     LLVM_EXPAND_ADC_SBB_INSTR(SBB)
207     return FlagArithMnemonic::SBB;
208 
209 #undef LLVM_EXPAND_ADC_SBB_INSTR
210 
211     LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
212     LLVM_EXPAND_INSTR_SIZES(RCL, r1)
213     LLVM_EXPAND_INSTR_SIZES(RCL, ri)
214     return FlagArithMnemonic::RCL;
215 
216     LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
217     LLVM_EXPAND_INSTR_SIZES(RCR, r1)
218     LLVM_EXPAND_INSTR_SIZES(RCR, ri)
219     return FlagArithMnemonic::RCR;
220 
221 #undef LLVM_EXPAND_INSTR_SIZES
222 
223   case X86::ADCX32rr:
224   case X86::ADCX64rr:
225   case X86::ADCX32rm:
226   case X86::ADCX64rm:
227     return FlagArithMnemonic::ADCX;
228 
229   case X86::ADOX32rr:
230   case X86::ADOX64rr:
231   case X86::ADOX32rm:
232   case X86::ADOX64rm:
233     return FlagArithMnemonic::ADOX;
234   }
235 }
236 
237 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
238                                      MachineInstr &SplitI,
239                                      const X86InstrInfo &TII) {
240   MachineFunction &MF = *MBB.getParent();
241 
242   assert(SplitI.getParent() == &MBB &&
243          "Split instruction must be in the split block!");
244   assert(SplitI.isBranch() &&
245          "Only designed to split a tail of branch instructions!");
246   assert(X86::getCondFromBranchOpc(SplitI.getOpcode()) != X86::COND_INVALID &&
247          "Must split on an actual jCC instruction!");
248 
249   // Dig out the previous instruction to the split point.
250   MachineInstr &PrevI = *std::prev(SplitI.getIterator());
251   assert(PrevI.isBranch() && "Must split after a branch!");
252   assert(X86::getCondFromBranchOpc(PrevI.getOpcode()) != X86::COND_INVALID &&
253          "Must split after an actual jCC instruction!");
254   assert(!std::prev(PrevI.getIterator())->isTerminator() &&
255          "Must only have this one terminator prior to the split!");
256 
257   // Grab the one successor edge that will stay in `MBB`.
258   MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
259 
260   // Analyze the original block to see if we are actually splitting an edge
261   // into two edges. This can happen when we have multiple conditional jumps to
262   // the same successor.
263   bool IsEdgeSplit =
264       std::any_of(SplitI.getIterator(), MBB.instr_end(),
265                   [&](MachineInstr &MI) {
266                     assert(MI.isTerminator() &&
267                            "Should only have spliced terminators!");
268                     return llvm::any_of(
269                         MI.operands(), [&](MachineOperand &MOp) {
270                           return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
271                         });
272                   }) ||
273       MBB.getFallThrough() == &UnsplitSucc;
274 
275   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
276 
277   // Insert the new block immediately after the current one. Any existing
278   // fallthrough will be sunk into this new block anyways.
279   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
280 
281   // Splice the tail of instructions into the new block.
282   NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
283 
284   // Copy the necessary succesors (and their probability info) into the new
285   // block.
286   for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
287     if (IsEdgeSplit || *SI != &UnsplitSucc)
288       NewMBB.copySuccessor(&MBB, SI);
289   // Normalize the probabilities if we didn't end up splitting the edge.
290   if (!IsEdgeSplit)
291     NewMBB.normalizeSuccProbs();
292 
293   // Now replace all of the moved successors in the original block with the new
294   // block. This will merge their probabilities.
295   for (MachineBasicBlock *Succ : NewMBB.successors())
296     if (Succ != &UnsplitSucc)
297       MBB.replaceSuccessor(Succ, &NewMBB);
298 
299   // We should always end up replacing at least one successor.
300   assert(MBB.isSuccessor(&NewMBB) &&
301          "Failed to make the new block a successor!");
302 
303   // Now update all the PHIs.
304   for (MachineBasicBlock *Succ : NewMBB.successors()) {
305     for (MachineInstr &MI : *Succ) {
306       if (!MI.isPHI())
307         break;
308 
309       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
310            OpIdx += 2) {
311         MachineOperand &OpV = MI.getOperand(OpIdx);
312         MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
313         assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
314         if (OpMBB.getMBB() != &MBB)
315           continue;
316 
317         // Replace the operand for unsplit successors
318         if (!IsEdgeSplit || Succ != &UnsplitSucc) {
319           OpMBB.setMBB(&NewMBB);
320 
321           // We have to continue scanning as there may be multiple entries in
322           // the PHI.
323           continue;
324         }
325 
326         // When we have split the edge append a new successor.
327         MI.addOperand(MF, OpV);
328         MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
329         break;
330       }
331     }
332   }
333 
334   return NewMBB;
335 }
336 
337 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
338   DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
339                << " **********\n");
340 
341   auto &Subtarget = MF.getSubtarget<X86Subtarget>();
342   MRI = &MF.getRegInfo();
343   TII = Subtarget.getInstrInfo();
344   TRI = Subtarget.getRegisterInfo();
345   PromoteRC = &X86::GR8RegClass;
346 
347   if (MF.begin() == MF.end())
348     // Nothing to do for a degenerate empty function...
349     return false;
350 
351   SmallVector<MachineInstr *, 4> Copies;
352   for (MachineBasicBlock &MBB : MF)
353     for (MachineInstr &MI : MBB)
354       if (MI.getOpcode() == TargetOpcode::COPY &&
355           MI.getOperand(0).getReg() == X86::EFLAGS)
356         Copies.push_back(&MI);
357 
358   for (MachineInstr *CopyI : Copies) {
359     MachineBasicBlock &MBB = *CopyI->getParent();
360 
361     MachineOperand &VOp = CopyI->getOperand(1);
362     assert(VOp.isReg() &&
363            "The input to the copy for EFLAGS should always be a register!");
364     MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
365     if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
366       // FIXME: The big likely candidate here are PHI nodes. We could in theory
367       // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
368       // enough that it is probably better to change every other part of LLVM
369       // to avoid creating them. The issue is that once we have PHIs we won't
370       // know which original EFLAGS value we need to capture with our setCCs
371       // below. The end result will be computing a complete set of setCCs that
372       // we *might* want, computing them in every place where we copy *out* of
373       // EFLAGS and then doing SSA formation on all of them to insert necessary
374       // PHI nodes and consume those here. Then hoping that somehow we DCE the
375       // unnecessary ones. This DCE seems very unlikely to be successful and so
376       // we will almost certainly end up with a glut of dead setCC
377       // instructions. Until we have a motivating test case and fail to avoid
378       // it by changing other parts of LLVM's lowering, we refuse to handle
379       // this complex case here.
380       DEBUG(dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
381             CopyDefI.dump());
382       report_fatal_error(
383           "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
384     }
385 
386     auto Cleanup = make_scope_exit([&] {
387       // All uses of the EFLAGS copy are now rewritten, kill the copy into
388       // eflags and if dead the copy from.
389       CopyI->eraseFromParent();
390       if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
391         CopyDefI.eraseFromParent();
392       ++NumCopiesEliminated;
393     });
394 
395     MachineOperand &DOp = CopyI->getOperand(0);
396     assert(DOp.isDef() && "Expected register def!");
397     assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
398     if (DOp.isDead())
399       continue;
400 
401     MachineBasicBlock &TestMBB = *CopyDefI.getParent();
402     auto TestPos = CopyDefI.getIterator();
403     DebugLoc TestLoc = CopyDefI.getDebugLoc();
404 
405     DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
406 
407     // Scan for usage of newly set EFLAGS so we can rewrite them. We just buffer
408     // jumps because their usage is very constrained.
409     bool FlagsKilled = false;
410     SmallVector<MachineInstr *, 4> JmpIs;
411 
412     // Gather the condition flags that have already been preserved in
413     // registers. We do this from scratch each time as we expect there to be
414     // very few of them and we expect to not revisit the same copy definition
415     // many times. If either of those change sufficiently we could build a map
416     // of these up front instead.
417     CondRegArray CondRegs = collectCondsInRegs(TestMBB, CopyDefI);
418 
419     for (auto MII = std::next(CopyI->getIterator()), MIE = MBB.instr_end();
420          MII != MIE;) {
421       MachineInstr &MI = *MII++;
422       MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
423       if (!FlagUse) {
424         if (MI.findRegisterDefOperand(X86::EFLAGS)) {
425           // If EFLAGS are defined, it's as-if they were killed. We can stop
426           // scanning here.
427           //
428           // NB!!! Many instructions only modify some flags. LLVM currently
429           // models this as clobbering all flags, but if that ever changes this
430           // will need to be carefully updated to handle that more complex
431           // logic.
432           FlagsKilled = true;
433           break;
434         }
435         continue;
436       }
437 
438       DEBUG(dbgs() << "  Rewriting use: "; MI.dump());
439 
440       // Check the kill flag before we rewrite as that may change it.
441       if (FlagUse->isKill())
442         FlagsKilled = true;
443 
444       // Once we encounter a branch, the rest of the instructions must also be
445       // branches. We can't rewrite in place here, so we handle them below.
446       //
447       // Note that we don't have to handle tail calls here, even conditional
448       // tail calls, as those are not introduced into the X86 MI until post-RA
449       // branch folding or black placement. As a consequence, we get to deal
450       // with the simpler formulation of conditional branches followed by tail
451       // calls.
452       if (X86::getCondFromBranchOpc(MI.getOpcode()) != X86::COND_INVALID) {
453         auto JmpIt = MI.getIterator();
454         do {
455           JmpIs.push_back(&*JmpIt);
456           ++JmpIt;
457         } while (JmpIt != MBB.instr_end() &&
458                  X86::getCondFromBranchOpc(JmpIt->getOpcode()) !=
459                      X86::COND_INVALID);
460         break;
461       }
462 
463       // Otherwise we can just rewrite in-place.
464       if (X86::getCondFromCMovOpc(MI.getOpcode()) != X86::COND_INVALID) {
465         rewriteCMov(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
466       } else if (X86::getCondFromSETOpc(MI.getOpcode()) != X86::COND_INVALID) {
467         rewriteSetCC(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
468       } else if (MI.getOpcode() == TargetOpcode::COPY) {
469         rewriteCopy(MI, *FlagUse, CopyDefI);
470       } else {
471         // We assume that arithmetic instructions that use flags also def them.
472         assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
473                "Expected a def of EFLAGS for this instruction!");
474 
475         // NB!!! Several arithmetic instructions only *partially* update
476         // flags. Theoretically, we could generate MI code sequences that
477         // would rely on this fact and observe different flags independently.
478         // But currently LLVM models all of these instructions as clobbering
479         // all the flags in an undef way. We rely on that to simplify the
480         // logic.
481         FlagsKilled = true;
482 
483         rewriteArithmetic(TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
484         break;
485       }
486 
487       // If this was the last use of the flags, we're done.
488       if (FlagsKilled)
489         break;
490     }
491 
492     // If we didn't find a kill (or equivalent) check that the flags don't
493     // live-out of the basic block. Currently we don't support lowering copies
494     // of flags that live out in this fashion.
495     if (!FlagsKilled &&
496         llvm::any_of(MBB.successors(), [](MachineBasicBlock *SuccMBB) {
497           return SuccMBB->isLiveIn(X86::EFLAGS);
498         })) {
499       DEBUG({
500         dbgs() << "ERROR: Found a copied EFLAGS live-out from basic block:\n"
501                << "----\n";
502         MBB.dump();
503         dbgs() << "----\n"
504                << "ERROR: Cannot lower this EFLAGS copy!\n";
505       });
506       report_fatal_error(
507           "Cannot lower EFLAGS copy that lives out of a basic block!");
508     }
509 
510     // Now rewrite the jumps that use the flags. These we handle specially
511     // because if there are multiple jumps we'll have to do surgery on the CFG.
512     for (MachineInstr *JmpI : JmpIs) {
513       // Past the first jump we need to split the blocks apart.
514       if (JmpI != JmpIs.front())
515         splitBlock(*JmpI->getParent(), *JmpI, *TII);
516 
517       rewriteCondJmp(TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
518     }
519 
520     // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
521     // the copy's def operand is itself a kill.
522   }
523 
524 #ifndef NDEBUG
525   for (MachineBasicBlock &MBB : MF)
526     for (MachineInstr &MI : MBB)
527       if (MI.getOpcode() == TargetOpcode::COPY &&
528           (MI.getOperand(0).getReg() == X86::EFLAGS ||
529            MI.getOperand(1).getReg() == X86::EFLAGS)) {
530         DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: "; MI.dump());
531         llvm_unreachable("Unlowered EFLAGS copy!");
532       }
533 #endif
534 
535   return true;
536 }
537 
538 /// Collect any conditions that have already been set in registers so that we
539 /// can re-use them rather than adding duplicates.
540 CondRegArray
541 X86FlagsCopyLoweringPass::collectCondsInRegs(MachineBasicBlock &MBB,
542                                              MachineInstr &CopyDefI) {
543   CondRegArray CondRegs = {};
544 
545   // Scan backwards across the range of instructions with live EFLAGS.
546   for (MachineInstr &MI : llvm::reverse(
547            llvm::make_range(MBB.instr_begin(), CopyDefI.getIterator()))) {
548     X86::CondCode Cond = X86::getCondFromSETOpc(MI.getOpcode());
549     if (Cond != X86::COND_INVALID && MI.getOperand(0).isReg() &&
550         TRI->isVirtualRegister(MI.getOperand(0).getReg()))
551       CondRegs[Cond] = MI.getOperand(0).getReg();
552 
553     // Stop scanning when we see the first definition of the EFLAGS as prior to
554     // this we would potentially capture the wrong flag state.
555     if (MI.findRegisterDefOperand(X86::EFLAGS))
556       break;
557   }
558   return CondRegs;
559 }
560 
561 unsigned X86FlagsCopyLoweringPass::promoteCondToReg(
562     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
563     DebugLoc TestLoc, X86::CondCode Cond) {
564   unsigned Reg = MRI->createVirtualRegister(PromoteRC);
565   auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
566                       TII->get(X86::getSETFromCond(Cond)), Reg);
567   (void)SetI;
568   DEBUG(dbgs() << "    save cond: "; SetI->dump());
569   ++NumSetCCsInserted;
570   return Reg;
571 }
572 
573 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
574     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
575     DebugLoc TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
576   unsigned &CondReg = CondRegs[Cond];
577   unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
578   if (!CondReg && !InvCondReg)
579     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
580 
581   if (CondReg)
582     return {CondReg, false};
583   else
584     return {InvCondReg, true};
585 }
586 
587 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
588                                           MachineBasicBlock::iterator Pos,
589                                           DebugLoc Loc, unsigned Reg) {
590   // We emit test instructions as register/immediate test against -1. This
591   // allows register allocation to fold a memory operand if needed (that will
592   // happen often due to the places this code is emitted). But hopefully will
593   // also allow us to select a shorter encoding of `testb %reg, %reg` when that
594   // would be equivalent.
595   auto TestI =
596       BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8ri)).addReg(Reg).addImm(-1);
597   (void)TestI;
598   DEBUG(dbgs() << "    test cond: "; TestI->dump());
599   ++NumTestsInserted;
600 }
601 
602 void X86FlagsCopyLoweringPass::rewriteArithmetic(
603     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
604     DebugLoc TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
605     CondRegArray &CondRegs) {
606   // Arithmetic is either reading CF or OF. Figure out which condition we need
607   // to preserve in a register.
608   X86::CondCode Cond;
609 
610   // The addend to use to reset CF or OF when added to the flag value.
611   int Addend;
612 
613   switch (getMnemonicFromOpcode(MI.getOpcode())) {
614   case FlagArithMnemonic::ADC:
615   case FlagArithMnemonic::ADCX:
616   case FlagArithMnemonic::RCL:
617   case FlagArithMnemonic::RCR:
618   case FlagArithMnemonic::SBB:
619     Cond = X86::COND_B; // CF == 1
620     // Set up an addend that when one is added will need a carry due to not
621     // having a higher bit available.
622     Addend = 255;
623     break;
624 
625   case FlagArithMnemonic::ADOX:
626     Cond = X86::COND_O; // OF == 1
627     // Set up an addend that when one is added will turn from positive to
628     // negative and thus overflow in the signed domain.
629     Addend = 127;
630     break;
631   }
632 
633   // Now get a register that contains the value of the flag input to the
634   // arithmetic. We require exactly this flag to simplify the arithmetic
635   // required to materialize it back into the flag.
636   unsigned &CondReg = CondRegs[Cond];
637   if (!CondReg)
638     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
639 
640   MachineBasicBlock &MBB = *MI.getParent();
641 
642   // Insert an instruction that will set the flag back to the desired value.
643   unsigned TmpReg = MRI->createVirtualRegister(PromoteRC);
644   auto AddI =
645       BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
646           .addDef(TmpReg, RegState::Dead)
647           .addReg(CondReg)
648           .addImm(Addend);
649   (void)AddI;
650   DEBUG(dbgs() << "    add cond: "; AddI->dump());
651   ++NumAddsInserted;
652   FlagUse.setIsKill(true);
653 }
654 
655 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
656                                            MachineBasicBlock::iterator TestPos,
657                                            DebugLoc TestLoc,
658                                            MachineInstr &CMovI,
659                                            MachineOperand &FlagUse,
660                                            CondRegArray &CondRegs) {
661   // First get the register containing this specific condition.
662   X86::CondCode Cond = X86::getCondFromCMovOpc(CMovI.getOpcode());
663   unsigned CondReg;
664   bool Inverted;
665   std::tie(CondReg, Inverted) =
666       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
667 
668   MachineBasicBlock &MBB = *CMovI.getParent();
669 
670   // Insert a direct test of the saved register.
671   insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
672 
673   // Rewrite the CMov to use the !ZF flag from the test (but match register
674   // size and memory operand), and then kill its use of the flags afterward.
675   auto &CMovRC = *MRI->getRegClass(CMovI.getOperand(0).getReg());
676   CMovI.setDesc(TII->get(X86::getCMovFromCond(
677       Inverted ? X86::COND_E : X86::COND_NE, TRI->getRegSizeInBits(CMovRC) / 8,
678       !CMovI.memoperands_empty())));
679   FlagUse.setIsKill(true);
680   DEBUG(dbgs() << "    fixed cmov: "; CMovI.dump());
681 }
682 
683 void X86FlagsCopyLoweringPass::rewriteCondJmp(
684     MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
685     DebugLoc TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
686   // First get the register containing this specific condition.
687   X86::CondCode Cond = X86::getCondFromBranchOpc(JmpI.getOpcode());
688   unsigned CondReg;
689   bool Inverted;
690   std::tie(CondReg, Inverted) =
691       getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
692 
693   MachineBasicBlock &JmpMBB = *JmpI.getParent();
694 
695   // Insert a direct test of the saved register.
696   insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
697 
698   // Rewrite the jump to use the !ZF flag from the test, and kill its use of
699   // flags afterward.
700   JmpI.setDesc(TII->get(
701       X86::GetCondBranchFromCond(Inverted ? X86::COND_E : X86::COND_NE)));
702   const int ImplicitEFLAGSOpIdx = 1;
703   JmpI.getOperand(ImplicitEFLAGSOpIdx).setIsKill(true);
704   DEBUG(dbgs() << "    fixed jCC: "; JmpI.dump());
705 }
706 
707 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
708                                            MachineOperand &FlagUse,
709                                            MachineInstr &CopyDefI) {
710   // Just replace this copy with the the original copy def.
711   MRI->replaceRegWith(MI.getOperand(0).getReg(),
712                       CopyDefI.getOperand(0).getReg());
713   MI.eraseFromParent();
714 }
715 
716 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
717                                             MachineBasicBlock::iterator TestPos,
718                                             DebugLoc TestLoc,
719                                             MachineInstr &SetCCI,
720                                             MachineOperand &FlagUse,
721                                             CondRegArray &CondRegs) {
722   X86::CondCode Cond = X86::getCondFromSETOpc(SetCCI.getOpcode());
723   // Note that we can't usefully rewrite this to the inverse without complex
724   // analysis of the users of the setCC. Largely we rely on duplicates which
725   // could have been avoided already being avoided here.
726   unsigned &CondReg = CondRegs[Cond];
727   if (!CondReg)
728     CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
729 
730   // Rewriting a register def is trivial: we just replace the register and
731   // remove the setcc.
732   if (!SetCCI.mayStore()) {
733     assert(SetCCI.getOperand(0).isReg() &&
734            "Cannot have a non-register defined operand to SETcc!");
735     MRI->replaceRegWith(SetCCI.getOperand(0).getReg(), CondReg);
736     SetCCI.eraseFromParent();
737     return;
738   }
739 
740   // Otherwise, we need to emit a store.
741   auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
742                      SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
743   // Copy the address operands.
744   for (int i = 0; i < X86::AddrNumOperands; ++i)
745     MIB.add(SetCCI.getOperand(i));
746 
747   MIB.addReg(CondReg);
748 
749   MIB->setMemRefs(SetCCI.memoperands_begin(), SetCCI.memoperands_end());
750 
751   SetCCI.eraseFromParent();
752   return;
753 }
754