1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pass that optimizes call sequences on x86. 11 // Currently, it converts movs of function parameters onto the stack into 12 // pushes. This is beneficial for two main reasons: 13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. 14 // 2) It is possible to push memory arguments directly. So, if the 15 // the transformation is performed pre-reg-alloc, it can help relieve 16 // register pressure. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include <algorithm> 21 22 #include "X86.h" 23 #include "X86InstrInfo.h" 24 #include "X86MachineFunctionInfo.h" 25 #include "X86Subtarget.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "x86-cf-opt" 40 41 static cl::opt<bool> 42 NoX86CFOpt("no-x86-call-frame-opt", 43 cl::desc("Avoid optimizing x86 call frames for size"), 44 cl::init(false), cl::Hidden); 45 46 namespace { 47 class X86CallFrameOptimization : public MachineFunctionPass { 48 public: 49 X86CallFrameOptimization() : MachineFunctionPass(ID) {} 50 51 bool runOnMachineFunction(MachineFunction &MF) override; 52 53 private: 54 // Information we know about a particular call site 55 struct CallContext { 56 CallContext() 57 : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0), 58 MovVector(4, nullptr), NoStackParams(false), UsePush(false) {} 59 60 // Iterator referring to the frame setup instruction 61 MachineBasicBlock::iterator FrameSetup; 62 63 // Actual call instruction 64 MachineInstr *Call; 65 66 // A copy of the stack pointer 67 MachineInstr *SPCopy; 68 69 // The total displacement of all passed parameters 70 int64_t ExpectedDist; 71 72 // The sequence of movs used to pass the parameters 73 SmallVector<MachineInstr *, 4> MovVector; 74 75 // True if this call site has no stack parameters 76 bool NoStackParams; 77 78 // True if this call site can use push instructions 79 bool UsePush; 80 }; 81 82 typedef SmallVector<CallContext, 8> ContextVector; 83 84 bool isLegal(MachineFunction &MF); 85 86 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); 87 88 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, 89 MachineBasicBlock::iterator I, CallContext &Context); 90 91 bool adjustCallSequence(MachineFunction &MF, const CallContext &Context); 92 93 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, 94 unsigned Reg); 95 96 enum InstClassification { Convert, Skip, Exit }; 97 98 InstClassification classifyInstruction(MachineBasicBlock &MBB, 99 MachineBasicBlock::iterator MI, 100 const X86RegisterInfo &RegInfo, 101 DenseSet<unsigned int> &UsedRegs); 102 103 const char *getPassName() const override { return "X86 Optimize Call Frame"; } 104 105 const TargetInstrInfo *TII; 106 const X86FrameLowering *TFL; 107 const X86Subtarget *STI; 108 const MachineRegisterInfo *MRI; 109 unsigned SlotSize; 110 unsigned Log2SlotSize; 111 static char ID; 112 }; 113 114 char X86CallFrameOptimization::ID = 0; 115 } // end anonymous namespace 116 117 FunctionPass *llvm::createX86CallFrameOptimization() { 118 return new X86CallFrameOptimization(); 119 } 120 121 // This checks whether the transformation is legal. 122 // Also returns false in cases where it's potentially legal, but 123 // we don't even want to try. 124 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { 125 if (NoX86CFOpt.getValue()) 126 return false; 127 128 // We currently only support call sequences where *all* parameters. 129 // are passed on the stack. 130 // No point in running this in 64-bit mode, since some arguments are 131 // passed in-register in all common calling conventions, so the pattern 132 // we're looking for will never match. 133 if (STI->is64Bit()) 134 return false; 135 136 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset 137 // in the compact unwind encoding that Darwin uses. So, bail if there 138 // is a danger of that being generated. 139 if (STI->isTargetDarwin() && 140 (!MF.getMMI().getLandingPads().empty() || 141 (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF)))) 142 return false; 143 144 // You would expect straight-line code between call-frame setup and 145 // call-frame destroy. You would be wrong. There are circumstances (e.g. 146 // CMOV_GR8 expansion of a select that feeds a function call!) where we can 147 // end up with the setup and the destroy in different basic blocks. 148 // This is bad, and breaks SP adjustment. 149 // So, check that all of the frames in the function are closed inside 150 // the same block, and, for good measure, that there are no nested frames. 151 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 152 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 153 for (MachineBasicBlock &BB : MF) { 154 bool InsideFrameSequence = false; 155 for (MachineInstr &MI : BB) { 156 if (MI.getOpcode() == FrameSetupOpcode) { 157 if (InsideFrameSequence) 158 return false; 159 InsideFrameSequence = true; 160 } else if (MI.getOpcode() == FrameDestroyOpcode) { 161 if (!InsideFrameSequence) 162 return false; 163 InsideFrameSequence = false; 164 } 165 } 166 167 if (InsideFrameSequence) 168 return false; 169 } 170 171 return true; 172 } 173 174 // Check whether this transformation is profitable for a particular 175 // function - in terms of code size. 176 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 177 ContextVector &CallSeqVector) { 178 // This transformation is always a win when we do not expect to have 179 // a reserved call frame. Under other circumstances, it may be either 180 // a win or a loss, and requires a heuristic. 181 bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); 182 if (CannotReserveFrame) 183 return true; 184 185 unsigned StackAlign = TFL->getStackAlignment(); 186 187 int64_t Advantage = 0; 188 for (auto CC : CallSeqVector) { 189 // Call sites where no parameters are passed on the stack 190 // do not affect the cost, since there needs to be no 191 // stack adjustment. 192 if (CC.NoStackParams) 193 continue; 194 195 if (!CC.UsePush) { 196 // If we don't use pushes for a particular call site, 197 // we pay for not having a reserved call frame with an 198 // additional sub/add esp pair. The cost is ~3 bytes per instruction, 199 // depending on the size of the constant. 200 // TODO: Callee-pop functions should have a smaller penalty, because 201 // an add is needed even with a reserved call frame. 202 Advantage -= 6; 203 } else { 204 // We can use pushes. First, account for the fixed costs. 205 // We'll need a add after the call. 206 Advantage -= 3; 207 // If we have to realign the stack, we'll also need and sub before 208 if (CC.ExpectedDist % StackAlign) 209 Advantage -= 3; 210 // Now, for each push, we save ~3 bytes. For small constants, we actually, 211 // save more (up to 5 bytes), but 3 should be a good approximation. 212 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; 213 } 214 } 215 216 return Advantage >= 0; 217 } 218 219 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { 220 STI = &MF.getSubtarget<X86Subtarget>(); 221 TII = STI->getInstrInfo(); 222 TFL = STI->getFrameLowering(); 223 MRI = &MF.getRegInfo(); 224 225 const X86RegisterInfo &RegInfo = 226 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 227 SlotSize = RegInfo.getSlotSize(); 228 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size"); 229 Log2SlotSize = Log2_32(SlotSize); 230 231 if (!isLegal(MF)) 232 return false; 233 234 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 235 236 bool Changed = false; 237 238 ContextVector CallSeqVector; 239 240 for (auto &MBB : MF) 241 for (auto &MI : MBB) 242 if (MI.getOpcode() == FrameSetupOpcode) { 243 CallContext Context; 244 collectCallInfo(MF, MBB, MI, Context); 245 CallSeqVector.push_back(Context); 246 } 247 248 if (!isProfitable(MF, CallSeqVector)) 249 return false; 250 251 for (auto CC : CallSeqVector) 252 if (CC.UsePush) 253 Changed |= adjustCallSequence(MF, CC); 254 255 return Changed; 256 } 257 258 X86CallFrameOptimization::InstClassification 259 X86CallFrameOptimization::classifyInstruction( 260 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 261 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { 262 if (MI == MBB.end()) 263 return Exit; 264 265 // The instructions we actually care about are movs onto the stack 266 int Opcode = MI->getOpcode(); 267 if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr) 268 return Convert; 269 270 // Not all calling conventions have only stack MOVs between the stack 271 // adjust and the call. 272 273 // We want to tolerate other instructions, to cover more cases. 274 // In particular: 275 // a) PCrel calls, where we expect an additional COPY of the basereg. 276 // b) Passing frame-index addresses. 277 // c) Calling conventions that have inreg parameters. These generate 278 // both copies and movs into registers. 279 // To avoid creating lots of special cases, allow any instruction 280 // that does not write into memory, does not def or use the stack 281 // pointer, and does not def any register that was used by a preceding 282 // push. 283 // (Reading from memory is allowed, even if referenced through a 284 // frame index, since these will get adjusted properly in PEI) 285 286 // The reason for the last condition is that the pushes can't replace 287 // the movs in place, because the order must be reversed. 288 // So if we have a MOV32mr that uses EDX, then an instruction that defs 289 // EDX, and then the call, after the transformation the push will use 290 // the modified version of EDX, and not the original one. 291 // Since we are still in SSA form at this point, we only need to 292 // make sure we don't clobber any *physical* registers that were 293 // used by an earlier mov that will become a push. 294 295 if (MI->isCall() || MI->mayStore()) 296 return Exit; 297 298 for (const MachineOperand &MO : MI->operands()) { 299 if (!MO.isReg()) 300 continue; 301 unsigned int Reg = MO.getReg(); 302 if (!RegInfo.isPhysicalRegister(Reg)) 303 continue; 304 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) 305 return Exit; 306 if (MO.isDef()) { 307 for (unsigned int U : UsedRegs) 308 if (RegInfo.regsOverlap(Reg, U)) 309 return Exit; 310 } 311 } 312 313 return Skip; 314 } 315 316 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, 317 MachineBasicBlock &MBB, 318 MachineBasicBlock::iterator I, 319 CallContext &Context) { 320 // Check that this particular call sequence is amenable to the 321 // transformation. 322 const X86RegisterInfo &RegInfo = 323 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 324 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 325 326 // We expect to enter this at the beginning of a call sequence 327 assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); 328 MachineBasicBlock::iterator FrameSetup = I++; 329 Context.FrameSetup = FrameSetup; 330 331 // How much do we adjust the stack? This puts an upper bound on 332 // the number of parameters actually passed on it. 333 unsigned int MaxAdjust = 334 FrameSetup->getOperand(0).getImm() >> Log2SlotSize; 335 336 // A zero adjustment means no stack parameters 337 if (!MaxAdjust) { 338 Context.NoStackParams = true; 339 return; 340 } 341 342 // For globals in PIC mode, we can have some LEAs here. 343 // Ignore them, they don't bother us. 344 // TODO: Extend this to something that covers more cases. 345 while (I->getOpcode() == X86::LEA32r) 346 ++I; 347 348 // We expect a copy instruction here. 349 // TODO: The copy instruction is a lowering artifact. 350 // We should also support a copy-less version, where the stack 351 // pointer is used directly. 352 if (!I->isCopy() || !I->getOperand(0).isReg()) 353 return; 354 Context.SPCopy = I++; 355 356 unsigned StackPtr = Context.SPCopy->getOperand(0).getReg(); 357 358 // Scan the call setup sequence for the pattern we're looking for. 359 // We only handle a simple case - a sequence of store instructions that 360 // push a sequence of stack-slot-aligned values onto the stack, with 361 // no gaps between them. 362 if (MaxAdjust > 4) 363 Context.MovVector.resize(MaxAdjust, nullptr); 364 365 InstClassification Classification; 366 DenseSet<unsigned int> UsedRegs; 367 368 while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) != 369 Exit) { 370 if (Classification == Skip) { 371 ++I; 372 continue; 373 } 374 375 // We know the instruction has a supported store opcode. 376 // We only want movs of the form: 377 // mov imm/reg, k(%StackPtr) 378 // If we run into something else, bail. 379 // Note that AddrBaseReg may, counter to its name, not be a register, 380 // but rather a frame index. 381 // TODO: Support the fi case. This should probably work now that we 382 // have the infrastructure to track the stack pointer within a call 383 // sequence. 384 if (!I->getOperand(X86::AddrBaseReg).isReg() || 385 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || 386 !I->getOperand(X86::AddrScaleAmt).isImm() || 387 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || 388 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || 389 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || 390 !I->getOperand(X86::AddrDisp).isImm()) 391 return; 392 393 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); 394 assert(StackDisp >= 0 && 395 "Negative stack displacement when passing parameters"); 396 397 // We really don't want to consider the unaligned case. 398 if (StackDisp & (SlotSize - 1)) 399 return; 400 StackDisp >>= Log2SlotSize; 401 402 assert((size_t)StackDisp < Context.MovVector.size() && 403 "Function call has more parameters than the stack is adjusted for."); 404 405 // If the same stack slot is being filled twice, something's fishy. 406 if (Context.MovVector[StackDisp] != nullptr) 407 return; 408 Context.MovVector[StackDisp] = I; 409 410 for (const MachineOperand &MO : I->uses()) { 411 if (!MO.isReg()) 412 continue; 413 unsigned int Reg = MO.getReg(); 414 if (RegInfo.isPhysicalRegister(Reg)) 415 UsedRegs.insert(Reg); 416 } 417 418 ++I; 419 } 420 421 // We now expect the end of the sequence. If we stopped early, 422 // or reached the end of the block without finding a call, bail. 423 if (I == MBB.end() || !I->isCall()) 424 return; 425 426 Context.Call = I; 427 if ((++I)->getOpcode() != FrameDestroyOpcode) 428 return; 429 430 // Now, go through the vector, and see that we don't have any gaps, 431 // but only a series of MOVs. 432 auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end(); 433 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) 434 if (*MMI == nullptr) 435 break; 436 437 // If the call had no parameters, do nothing 438 if (MMI == Context.MovVector.begin()) 439 return; 440 441 // We are either at the last parameter, or a gap. 442 // Make sure it's not a gap 443 for (; MMI != MME; ++MMI) 444 if (*MMI != nullptr) 445 return; 446 447 Context.UsePush = true; 448 } 449 450 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, 451 const CallContext &Context) { 452 // Ok, we can in fact do the transformation for this call. 453 // Do not remove the FrameSetup instruction, but adjust the parameters. 454 // PEI will end up finalizing the handling of this. 455 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; 456 MachineBasicBlock &MBB = *(FrameSetup->getParent()); 457 FrameSetup->getOperand(1).setImm(Context.ExpectedDist); 458 459 DebugLoc DL = FrameSetup->getDebugLoc(); 460 // Now, iterate through the vector in reverse order, and replace the movs 461 // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 462 // replace uses. 463 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { 464 MachineBasicBlock::iterator MOV = *Context.MovVector[Idx]; 465 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); 466 MachineBasicBlock::iterator Push = nullptr; 467 unsigned PushOpcode; 468 switch (MOV->getOpcode()) { 469 default: 470 llvm_unreachable("Unexpected Opcode!"); 471 case X86::MOV32mi: 472 PushOpcode = X86::PUSHi32; 473 // If the operand is a small (8-bit) immediate, we can use a 474 // PUSH instruction with a shorter encoding. 475 // Note that isImm() may fail even though this is a MOVmi, because 476 // the operand can also be a symbol. 477 if (PushOp.isImm()) { 478 int64_t Val = PushOp.getImm(); 479 if (isInt<8>(Val)) 480 PushOpcode = X86::PUSH32i8; 481 } 482 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 483 .addOperand(PushOp); 484 break; 485 case X86::MOV32mr: 486 unsigned int Reg = PushOp.getReg(); 487 488 // If PUSHrmm is not slow on this target, try to fold the source of the 489 // push into the instruction. 490 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); 491 492 // Check that this is legal to fold. Right now, we're extremely 493 // conservative about that. 494 MachineInstr *DefMov = nullptr; 495 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { 496 PushOpcode = X86::PUSH32rmm; 497 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); 498 499 unsigned NumOps = DefMov->getDesc().getNumOperands(); 500 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 501 Push->addOperand(DefMov->getOperand(i)); 502 503 DefMov->eraseFromParent(); 504 } else { 505 PushOpcode = X86::PUSH32r; 506 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 507 .addReg(Reg) 508 .getInstr(); 509 } 510 break; 511 } 512 513 // For debugging, when using SP-based CFA, we need to adjust the CFA 514 // offset after each push. 515 // TODO: This is needed only if we require precise CFA. 516 if (!TFL->hasFP(MF)) 517 TFL->BuildCFI( 518 MBB, std::next(Push), DL, 519 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); 520 521 MBB.erase(MOV); 522 } 523 524 // The stack-pointer copy is no longer used in the call sequences. 525 // There should not be any other users, but we can't commit to that, so: 526 if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) 527 Context.SPCopy->eraseFromParent(); 528 529 // Once we've done this, we need to make sure PEI doesn't assume a reserved 530 // frame. 531 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 532 FuncInfo->setHasPushSequences(true); 533 534 return true; 535 } 536 537 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( 538 MachineBasicBlock::iterator FrameSetup, unsigned Reg) { 539 // Do an extremely restricted form of load folding. 540 // ISel will often create patterns like: 541 // movl 4(%edi), %eax 542 // movl 8(%edi), %ecx 543 // movl 12(%edi), %edx 544 // movl %edx, 8(%esp) 545 // movl %ecx, 4(%esp) 546 // movl %eax, (%esp) 547 // call 548 // Get rid of those with prejudice. 549 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 550 return nullptr; 551 552 // Make sure this is the only use of Reg. 553 if (!MRI->hasOneNonDBGUse(Reg)) 554 return nullptr; 555 556 MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); 557 558 // Make sure the def is a MOV from memory. 559 // If the def is an another block, give up. 560 if (DefMI->getOpcode() != X86::MOV32rm || 561 DefMI->getParent() != FrameSetup->getParent()) 562 return nullptr; 563 564 // Make sure we don't have any instructions between DefMI and the 565 // push that make folding the load illegal. 566 for (auto I = DefMI; I != FrameSetup; ++I) 567 if (I->isLoadFoldBarrier()) 568 return nullptr; 569 570 return DefMI; 571 } 572