1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pass that optimizes call sequences on x86.
10 // Currently, it converts movs of function parameters onto the stack into
11 // pushes. This is beneficial for two main reasons:
12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13 // 2) It is possible to push memory arguments directly. So, if the
14 //    the transformation is performed pre-reg-alloc, it can help relieve
15 //    register pressure.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86FrameLowering.h"
21 #include "X86InstrInfo.h"
22 #include "X86MachineFunctionInfo.h"
23 #include "X86RegisterInfo.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCDwarf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <iterator>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "x86-cf-opt"
52 
53 static cl::opt<bool>
54     NoX86CFOpt("no-x86-call-frame-opt",
55                cl::desc("Avoid optimizing x86 call frames for size"),
56                cl::init(false), cl::Hidden);
57 
58 namespace {
59 
60 class X86CallFrameOptimization : public MachineFunctionPass {
61 public:
62   X86CallFrameOptimization() : MachineFunctionPass(ID) {
63     initializeX86CallFrameOptimizationPass(
64         *PassRegistry::getPassRegistry());
65   }
66 
67   bool runOnMachineFunction(MachineFunction &MF) override;
68 
69   static char ID;
70 
71 private:
72   // Information we know about a particular call site
73   struct CallContext {
74     CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
75 
76     // Iterator referring to the frame setup instruction
77     MachineBasicBlock::iterator FrameSetup;
78 
79     // Actual call instruction
80     MachineInstr *Call = nullptr;
81 
82     // A copy of the stack pointer
83     MachineInstr *SPCopy = nullptr;
84 
85     // The total displacement of all passed parameters
86     int64_t ExpectedDist = 0;
87 
88     // The sequence of storing instructions used to pass the parameters
89     SmallVector<MachineInstr *, 4> ArgStoreVector;
90 
91     // True if this call site has no stack parameters
92     bool NoStackParams = false;
93 
94     // True if this call site can use push instructions
95     bool UsePush = false;
96   };
97 
98   typedef SmallVector<CallContext, 8> ContextVector;
99 
100   bool isLegal(MachineFunction &MF);
101 
102   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
103 
104   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
105                        MachineBasicBlock::iterator I, CallContext &Context);
106 
107   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
108 
109   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
110                                    unsigned Reg);
111 
112   enum InstClassification { Convert, Skip, Exit };
113 
114   InstClassification classifyInstruction(MachineBasicBlock &MBB,
115                                          MachineBasicBlock::iterator MI,
116                                          const X86RegisterInfo &RegInfo,
117                                          DenseSet<unsigned int> &UsedRegs);
118 
119   StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
120 
121   const X86InstrInfo *TII;
122   const X86FrameLowering *TFL;
123   const X86Subtarget *STI;
124   MachineRegisterInfo *MRI;
125   unsigned SlotSize;
126   unsigned Log2SlotSize;
127 };
128 
129 } // end anonymous namespace
130 char X86CallFrameOptimization::ID = 0;
131 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
132                 "X86 Call Frame Optimization", false, false)
133 
134 // This checks whether the transformation is legal.
135 // Also returns false in cases where it's potentially legal, but
136 // we don't even want to try.
137 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
138   if (NoX86CFOpt.getValue())
139     return false;
140 
141   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
142   // in the compact unwind encoding that Darwin uses. So, bail if there
143   // is a danger of that being generated.
144   if (STI->isTargetDarwin() &&
145       (!MF.getLandingPads().empty() ||
146        (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
147     return false;
148 
149   // It is not valid to change the stack pointer outside the prolog/epilog
150   // on 64-bit Windows.
151   if (STI->isTargetWin64())
152     return false;
153 
154   // You would expect straight-line code between call-frame setup and
155   // call-frame destroy. You would be wrong. There are circumstances (e.g.
156   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
157   // end up with the setup and the destroy in different basic blocks.
158   // This is bad, and breaks SP adjustment.
159   // So, check that all of the frames in the function are closed inside
160   // the same block, and, for good measure, that there are no nested frames.
161   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
162   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
163   for (MachineBasicBlock &BB : MF) {
164     bool InsideFrameSequence = false;
165     for (MachineInstr &MI : BB) {
166       if (MI.getOpcode() == FrameSetupOpcode) {
167         if (InsideFrameSequence)
168           return false;
169         InsideFrameSequence = true;
170       } else if (MI.getOpcode() == FrameDestroyOpcode) {
171         if (!InsideFrameSequence)
172           return false;
173         InsideFrameSequence = false;
174       }
175     }
176 
177     if (InsideFrameSequence)
178       return false;
179   }
180 
181   return true;
182 }
183 
184 // Check whether this transformation is profitable for a particular
185 // function - in terms of code size.
186 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
187                                             ContextVector &CallSeqVector) {
188   // This transformation is always a win when we do not expect to have
189   // a reserved call frame. Under other circumstances, it may be either
190   // a win or a loss, and requires a heuristic.
191   bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
192   if (CannotReserveFrame)
193     return true;
194 
195   unsigned StackAlign = TFL->getStackAlignment();
196 
197   int64_t Advantage = 0;
198   for (auto CC : CallSeqVector) {
199     // Call sites where no parameters are passed on the stack
200     // do not affect the cost, since there needs to be no
201     // stack adjustment.
202     if (CC.NoStackParams)
203       continue;
204 
205     if (!CC.UsePush) {
206       // If we don't use pushes for a particular call site,
207       // we pay for not having a reserved call frame with an
208       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
209       // depending on the size of the constant.
210       // TODO: Callee-pop functions should have a smaller penalty, because
211       // an add is needed even with a reserved call frame.
212       Advantage -= 6;
213     } else {
214       // We can use pushes. First, account for the fixed costs.
215       // We'll need a add after the call.
216       Advantage -= 3;
217       // If we have to realign the stack, we'll also need a sub before
218       if (CC.ExpectedDist % StackAlign)
219         Advantage -= 3;
220       // Now, for each push, we save ~3 bytes. For small constants, we actually,
221       // save more (up to 5 bytes), but 3 should be a good approximation.
222       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
223     }
224   }
225 
226   return Advantage >= 0;
227 }
228 
229 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
230   STI = &MF.getSubtarget<X86Subtarget>();
231   TII = STI->getInstrInfo();
232   TFL = STI->getFrameLowering();
233   MRI = &MF.getRegInfo();
234 
235   const X86RegisterInfo &RegInfo =
236       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
237   SlotSize = RegInfo.getSlotSize();
238   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
239   Log2SlotSize = Log2_32(SlotSize);
240 
241   if (skipFunction(MF.getFunction()) || !isLegal(MF))
242     return false;
243 
244   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
245 
246   bool Changed = false;
247 
248   ContextVector CallSeqVector;
249 
250   for (auto &MBB : MF)
251     for (auto &MI : MBB)
252       if (MI.getOpcode() == FrameSetupOpcode) {
253         CallContext Context;
254         collectCallInfo(MF, MBB, MI, Context);
255         CallSeqVector.push_back(Context);
256       }
257 
258   if (!isProfitable(MF, CallSeqVector))
259     return false;
260 
261   for (auto CC : CallSeqVector) {
262     if (CC.UsePush) {
263       adjustCallSequence(MF, CC);
264       Changed = true;
265     }
266   }
267 
268   return Changed;
269 }
270 
271 X86CallFrameOptimization::InstClassification
272 X86CallFrameOptimization::classifyInstruction(
273     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
274     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
275   if (MI == MBB.end())
276     return Exit;
277 
278   // The instructions we actually care about are movs onto the stack or special
279   // cases of constant-stores to stack
280   switch (MI->getOpcode()) {
281     case X86::AND16mi8:
282     case X86::AND32mi8:
283     case X86::AND64mi8: {
284       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
285       return ImmOp.getImm() == 0 ? Convert : Exit;
286     }
287     case X86::OR16mi8:
288     case X86::OR32mi8:
289     case X86::OR64mi8: {
290       MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands);
291       return ImmOp.getImm() == -1 ? Convert : Exit;
292     }
293     case X86::MOV32mi:
294     case X86::MOV32mr:
295     case X86::MOV64mi32:
296     case X86::MOV64mr:
297       return Convert;
298   }
299 
300   // Not all calling conventions have only stack MOVs between the stack
301   // adjust and the call.
302 
303   // We want to tolerate other instructions, to cover more cases.
304   // In particular:
305   // a) PCrel calls, where we expect an additional COPY of the basereg.
306   // b) Passing frame-index addresses.
307   // c) Calling conventions that have inreg parameters. These generate
308   //    both copies and movs into registers.
309   // To avoid creating lots of special cases, allow any instruction
310   // that does not write into memory, does not def or use the stack
311   // pointer, and does not def any register that was used by a preceding
312   // push.
313   // (Reading from memory is allowed, even if referenced through a
314   // frame index, since these will get adjusted properly in PEI)
315 
316   // The reason for the last condition is that the pushes can't replace
317   // the movs in place, because the order must be reversed.
318   // So if we have a MOV32mr that uses EDX, then an instruction that defs
319   // EDX, and then the call, after the transformation the push will use
320   // the modified version of EDX, and not the original one.
321   // Since we are still in SSA form at this point, we only need to
322   // make sure we don't clobber any *physical* registers that were
323   // used by an earlier mov that will become a push.
324 
325   if (MI->isCall() || MI->mayStore())
326     return Exit;
327 
328   for (const MachineOperand &MO : MI->operands()) {
329     if (!MO.isReg())
330       continue;
331     unsigned int Reg = MO.getReg();
332     if (!RegInfo.isPhysicalRegister(Reg))
333       continue;
334     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
335       return Exit;
336     if (MO.isDef()) {
337       for (unsigned int U : UsedRegs)
338         if (RegInfo.regsOverlap(Reg, U))
339           return Exit;
340     }
341   }
342 
343   return Skip;
344 }
345 
346 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
347                                                MachineBasicBlock &MBB,
348                                                MachineBasicBlock::iterator I,
349                                                CallContext &Context) {
350   // Check that this particular call sequence is amenable to the
351   // transformation.
352   const X86RegisterInfo &RegInfo =
353       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
354 
355   // We expect to enter this at the beginning of a call sequence
356   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
357   MachineBasicBlock::iterator FrameSetup = I++;
358   Context.FrameSetup = FrameSetup;
359 
360   // How much do we adjust the stack? This puts an upper bound on
361   // the number of parameters actually passed on it.
362   unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
363 
364   // A zero adjustment means no stack parameters
365   if (!MaxAdjust) {
366     Context.NoStackParams = true;
367     return;
368   }
369 
370   // Skip over DEBUG_VALUE.
371   // For globals in PIC mode, we can have some LEAs here. Skip them as well.
372   // TODO: Extend this to something that covers more cases.
373   while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
374     ++I;
375 
376   unsigned StackPtr = RegInfo.getStackRegister();
377   auto StackPtrCopyInst = MBB.end();
378   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
379   // register.  If it's there, use that virtual register as stack pointer
380   // instead. Also, we need to locate this instruction so that we can later
381   // safely ignore it while doing the conservative processing of the call chain.
382   // The COPY can be located anywhere between the call-frame setup
383   // instruction and its first use. We use the call instruction as a boundary
384   // because it is usually cheaper to check if an instruction is a call than
385   // checking if an instruction uses a register.
386   for (auto J = I; !J->isCall(); ++J)
387     if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
388         J->getOperand(1).getReg() == StackPtr) {
389       StackPtrCopyInst = J;
390       Context.SPCopy = &*J++;
391       StackPtr = Context.SPCopy->getOperand(0).getReg();
392       break;
393     }
394 
395   // Scan the call setup sequence for the pattern we're looking for.
396   // We only handle a simple case - a sequence of store instructions that
397   // push a sequence of stack-slot-aligned values onto the stack, with
398   // no gaps between them.
399   if (MaxAdjust > 4)
400     Context.ArgStoreVector.resize(MaxAdjust, nullptr);
401 
402   DenseSet<unsigned int> UsedRegs;
403 
404   for (InstClassification Classification = Skip; Classification != Exit; ++I) {
405     // If this is the COPY of the stack pointer, it's ok to ignore.
406     if (I == StackPtrCopyInst)
407       continue;
408     Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
409     if (Classification != Convert)
410       continue;
411     // We know the instruction has a supported store opcode.
412     // We only want movs of the form:
413     // mov imm/reg, k(%StackPtr)
414     // If we run into something else, bail.
415     // Note that AddrBaseReg may, counter to its name, not be a register,
416     // but rather a frame index.
417     // TODO: Support the fi case. This should probably work now that we
418     // have the infrastructure to track the stack pointer within a call
419     // sequence.
420     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
421         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
422         !I->getOperand(X86::AddrScaleAmt).isImm() ||
423         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
424         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
425         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
426         !I->getOperand(X86::AddrDisp).isImm())
427       return;
428 
429     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
430     assert(StackDisp >= 0 &&
431            "Negative stack displacement when passing parameters");
432 
433     // We really don't want to consider the unaligned case.
434     if (StackDisp & (SlotSize - 1))
435       return;
436     StackDisp >>= Log2SlotSize;
437 
438     assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
439            "Function call has more parameters than the stack is adjusted for.");
440 
441     // If the same stack slot is being filled twice, something's fishy.
442     if (Context.ArgStoreVector[StackDisp] != nullptr)
443       return;
444     Context.ArgStoreVector[StackDisp] = &*I;
445 
446     for (const MachineOperand &MO : I->uses()) {
447       if (!MO.isReg())
448         continue;
449       unsigned int Reg = MO.getReg();
450       if (RegInfo.isPhysicalRegister(Reg))
451         UsedRegs.insert(Reg);
452     }
453   }
454 
455   --I;
456 
457   // We now expect the end of the sequence. If we stopped early,
458   // or reached the end of the block without finding a call, bail.
459   if (I == MBB.end() || !I->isCall())
460     return;
461 
462   Context.Call = &*I;
463   if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
464     return;
465 
466   // Now, go through the vector, and see that we don't have any gaps,
467   // but only a series of storing instructions.
468   auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
469   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
470     if (*MMI == nullptr)
471       break;
472 
473   // If the call had no parameters, do nothing
474   if (MMI == Context.ArgStoreVector.begin())
475     return;
476 
477   // We are either at the last parameter, or a gap.
478   // Make sure it's not a gap
479   for (; MMI != MME; ++MMI)
480     if (*MMI != nullptr)
481       return;
482 
483   Context.UsePush = true;
484 }
485 
486 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
487                                                   const CallContext &Context) {
488   // Ok, we can in fact do the transformation for this call.
489   // Do not remove the FrameSetup instruction, but adjust the parameters.
490   // PEI will end up finalizing the handling of this.
491   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
492   MachineBasicBlock &MBB = *(FrameSetup->getParent());
493   TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
494 
495   DebugLoc DL = FrameSetup->getDebugLoc();
496   bool Is64Bit = STI->is64Bit();
497   // Now, iterate through the vector in reverse order, and replace the store to
498   // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
499   // replace uses.
500   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
501     MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
502     MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands);
503     MachineBasicBlock::iterator Push = nullptr;
504     unsigned PushOpcode;
505     switch (Store->getOpcode()) {
506     default:
507       llvm_unreachable("Unexpected Opcode!");
508     case X86::AND16mi8:
509     case X86::AND32mi8:
510     case X86::AND64mi8:
511     case X86::OR16mi8:
512     case X86::OR32mi8:
513     case X86::OR64mi8:
514     case X86::MOV32mi:
515     case X86::MOV64mi32:
516       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
517       // If the operand is a small (8-bit) immediate, we can use a
518       // PUSH instruction with a shorter encoding.
519       // Note that isImm() may fail even though this is a MOVmi, because
520       // the operand can also be a symbol.
521       if (PushOp.isImm()) {
522         int64_t Val = PushOp.getImm();
523         if (isInt<8>(Val))
524           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
525       }
526       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
527       break;
528     case X86::MOV32mr:
529     case X86::MOV64mr: {
530       unsigned int Reg = PushOp.getReg();
531 
532       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
533       // in preparation for the PUSH64. The upper 32 bits can be undef.
534       if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
535         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
536         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
537         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
538         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
539             .addReg(UndefReg)
540             .add(PushOp)
541             .addImm(X86::sub_32bit);
542       }
543 
544       // If PUSHrmm is not slow on this target, try to fold the source of the
545       // push into the instruction.
546       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
547 
548       // Check that this is legal to fold. Right now, we're extremely
549       // conservative about that.
550       MachineInstr *DefMov = nullptr;
551       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
552         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
553         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
554 
555         unsigned NumOps = DefMov->getDesc().getNumOperands();
556         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
557           Push->addOperand(DefMov->getOperand(i));
558 
559         DefMov->eraseFromParent();
560       } else {
561         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
562         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
563                    .addReg(Reg)
564                    .getInstr();
565       }
566       break;
567     }
568     }
569 
570     // For debugging, when using SP-based CFA, we need to adjust the CFA
571     // offset after each push.
572     // TODO: This is needed only if we require precise CFA.
573     if (!TFL->hasFP(MF))
574       TFL->BuildCFI(
575           MBB, std::next(Push), DL,
576           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
577 
578     MBB.erase(Store);
579   }
580 
581   // The stack-pointer copy is no longer used in the call sequences.
582   // There should not be any other users, but we can't commit to that, so:
583   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
584     Context.SPCopy->eraseFromParent();
585 
586   // Once we've done this, we need to make sure PEI doesn't assume a reserved
587   // frame.
588   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
589   FuncInfo->setHasPushSequences(true);
590 }
591 
592 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
593     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
594   // Do an extremely restricted form of load folding.
595   // ISel will often create patterns like:
596   // movl    4(%edi), %eax
597   // movl    8(%edi), %ecx
598   // movl    12(%edi), %edx
599   // movl    %edx, 8(%esp)
600   // movl    %ecx, 4(%esp)
601   // movl    %eax, (%esp)
602   // call
603   // Get rid of those with prejudice.
604   if (!TargetRegisterInfo::isVirtualRegister(Reg))
605     return nullptr;
606 
607   // Make sure this is the only use of Reg.
608   if (!MRI->hasOneNonDBGUse(Reg))
609     return nullptr;
610 
611   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
612 
613   // Make sure the def is a MOV from memory.
614   // If the def is in another block, give up.
615   if ((DefMI.getOpcode() != X86::MOV32rm &&
616        DefMI.getOpcode() != X86::MOV64rm) ||
617       DefMI.getParent() != FrameSetup->getParent())
618     return nullptr;
619 
620   // Make sure we don't have any instructions between DefMI and the
621   // push that make folding the load illegal.
622   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
623     if (I->isLoadFoldBarrier())
624       return nullptr;
625 
626   return &DefMI;
627 }
628 
629 FunctionPass *llvm::createX86CallFrameOptimization() {
630   return new X86CallFrameOptimization();
631 }
632