1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is performed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include <algorithm>
21 
22 #include "X86.h"
23 #include "X86InstrInfo.h"
24 #include "X86MachineFunctionInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "x86-cf-opt"
40 
41 static cl::opt<bool>
42     NoX86CFOpt("no-x86-call-frame-opt",
43                cl::desc("Avoid optimizing x86 call frames for size"),
44                cl::init(false), cl::Hidden);
45 
46 namespace {
47 class X86CallFrameOptimization : public MachineFunctionPass {
48 public:
49   X86CallFrameOptimization() : MachineFunctionPass(ID) {}
50 
51   bool runOnMachineFunction(MachineFunction &MF) override;
52 
53 private:
54   // Information we know about a particular call site
55   struct CallContext {
56     CallContext()
57         : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
58           MovVector(4, nullptr), NoStackParams(false), UsePush(false) {}
59 
60     // Iterator referring to the frame setup instruction
61     MachineBasicBlock::iterator FrameSetup;
62 
63     // Actual call instruction
64     MachineInstr *Call;
65 
66     // A copy of the stack pointer
67     MachineInstr *SPCopy;
68 
69     // The total displacement of all passed parameters
70     int64_t ExpectedDist;
71 
72     // The sequence of movs used to pass the parameters
73     SmallVector<MachineInstr *, 4> MovVector;
74 
75     // True if this call site has no stack parameters
76     bool NoStackParams;
77 
78     // True if this call site can use push instructions
79     bool UsePush;
80   };
81 
82   typedef SmallVector<CallContext, 8> ContextVector;
83 
84   bool isLegal(MachineFunction &MF);
85 
86   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
87 
88   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
89                        MachineBasicBlock::iterator I, CallContext &Context);
90 
91   bool adjustCallSequence(MachineFunction &MF, const CallContext &Context);
92 
93   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
94                                    unsigned Reg);
95 
96   enum InstClassification { Convert, Skip, Exit };
97 
98   InstClassification classifyInstruction(MachineBasicBlock &MBB,
99                                          MachineBasicBlock::iterator MI,
100                                          const X86RegisterInfo &RegInfo,
101                                          DenseSet<unsigned int> &UsedRegs);
102 
103   const char *getPassName() const override { return "X86 Optimize Call Frame"; }
104 
105   const TargetInstrInfo *TII;
106   const X86FrameLowering *TFL;
107   const X86Subtarget *STI;
108   MachineRegisterInfo *MRI;
109   unsigned SlotSize;
110   unsigned Log2SlotSize;
111   static char ID;
112 };
113 
114 char X86CallFrameOptimization::ID = 0;
115 } // end anonymous namespace
116 
117 FunctionPass *llvm::createX86CallFrameOptimization() {
118   return new X86CallFrameOptimization();
119 }
120 
121 // This checks whether the transformation is legal.
122 // Also returns false in cases where it's potentially legal, but
123 // we don't even want to try.
124 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
125   if (NoX86CFOpt.getValue())
126     return false;
127 
128   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
129   // in the compact unwind encoding that Darwin uses. So, bail if there
130   // is a danger of that being generated.
131   if (STI->isTargetDarwin() &&
132       (!MF.getMMI().getLandingPads().empty() ||
133        (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
134     return false;
135 
136   // It is not valid to change the stack pointer outside the prolog/epilog
137   // on 64-bit Windows.
138   if (STI->isTargetWin64())
139     return false;
140 
141   // You would expect straight-line code between call-frame setup and
142   // call-frame destroy. You would be wrong. There are circumstances (e.g.
143   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
144   // end up with the setup and the destroy in different basic blocks.
145   // This is bad, and breaks SP adjustment.
146   // So, check that all of the frames in the function are closed inside
147   // the same block, and, for good measure, that there are no nested frames.
148   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
149   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
150   for (MachineBasicBlock &BB : MF) {
151     bool InsideFrameSequence = false;
152     for (MachineInstr &MI : BB) {
153       if (MI.getOpcode() == FrameSetupOpcode) {
154         if (InsideFrameSequence)
155           return false;
156         InsideFrameSequence = true;
157       } else if (MI.getOpcode() == FrameDestroyOpcode) {
158         if (!InsideFrameSequence)
159           return false;
160         InsideFrameSequence = false;
161       }
162     }
163 
164     if (InsideFrameSequence)
165       return false;
166   }
167 
168   return true;
169 }
170 
171 // Check whether this transformation is profitable for a particular
172 // function - in terms of code size.
173 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
174                                             ContextVector &CallSeqVector) {
175   // This transformation is always a win when we do not expect to have
176   // a reserved call frame. Under other circumstances, it may be either
177   // a win or a loss, and requires a heuristic.
178   bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
179   if (CannotReserveFrame)
180     return true;
181 
182   unsigned StackAlign = TFL->getStackAlignment();
183 
184   int64_t Advantage = 0;
185   for (auto CC : CallSeqVector) {
186     // Call sites where no parameters are passed on the stack
187     // do not affect the cost, since there needs to be no
188     // stack adjustment.
189     if (CC.NoStackParams)
190       continue;
191 
192     if (!CC.UsePush) {
193       // If we don't use pushes for a particular call site,
194       // we pay for not having a reserved call frame with an
195       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
196       // depending on the size of the constant.
197       // TODO: Callee-pop functions should have a smaller penalty, because
198       // an add is needed even with a reserved call frame.
199       Advantage -= 6;
200     } else {
201       // We can use pushes. First, account for the fixed costs.
202       // We'll need a add after the call.
203       Advantage -= 3;
204       // If we have to realign the stack, we'll also need a sub before
205       if (CC.ExpectedDist % StackAlign)
206         Advantage -= 3;
207       // Now, for each push, we save ~3 bytes. For small constants, we actually,
208       // save more (up to 5 bytes), but 3 should be a good approximation.
209       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
210     }
211   }
212 
213   return Advantage >= 0;
214 }
215 
216 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
217   STI = &MF.getSubtarget<X86Subtarget>();
218   TII = STI->getInstrInfo();
219   TFL = STI->getFrameLowering();
220   MRI = &MF.getRegInfo();
221 
222   const X86RegisterInfo &RegInfo =
223       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
224   SlotSize = RegInfo.getSlotSize();
225   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
226   Log2SlotSize = Log2_32(SlotSize);
227 
228   if (!isLegal(MF))
229     return false;
230 
231   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
232 
233   bool Changed = false;
234 
235   ContextVector CallSeqVector;
236 
237   for (auto &MBB : MF)
238     for (auto &MI : MBB)
239       if (MI.getOpcode() == FrameSetupOpcode) {
240         CallContext Context;
241         collectCallInfo(MF, MBB, MI, Context);
242         CallSeqVector.push_back(Context);
243       }
244 
245   if (!isProfitable(MF, CallSeqVector))
246     return false;
247 
248   for (auto CC : CallSeqVector)
249     if (CC.UsePush)
250       Changed |= adjustCallSequence(MF, CC);
251 
252   return Changed;
253 }
254 
255 X86CallFrameOptimization::InstClassification
256 X86CallFrameOptimization::classifyInstruction(
257     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
258     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
259   if (MI == MBB.end())
260     return Exit;
261 
262   // The instructions we actually care about are movs onto the stack
263   int Opcode = MI->getOpcode();
264   if (Opcode == X86::MOV32mi   || Opcode == X86::MOV32mr ||
265       Opcode == X86::MOV64mi32 || Opcode == X86::MOV64mr)
266     return Convert;
267 
268   // Not all calling conventions have only stack MOVs between the stack
269   // adjust and the call.
270 
271   // We want to tolerate other instructions, to cover more cases.
272   // In particular:
273   // a) PCrel calls, where we expect an additional COPY of the basereg.
274   // b) Passing frame-index addresses.
275   // c) Calling conventions that have inreg parameters. These generate
276   //    both copies and movs into registers.
277   // To avoid creating lots of special cases, allow any instruction
278   // that does not write into memory, does not def or use the stack
279   // pointer, and does not def any register that was used by a preceding
280   // push.
281   // (Reading from memory is allowed, even if referenced through a
282   // frame index, since these will get adjusted properly in PEI)
283 
284   // The reason for the last condition is that the pushes can't replace
285   // the movs in place, because the order must be reversed.
286   // So if we have a MOV32mr that uses EDX, then an instruction that defs
287   // EDX, and then the call, after the transformation the push will use
288   // the modified version of EDX, and not the original one.
289   // Since we are still in SSA form at this point, we only need to
290   // make sure we don't clobber any *physical* registers that were
291   // used by an earlier mov that will become a push.
292 
293   if (MI->isCall() || MI->mayStore())
294     return Exit;
295 
296   for (const MachineOperand &MO : MI->operands()) {
297     if (!MO.isReg())
298       continue;
299     unsigned int Reg = MO.getReg();
300     if (!RegInfo.isPhysicalRegister(Reg))
301       continue;
302     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
303       return Exit;
304     if (MO.isDef()) {
305       for (unsigned int U : UsedRegs)
306         if (RegInfo.regsOverlap(Reg, U))
307           return Exit;
308     }
309   }
310 
311   return Skip;
312 }
313 
314 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
315                                                MachineBasicBlock &MBB,
316                                                MachineBasicBlock::iterator I,
317                                                CallContext &Context) {
318   // Check that this particular call sequence is amenable to the
319   // transformation.
320   const X86RegisterInfo &RegInfo =
321       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
322   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
323 
324   // We expect to enter this at the beginning of a call sequence
325   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
326   MachineBasicBlock::iterator FrameSetup = I++;
327   Context.FrameSetup = FrameSetup;
328 
329   // How much do we adjust the stack? This puts an upper bound on
330   // the number of parameters actually passed on it.
331   unsigned int MaxAdjust =
332       FrameSetup->getOperand(0).getImm() >> Log2SlotSize;
333 
334   // A zero adjustment means no stack parameters
335   if (!MaxAdjust) {
336     Context.NoStackParams = true;
337     return;
338   }
339 
340   // For globals in PIC mode, we can have some LEAs here.
341   // Ignore them, they don't bother us.
342   // TODO: Extend this to something that covers more cases.
343   while (I->getOpcode() == X86::LEA32r)
344     ++I;
345 
346   // We expect a copy instruction here.
347   // TODO: The copy instruction is a lowering artifact.
348   //       We should also support a copy-less version, where the stack
349   //       pointer is used directly.
350   if (!I->isCopy() || !I->getOperand(0).isReg())
351     return;
352   Context.SPCopy = I++;
353 
354   unsigned StackPtr = Context.SPCopy->getOperand(0).getReg();
355 
356   // Scan the call setup sequence for the pattern we're looking for.
357   // We only handle a simple case - a sequence of store instructions that
358   // push a sequence of stack-slot-aligned values onto the stack, with
359   // no gaps between them.
360   if (MaxAdjust > 4)
361     Context.MovVector.resize(MaxAdjust, nullptr);
362 
363   InstClassification Classification;
364   DenseSet<unsigned int> UsedRegs;
365 
366   while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
367          Exit) {
368     if (Classification == Skip) {
369       ++I;
370       continue;
371     }
372 
373     // We know the instruction has a supported store opcode.
374     // We only want movs of the form:
375     // mov imm/reg, k(%StackPtr)
376     // If we run into something else, bail.
377     // Note that AddrBaseReg may, counter to its name, not be a register,
378     // but rather a frame index.
379     // TODO: Support the fi case. This should probably work now that we
380     // have the infrastructure to track the stack pointer within a call
381     // sequence.
382     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
383         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
384         !I->getOperand(X86::AddrScaleAmt).isImm() ||
385         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
386         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
387         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
388         !I->getOperand(X86::AddrDisp).isImm())
389       return;
390 
391     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
392     assert(StackDisp >= 0 &&
393            "Negative stack displacement when passing parameters");
394 
395     // We really don't want to consider the unaligned case.
396     if (StackDisp & (SlotSize - 1))
397       return;
398     StackDisp >>= Log2SlotSize;
399 
400     assert((size_t)StackDisp < Context.MovVector.size() &&
401            "Function call has more parameters than the stack is adjusted for.");
402 
403     // If the same stack slot is being filled twice, something's fishy.
404     if (Context.MovVector[StackDisp] != nullptr)
405       return;
406     Context.MovVector[StackDisp] = I;
407 
408     for (const MachineOperand &MO : I->uses()) {
409       if (!MO.isReg())
410         continue;
411       unsigned int Reg = MO.getReg();
412       if (RegInfo.isPhysicalRegister(Reg))
413         UsedRegs.insert(Reg);
414     }
415 
416     ++I;
417   }
418 
419   // We now expect the end of the sequence. If we stopped early,
420   // or reached the end of the block without finding a call, bail.
421   if (I == MBB.end() || !I->isCall())
422     return;
423 
424   Context.Call = I;
425   if ((++I)->getOpcode() != FrameDestroyOpcode)
426     return;
427 
428   // Now, go through the vector, and see that we don't have any gaps,
429   // but only a series of MOVs.
430   auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
431   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
432     if (*MMI == nullptr)
433       break;
434 
435   // If the call had no parameters, do nothing
436   if (MMI == Context.MovVector.begin())
437     return;
438 
439   // We are either at the last parameter, or a gap.
440   // Make sure it's not a gap
441   for (; MMI != MME; ++MMI)
442     if (*MMI != nullptr)
443       return;
444 
445   Context.UsePush = true;
446 }
447 
448 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
449                                                   const CallContext &Context) {
450   // Ok, we can in fact do the transformation for this call.
451   // Do not remove the FrameSetup instruction, but adjust the parameters.
452   // PEI will end up finalizing the handling of this.
453   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
454   MachineBasicBlock &MBB = *(FrameSetup->getParent());
455   FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
456 
457   DebugLoc DL = FrameSetup->getDebugLoc();
458   bool Is64Bit = STI->is64Bit();
459   // Now, iterate through the vector in reverse order, and replace the movs
460   // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
461   // replace uses.
462   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
463     MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
464     MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
465     MachineBasicBlock::iterator Push = nullptr;
466     unsigned PushOpcode;
467     switch (MOV->getOpcode()) {
468     default:
469       llvm_unreachable("Unexpected Opcode!");
470     case X86::MOV32mi:
471     case X86::MOV64mi32:
472       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
473       // If the operand is a small (8-bit) immediate, we can use a
474       // PUSH instruction with a shorter encoding.
475       // Note that isImm() may fail even though this is a MOVmi, because
476       // the operand can also be a symbol.
477       if (PushOp.isImm()) {
478         int64_t Val = PushOp.getImm();
479         if (isInt<8>(Val))
480           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
481       }
482       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
483                  .addOperand(PushOp);
484       break;
485     case X86::MOV32mr:
486     case X86::MOV64mr:
487       unsigned int Reg = PushOp.getReg();
488 
489       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
490       // in preparation for the PUSH64. The upper 32 bits can be undef.
491       if (Is64Bit && MOV->getOpcode() == X86::MOV32mr) {
492         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
493         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
494         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
495         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
496           .addReg(UndefReg)
497           .addOperand(PushOp)
498           .addImm(X86::sub_32bit);
499       }
500 
501       // If PUSHrmm is not slow on this target, try to fold the source of the
502       // push into the instruction.
503       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
504 
505       // Check that this is legal to fold. Right now, we're extremely
506       // conservative about that.
507       MachineInstr *DefMov = nullptr;
508       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
509         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
510         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
511 
512         unsigned NumOps = DefMov->getDesc().getNumOperands();
513         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
514           Push->addOperand(DefMov->getOperand(i));
515 
516         DefMov->eraseFromParent();
517       } else {
518         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
519         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
520                    .addReg(Reg)
521                    .getInstr();
522       }
523       break;
524     }
525 
526     // For debugging, when using SP-based CFA, we need to adjust the CFA
527     // offset after each push.
528     // TODO: This is needed only if we require precise CFA.
529     if (!TFL->hasFP(MF))
530       TFL->BuildCFI(
531           MBB, std::next(Push), DL,
532           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
533 
534     MBB.erase(MOV);
535   }
536 
537   // The stack-pointer copy is no longer used in the call sequences.
538   // There should not be any other users, but we can't commit to that, so:
539   if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
540     Context.SPCopy->eraseFromParent();
541 
542   // Once we've done this, we need to make sure PEI doesn't assume a reserved
543   // frame.
544   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
545   FuncInfo->setHasPushSequences(true);
546 
547   return true;
548 }
549 
550 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
551     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
552   // Do an extremely restricted form of load folding.
553   // ISel will often create patterns like:
554   // movl    4(%edi), %eax
555   // movl    8(%edi), %ecx
556   // movl    12(%edi), %edx
557   // movl    %edx, 8(%esp)
558   // movl    %ecx, 4(%esp)
559   // movl    %eax, (%esp)
560   // call
561   // Get rid of those with prejudice.
562   if (!TargetRegisterInfo::isVirtualRegister(Reg))
563     return nullptr;
564 
565   // Make sure this is the only use of Reg.
566   if (!MRI->hasOneNonDBGUse(Reg))
567     return nullptr;
568 
569   MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
570 
571   // Make sure the def is a MOV from memory.
572   // If the def is an another block, give up.
573   if ((DefMI->getOpcode() != X86::MOV32rm &&
574        DefMI->getOpcode() != X86::MOV64rm) ||
575       DefMI->getParent() != FrameSetup->getParent())
576     return nullptr;
577 
578   // Make sure we don't have any instructions between DefMI and the
579   // push that make folding the load illegal.
580   for (auto I = DefMI; I != FrameSetup; ++I)
581     if (I->isLoadFoldBarrier())
582       return nullptr;
583 
584   return DefMI;
585 }
586