1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pass that optimizes call sequences on x86. 11 // Currently, it converts movs of function parameters onto the stack into 12 // pushes. This is beneficial for two main reasons: 13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. 14 // 2) It is possible to push memory arguments directly. So, if the 15 // the transformation is performed pre-reg-alloc, it can help relieve 16 // register pressure. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include <algorithm> 21 22 #include "X86.h" 23 #include "X86InstrInfo.h" 24 #include "X86MachineFunctionInfo.h" 25 #include "X86Subtarget.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "x86-cf-opt" 40 41 static cl::opt<bool> 42 NoX86CFOpt("no-x86-call-frame-opt", 43 cl::desc("Avoid optimizing x86 call frames for size"), 44 cl::init(false), cl::Hidden); 45 46 namespace { 47 class X86CallFrameOptimization : public MachineFunctionPass { 48 public: 49 X86CallFrameOptimization() : MachineFunctionPass(ID) {} 50 51 bool runOnMachineFunction(MachineFunction &MF) override; 52 53 private: 54 // Information we know about a particular call site 55 struct CallContext { 56 CallContext() 57 : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0), 58 MovVector(4, nullptr), NoStackParams(false), UsePush(false) {} 59 60 // Iterator referring to the frame setup instruction 61 MachineBasicBlock::iterator FrameSetup; 62 63 // Actual call instruction 64 MachineInstr *Call; 65 66 // A copy of the stack pointer 67 MachineInstr *SPCopy; 68 69 // The total displacement of all passed parameters 70 int64_t ExpectedDist; 71 72 // The sequence of movs used to pass the parameters 73 SmallVector<MachineInstr *, 4> MovVector; 74 75 // True if this call site has no stack parameters 76 bool NoStackParams; 77 78 // True if this call site can use push instructions 79 bool UsePush; 80 }; 81 82 typedef SmallVector<CallContext, 8> ContextVector; 83 84 bool isLegal(MachineFunction &MF); 85 86 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); 87 88 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, 89 MachineBasicBlock::iterator I, CallContext &Context); 90 91 bool adjustCallSequence(MachineFunction &MF, const CallContext &Context); 92 93 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, 94 unsigned Reg); 95 96 enum InstClassification { Convert, Skip, Exit }; 97 98 InstClassification classifyInstruction(MachineBasicBlock &MBB, 99 MachineBasicBlock::iterator MI, 100 const X86RegisterInfo &RegInfo, 101 DenseSet<unsigned int> &UsedRegs); 102 103 const char *getPassName() const override { return "X86 Optimize Call Frame"; } 104 105 const TargetInstrInfo *TII; 106 const X86FrameLowering *TFL; 107 const X86Subtarget *STI; 108 MachineRegisterInfo *MRI; 109 unsigned SlotSize; 110 unsigned Log2SlotSize; 111 static char ID; 112 }; 113 114 char X86CallFrameOptimization::ID = 0; 115 } // end anonymous namespace 116 117 FunctionPass *llvm::createX86CallFrameOptimization() { 118 return new X86CallFrameOptimization(); 119 } 120 121 // This checks whether the transformation is legal. 122 // Also returns false in cases where it's potentially legal, but 123 // we don't even want to try. 124 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { 125 if (NoX86CFOpt.getValue()) 126 return false; 127 128 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset 129 // in the compact unwind encoding that Darwin uses. So, bail if there 130 // is a danger of that being generated. 131 if (STI->isTargetDarwin() && 132 (!MF.getMMI().getLandingPads().empty() || 133 (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF)))) 134 return false; 135 136 // It is not valid to change the stack pointer outside the prolog/epilog 137 // on 64-bit Windows. 138 if (STI->isTargetWin64()) 139 return false; 140 141 // You would expect straight-line code between call-frame setup and 142 // call-frame destroy. You would be wrong. There are circumstances (e.g. 143 // CMOV_GR8 expansion of a select that feeds a function call!) where we can 144 // end up with the setup and the destroy in different basic blocks. 145 // This is bad, and breaks SP adjustment. 146 // So, check that all of the frames in the function are closed inside 147 // the same block, and, for good measure, that there are no nested frames. 148 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 149 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 150 for (MachineBasicBlock &BB : MF) { 151 bool InsideFrameSequence = false; 152 for (MachineInstr &MI : BB) { 153 if (MI.getOpcode() == FrameSetupOpcode) { 154 if (InsideFrameSequence) 155 return false; 156 InsideFrameSequence = true; 157 } else if (MI.getOpcode() == FrameDestroyOpcode) { 158 if (!InsideFrameSequence) 159 return false; 160 InsideFrameSequence = false; 161 } 162 } 163 164 if (InsideFrameSequence) 165 return false; 166 } 167 168 return true; 169 } 170 171 // Check whether this transformation is profitable for a particular 172 // function - in terms of code size. 173 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 174 ContextVector &CallSeqVector) { 175 // This transformation is always a win when we do not expect to have 176 // a reserved call frame. Under other circumstances, it may be either 177 // a win or a loss, and requires a heuristic. 178 bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); 179 if (CannotReserveFrame) 180 return true; 181 182 unsigned StackAlign = TFL->getStackAlignment(); 183 184 int64_t Advantage = 0; 185 for (auto CC : CallSeqVector) { 186 // Call sites where no parameters are passed on the stack 187 // do not affect the cost, since there needs to be no 188 // stack adjustment. 189 if (CC.NoStackParams) 190 continue; 191 192 if (!CC.UsePush) { 193 // If we don't use pushes for a particular call site, 194 // we pay for not having a reserved call frame with an 195 // additional sub/add esp pair. The cost is ~3 bytes per instruction, 196 // depending on the size of the constant. 197 // TODO: Callee-pop functions should have a smaller penalty, because 198 // an add is needed even with a reserved call frame. 199 Advantage -= 6; 200 } else { 201 // We can use pushes. First, account for the fixed costs. 202 // We'll need a add after the call. 203 Advantage -= 3; 204 // If we have to realign the stack, we'll also need a sub before 205 if (CC.ExpectedDist % StackAlign) 206 Advantage -= 3; 207 // Now, for each push, we save ~3 bytes. For small constants, we actually, 208 // save more (up to 5 bytes), but 3 should be a good approximation. 209 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; 210 } 211 } 212 213 return Advantage >= 0; 214 } 215 216 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { 217 STI = &MF.getSubtarget<X86Subtarget>(); 218 TII = STI->getInstrInfo(); 219 TFL = STI->getFrameLowering(); 220 MRI = &MF.getRegInfo(); 221 222 const X86RegisterInfo &RegInfo = 223 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 224 SlotSize = RegInfo.getSlotSize(); 225 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size"); 226 Log2SlotSize = Log2_32(SlotSize); 227 228 if (!isLegal(MF)) 229 return false; 230 231 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 232 233 bool Changed = false; 234 235 ContextVector CallSeqVector; 236 237 for (auto &MBB : MF) 238 for (auto &MI : MBB) 239 if (MI.getOpcode() == FrameSetupOpcode) { 240 CallContext Context; 241 collectCallInfo(MF, MBB, MI, Context); 242 CallSeqVector.push_back(Context); 243 } 244 245 if (!isProfitable(MF, CallSeqVector)) 246 return false; 247 248 for (auto CC : CallSeqVector) 249 if (CC.UsePush) 250 Changed |= adjustCallSequence(MF, CC); 251 252 return Changed; 253 } 254 255 X86CallFrameOptimization::InstClassification 256 X86CallFrameOptimization::classifyInstruction( 257 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 258 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { 259 if (MI == MBB.end()) 260 return Exit; 261 262 // The instructions we actually care about are movs onto the stack 263 int Opcode = MI->getOpcode(); 264 if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr || 265 Opcode == X86::MOV64mi32 || Opcode == X86::MOV64mr) 266 return Convert; 267 268 // Not all calling conventions have only stack MOVs between the stack 269 // adjust and the call. 270 271 // We want to tolerate other instructions, to cover more cases. 272 // In particular: 273 // a) PCrel calls, where we expect an additional COPY of the basereg. 274 // b) Passing frame-index addresses. 275 // c) Calling conventions that have inreg parameters. These generate 276 // both copies and movs into registers. 277 // To avoid creating lots of special cases, allow any instruction 278 // that does not write into memory, does not def or use the stack 279 // pointer, and does not def any register that was used by a preceding 280 // push. 281 // (Reading from memory is allowed, even if referenced through a 282 // frame index, since these will get adjusted properly in PEI) 283 284 // The reason for the last condition is that the pushes can't replace 285 // the movs in place, because the order must be reversed. 286 // So if we have a MOV32mr that uses EDX, then an instruction that defs 287 // EDX, and then the call, after the transformation the push will use 288 // the modified version of EDX, and not the original one. 289 // Since we are still in SSA form at this point, we only need to 290 // make sure we don't clobber any *physical* registers that were 291 // used by an earlier mov that will become a push. 292 293 if (MI->isCall() || MI->mayStore()) 294 return Exit; 295 296 for (const MachineOperand &MO : MI->operands()) { 297 if (!MO.isReg()) 298 continue; 299 unsigned int Reg = MO.getReg(); 300 if (!RegInfo.isPhysicalRegister(Reg)) 301 continue; 302 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) 303 return Exit; 304 if (MO.isDef()) { 305 for (unsigned int U : UsedRegs) 306 if (RegInfo.regsOverlap(Reg, U)) 307 return Exit; 308 } 309 } 310 311 return Skip; 312 } 313 314 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, 315 MachineBasicBlock &MBB, 316 MachineBasicBlock::iterator I, 317 CallContext &Context) { 318 // Check that this particular call sequence is amenable to the 319 // transformation. 320 const X86RegisterInfo &RegInfo = 321 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 322 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 323 324 // We expect to enter this at the beginning of a call sequence 325 assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); 326 MachineBasicBlock::iterator FrameSetup = I++; 327 Context.FrameSetup = FrameSetup; 328 329 // How much do we adjust the stack? This puts an upper bound on 330 // the number of parameters actually passed on it. 331 unsigned int MaxAdjust = 332 FrameSetup->getOperand(0).getImm() >> Log2SlotSize; 333 334 // A zero adjustment means no stack parameters 335 if (!MaxAdjust) { 336 Context.NoStackParams = true; 337 return; 338 } 339 340 // For globals in PIC mode, we can have some LEAs here. 341 // Ignore them, they don't bother us. 342 // TODO: Extend this to something that covers more cases. 343 while (I->getOpcode() == X86::LEA32r) 344 ++I; 345 346 // We expect a copy instruction here. 347 // TODO: The copy instruction is a lowering artifact. 348 // We should also support a copy-less version, where the stack 349 // pointer is used directly. 350 if (!I->isCopy() || !I->getOperand(0).isReg()) 351 return; 352 Context.SPCopy = I++; 353 354 unsigned StackPtr = Context.SPCopy->getOperand(0).getReg(); 355 356 // Scan the call setup sequence for the pattern we're looking for. 357 // We only handle a simple case - a sequence of store instructions that 358 // push a sequence of stack-slot-aligned values onto the stack, with 359 // no gaps between them. 360 if (MaxAdjust > 4) 361 Context.MovVector.resize(MaxAdjust, nullptr); 362 363 InstClassification Classification; 364 DenseSet<unsigned int> UsedRegs; 365 366 while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) != 367 Exit) { 368 if (Classification == Skip) { 369 ++I; 370 continue; 371 } 372 373 // We know the instruction has a supported store opcode. 374 // We only want movs of the form: 375 // mov imm/reg, k(%StackPtr) 376 // If we run into something else, bail. 377 // Note that AddrBaseReg may, counter to its name, not be a register, 378 // but rather a frame index. 379 // TODO: Support the fi case. This should probably work now that we 380 // have the infrastructure to track the stack pointer within a call 381 // sequence. 382 if (!I->getOperand(X86::AddrBaseReg).isReg() || 383 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || 384 !I->getOperand(X86::AddrScaleAmt).isImm() || 385 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || 386 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || 387 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || 388 !I->getOperand(X86::AddrDisp).isImm()) 389 return; 390 391 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); 392 assert(StackDisp >= 0 && 393 "Negative stack displacement when passing parameters"); 394 395 // We really don't want to consider the unaligned case. 396 if (StackDisp & (SlotSize - 1)) 397 return; 398 StackDisp >>= Log2SlotSize; 399 400 assert((size_t)StackDisp < Context.MovVector.size() && 401 "Function call has more parameters than the stack is adjusted for."); 402 403 // If the same stack slot is being filled twice, something's fishy. 404 if (Context.MovVector[StackDisp] != nullptr) 405 return; 406 Context.MovVector[StackDisp] = I; 407 408 for (const MachineOperand &MO : I->uses()) { 409 if (!MO.isReg()) 410 continue; 411 unsigned int Reg = MO.getReg(); 412 if (RegInfo.isPhysicalRegister(Reg)) 413 UsedRegs.insert(Reg); 414 } 415 416 ++I; 417 } 418 419 // We now expect the end of the sequence. If we stopped early, 420 // or reached the end of the block without finding a call, bail. 421 if (I == MBB.end() || !I->isCall()) 422 return; 423 424 Context.Call = I; 425 if ((++I)->getOpcode() != FrameDestroyOpcode) 426 return; 427 428 // Now, go through the vector, and see that we don't have any gaps, 429 // but only a series of MOVs. 430 auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end(); 431 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) 432 if (*MMI == nullptr) 433 break; 434 435 // If the call had no parameters, do nothing 436 if (MMI == Context.MovVector.begin()) 437 return; 438 439 // We are either at the last parameter, or a gap. 440 // Make sure it's not a gap 441 for (; MMI != MME; ++MMI) 442 if (*MMI != nullptr) 443 return; 444 445 Context.UsePush = true; 446 } 447 448 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, 449 const CallContext &Context) { 450 // Ok, we can in fact do the transformation for this call. 451 // Do not remove the FrameSetup instruction, but adjust the parameters. 452 // PEI will end up finalizing the handling of this. 453 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; 454 MachineBasicBlock &MBB = *(FrameSetup->getParent()); 455 FrameSetup->getOperand(1).setImm(Context.ExpectedDist); 456 457 DebugLoc DL = FrameSetup->getDebugLoc(); 458 bool Is64Bit = STI->is64Bit(); 459 // Now, iterate through the vector in reverse order, and replace the movs 460 // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 461 // replace uses. 462 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { 463 MachineBasicBlock::iterator MOV = *Context.MovVector[Idx]; 464 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); 465 MachineBasicBlock::iterator Push = nullptr; 466 unsigned PushOpcode; 467 switch (MOV->getOpcode()) { 468 default: 469 llvm_unreachable("Unexpected Opcode!"); 470 case X86::MOV32mi: 471 case X86::MOV64mi32: 472 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32; 473 // If the operand is a small (8-bit) immediate, we can use a 474 // PUSH instruction with a shorter encoding. 475 // Note that isImm() may fail even though this is a MOVmi, because 476 // the operand can also be a symbol. 477 if (PushOp.isImm()) { 478 int64_t Val = PushOp.getImm(); 479 if (isInt<8>(Val)) 480 PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8; 481 } 482 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 483 .addOperand(PushOp); 484 break; 485 case X86::MOV32mr: 486 case X86::MOV64mr: 487 unsigned int Reg = PushOp.getReg(); 488 489 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg 490 // in preparation for the PUSH64. The upper 32 bits can be undef. 491 if (Is64Bit && MOV->getOpcode() == X86::MOV32mr) { 492 unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass); 493 Reg = MRI->createVirtualRegister(&X86::GR64RegClass); 494 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg); 495 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg) 496 .addReg(UndefReg) 497 .addOperand(PushOp) 498 .addImm(X86::sub_32bit); 499 } 500 501 // If PUSHrmm is not slow on this target, try to fold the source of the 502 // push into the instruction. 503 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); 504 505 // Check that this is legal to fold. Right now, we're extremely 506 // conservative about that. 507 MachineInstr *DefMov = nullptr; 508 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { 509 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; 510 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); 511 512 unsigned NumOps = DefMov->getDesc().getNumOperands(); 513 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 514 Push->addOperand(DefMov->getOperand(i)); 515 516 DefMov->eraseFromParent(); 517 } else { 518 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 519 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 520 .addReg(Reg) 521 .getInstr(); 522 } 523 break; 524 } 525 526 // For debugging, when using SP-based CFA, we need to adjust the CFA 527 // offset after each push. 528 // TODO: This is needed only if we require precise CFA. 529 if (!TFL->hasFP(MF)) 530 TFL->BuildCFI( 531 MBB, std::next(Push), DL, 532 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); 533 534 MBB.erase(MOV); 535 } 536 537 // The stack-pointer copy is no longer used in the call sequences. 538 // There should not be any other users, but we can't commit to that, so: 539 if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) 540 Context.SPCopy->eraseFromParent(); 541 542 // Once we've done this, we need to make sure PEI doesn't assume a reserved 543 // frame. 544 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 545 FuncInfo->setHasPushSequences(true); 546 547 return true; 548 } 549 550 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( 551 MachineBasicBlock::iterator FrameSetup, unsigned Reg) { 552 // Do an extremely restricted form of load folding. 553 // ISel will often create patterns like: 554 // movl 4(%edi), %eax 555 // movl 8(%edi), %ecx 556 // movl 12(%edi), %edx 557 // movl %edx, 8(%esp) 558 // movl %ecx, 4(%esp) 559 // movl %eax, (%esp) 560 // call 561 // Get rid of those with prejudice. 562 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 563 return nullptr; 564 565 // Make sure this is the only use of Reg. 566 if (!MRI->hasOneNonDBGUse(Reg)) 567 return nullptr; 568 569 MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); 570 571 // Make sure the def is a MOV from memory. 572 // If the def is an another block, give up. 573 if ((DefMI->getOpcode() != X86::MOV32rm && 574 DefMI->getOpcode() != X86::MOV64rm) || 575 DefMI->getParent() != FrameSetup->getParent()) 576 return nullptr; 577 578 // Make sure we don't have any instructions between DefMI and the 579 // push that make folding the load illegal. 580 for (auto I = DefMI; I != FrameSetup; ++I) 581 if (I->isLoadFoldBarrier()) 582 return nullptr; 583 584 return DefMI; 585 } 586