1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines a pass that optimizes call sequences on x86. 10 // Currently, it converts movs of function parameters onto the stack into 11 // pushes. This is beneficial for two main reasons: 12 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov. 13 // 2) It is possible to push memory arguments directly. So, if the 14 // the transformation is performed pre-reg-alloc, it can help relieve 15 // register pressure. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "MCTargetDesc/X86BaseInfo.h" 20 #include "X86FrameLowering.h" 21 #include "X86InstrInfo.h" 22 #include "X86MachineFunctionInfo.h" 23 #include "X86RegisterInfo.h" 24 #include "X86Subtarget.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/MC/MCDwarf.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <cassert> 45 #include <cstddef> 46 #include <cstdint> 47 #include <iterator> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "x86-cf-opt" 52 53 static cl::opt<bool> 54 NoX86CFOpt("no-x86-call-frame-opt", 55 cl::desc("Avoid optimizing x86 call frames for size"), 56 cl::init(false), cl::Hidden); 57 58 namespace { 59 60 class X86CallFrameOptimization : public MachineFunctionPass { 61 public: 62 X86CallFrameOptimization() : MachineFunctionPass(ID) { } 63 64 bool runOnMachineFunction(MachineFunction &MF) override; 65 66 static char ID; 67 68 private: 69 // Information we know about a particular call site 70 struct CallContext { 71 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {} 72 73 // Iterator referring to the frame setup instruction 74 MachineBasicBlock::iterator FrameSetup; 75 76 // Actual call instruction 77 MachineInstr *Call = nullptr; 78 79 // A copy of the stack pointer 80 MachineInstr *SPCopy = nullptr; 81 82 // The total displacement of all passed parameters 83 int64_t ExpectedDist = 0; 84 85 // The sequence of storing instructions used to pass the parameters 86 SmallVector<MachineInstr *, 4> ArgStoreVector; 87 88 // True if this call site has no stack parameters 89 bool NoStackParams = false; 90 91 // True if this call site can use push instructions 92 bool UsePush = false; 93 }; 94 95 typedef SmallVector<CallContext, 8> ContextVector; 96 97 bool isLegal(MachineFunction &MF); 98 99 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap); 100 101 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, 102 MachineBasicBlock::iterator I, CallContext &Context); 103 104 void adjustCallSequence(MachineFunction &MF, const CallContext &Context); 105 106 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, 107 unsigned Reg); 108 109 enum InstClassification { Convert, Skip, Exit }; 110 111 InstClassification classifyInstruction(MachineBasicBlock &MBB, 112 MachineBasicBlock::iterator MI, 113 const X86RegisterInfo &RegInfo, 114 DenseSet<unsigned int> &UsedRegs); 115 116 StringRef getPassName() const override { return "X86 Optimize Call Frame"; } 117 118 const X86InstrInfo *TII = nullptr; 119 const X86FrameLowering *TFL = nullptr; 120 const X86Subtarget *STI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; 122 unsigned SlotSize = 0; 123 unsigned Log2SlotSize = 0; 124 }; 125 126 } // end anonymous namespace 127 char X86CallFrameOptimization::ID = 0; 128 INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE, 129 "X86 Call Frame Optimization", false, false) 130 131 // This checks whether the transformation is legal. 132 // Also returns false in cases where it's potentially legal, but 133 // we don't even want to try. 134 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { 135 if (NoX86CFOpt.getValue()) 136 return false; 137 138 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset 139 // in the compact unwind encoding that Darwin uses. So, bail if there 140 // is a danger of that being generated. 141 if (STI->isTargetDarwin() && 142 (!MF.getLandingPads().empty() || 143 (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF)))) 144 return false; 145 146 // It is not valid to change the stack pointer outside the prolog/epilog 147 // on 64-bit Windows. 148 if (STI->isTargetWin64()) 149 return false; 150 151 // You would expect straight-line code between call-frame setup and 152 // call-frame destroy. You would be wrong. There are circumstances (e.g. 153 // CMOV_GR8 expansion of a select that feeds a function call!) where we can 154 // end up with the setup and the destroy in different basic blocks. 155 // This is bad, and breaks SP adjustment. 156 // So, check that all of the frames in the function are closed inside 157 // the same block, and, for good measure, that there are no nested frames. 158 // 159 // If any call allocates more argument stack memory than the stack 160 // probe size, don't do this optimization. Otherwise, this pass 161 // would need to synthesize additional stack probe calls to allocate 162 // memory for arguments. 163 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 164 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 165 bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF); 166 unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF); 167 for (MachineBasicBlock &BB : MF) { 168 bool InsideFrameSequence = false; 169 for (MachineInstr &MI : BB) { 170 if (MI.getOpcode() == FrameSetupOpcode) { 171 if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall) 172 return false; 173 if (InsideFrameSequence) 174 return false; 175 InsideFrameSequence = true; 176 } else if (MI.getOpcode() == FrameDestroyOpcode) { 177 if (!InsideFrameSequence) 178 return false; 179 InsideFrameSequence = false; 180 } 181 } 182 183 if (InsideFrameSequence) 184 return false; 185 } 186 187 return true; 188 } 189 190 // Check whether this transformation is profitable for a particular 191 // function - in terms of code size. 192 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 193 ContextVector &CallSeqVector) { 194 // This transformation is always a win when we do not expect to have 195 // a reserved call frame. Under other circumstances, it may be either 196 // a win or a loss, and requires a heuristic. 197 bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects(); 198 if (CannotReserveFrame) 199 return true; 200 201 unsigned StackAlign = TFL->getStackAlignment(); 202 203 int64_t Advantage = 0; 204 for (auto CC : CallSeqVector) { 205 // Call sites where no parameters are passed on the stack 206 // do not affect the cost, since there needs to be no 207 // stack adjustment. 208 if (CC.NoStackParams) 209 continue; 210 211 if (!CC.UsePush) { 212 // If we don't use pushes for a particular call site, 213 // we pay for not having a reserved call frame with an 214 // additional sub/add esp pair. The cost is ~3 bytes per instruction, 215 // depending on the size of the constant. 216 // TODO: Callee-pop functions should have a smaller penalty, because 217 // an add is needed even with a reserved call frame. 218 Advantage -= 6; 219 } else { 220 // We can use pushes. First, account for the fixed costs. 221 // We'll need a add after the call. 222 Advantage -= 3; 223 // If we have to realign the stack, we'll also need a sub before 224 if (CC.ExpectedDist % StackAlign) 225 Advantage -= 3; 226 // Now, for each push, we save ~3 bytes. For small constants, we actually, 227 // save more (up to 5 bytes), but 3 should be a good approximation. 228 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3; 229 } 230 } 231 232 return Advantage >= 0; 233 } 234 235 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { 236 STI = &MF.getSubtarget<X86Subtarget>(); 237 TII = STI->getInstrInfo(); 238 TFL = STI->getFrameLowering(); 239 MRI = &MF.getRegInfo(); 240 241 const X86RegisterInfo &RegInfo = 242 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 243 SlotSize = RegInfo.getSlotSize(); 244 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size"); 245 Log2SlotSize = Log2_32(SlotSize); 246 247 if (skipFunction(MF.getFunction()) || !isLegal(MF)) 248 return false; 249 250 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 251 252 bool Changed = false; 253 254 ContextVector CallSeqVector; 255 256 for (auto &MBB : MF) 257 for (auto &MI : MBB) 258 if (MI.getOpcode() == FrameSetupOpcode) { 259 CallContext Context; 260 collectCallInfo(MF, MBB, MI, Context); 261 CallSeqVector.push_back(Context); 262 } 263 264 if (!isProfitable(MF, CallSeqVector)) 265 return false; 266 267 for (auto CC : CallSeqVector) { 268 if (CC.UsePush) { 269 adjustCallSequence(MF, CC); 270 Changed = true; 271 } 272 } 273 274 return Changed; 275 } 276 277 X86CallFrameOptimization::InstClassification 278 X86CallFrameOptimization::classifyInstruction( 279 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 280 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { 281 if (MI == MBB.end()) 282 return Exit; 283 284 // The instructions we actually care about are movs onto the stack or special 285 // cases of constant-stores to stack 286 switch (MI->getOpcode()) { 287 case X86::AND16mi8: 288 case X86::AND32mi8: 289 case X86::AND64mi8: { 290 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands); 291 return ImmOp.getImm() == 0 ? Convert : Exit; 292 } 293 case X86::OR16mi8: 294 case X86::OR32mi8: 295 case X86::OR64mi8: { 296 MachineOperand ImmOp = MI->getOperand(X86::AddrNumOperands); 297 return ImmOp.getImm() == -1 ? Convert : Exit; 298 } 299 case X86::MOV32mi: 300 case X86::MOV32mr: 301 case X86::MOV64mi32: 302 case X86::MOV64mr: 303 return Convert; 304 } 305 306 // Not all calling conventions have only stack MOVs between the stack 307 // adjust and the call. 308 309 // We want to tolerate other instructions, to cover more cases. 310 // In particular: 311 // a) PCrel calls, where we expect an additional COPY of the basereg. 312 // b) Passing frame-index addresses. 313 // c) Calling conventions that have inreg parameters. These generate 314 // both copies and movs into registers. 315 // To avoid creating lots of special cases, allow any instruction 316 // that does not write into memory, does not def or use the stack 317 // pointer, and does not def any register that was used by a preceding 318 // push. 319 // (Reading from memory is allowed, even if referenced through a 320 // frame index, since these will get adjusted properly in PEI) 321 322 // The reason for the last condition is that the pushes can't replace 323 // the movs in place, because the order must be reversed. 324 // So if we have a MOV32mr that uses EDX, then an instruction that defs 325 // EDX, and then the call, after the transformation the push will use 326 // the modified version of EDX, and not the original one. 327 // Since we are still in SSA form at this point, we only need to 328 // make sure we don't clobber any *physical* registers that were 329 // used by an earlier mov that will become a push. 330 331 if (MI->isCall() || MI->mayStore()) 332 return Exit; 333 334 for (const MachineOperand &MO : MI->operands()) { 335 if (!MO.isReg()) 336 continue; 337 Register Reg = MO.getReg(); 338 if (!Register::isPhysicalRegister(Reg)) 339 continue; 340 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) 341 return Exit; 342 if (MO.isDef()) { 343 for (unsigned int U : UsedRegs) 344 if (RegInfo.regsOverlap(Reg, U)) 345 return Exit; 346 } 347 } 348 349 return Skip; 350 } 351 352 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, 353 MachineBasicBlock &MBB, 354 MachineBasicBlock::iterator I, 355 CallContext &Context) { 356 // Check that this particular call sequence is amenable to the 357 // transformation. 358 const X86RegisterInfo &RegInfo = 359 *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo()); 360 361 // We expect to enter this at the beginning of a call sequence 362 assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); 363 MachineBasicBlock::iterator FrameSetup = I++; 364 Context.FrameSetup = FrameSetup; 365 366 // How much do we adjust the stack? This puts an upper bound on 367 // the number of parameters actually passed on it. 368 unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize; 369 370 // A zero adjustment means no stack parameters 371 if (!MaxAdjust) { 372 Context.NoStackParams = true; 373 return; 374 } 375 376 // Skip over DEBUG_VALUE. 377 // For globals in PIC mode, we can have some LEAs here. Skip them as well. 378 // TODO: Extend this to something that covers more cases. 379 while (I->getOpcode() == X86::LEA32r || I->isDebugInstr()) 380 ++I; 381 382 Register StackPtr = RegInfo.getStackRegister(); 383 auto StackPtrCopyInst = MBB.end(); 384 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual 385 // register. If it's there, use that virtual register as stack pointer 386 // instead. Also, we need to locate this instruction so that we can later 387 // safely ignore it while doing the conservative processing of the call chain. 388 // The COPY can be located anywhere between the call-frame setup 389 // instruction and its first use. We use the call instruction as a boundary 390 // because it is usually cheaper to check if an instruction is a call than 391 // checking if an instruction uses a register. 392 for (auto J = I; !J->isCall(); ++J) 393 if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() && 394 J->getOperand(1).getReg() == StackPtr) { 395 StackPtrCopyInst = J; 396 Context.SPCopy = &*J++; 397 StackPtr = Context.SPCopy->getOperand(0).getReg(); 398 break; 399 } 400 401 // Scan the call setup sequence for the pattern we're looking for. 402 // We only handle a simple case - a sequence of store instructions that 403 // push a sequence of stack-slot-aligned values onto the stack, with 404 // no gaps between them. 405 if (MaxAdjust > 4) 406 Context.ArgStoreVector.resize(MaxAdjust, nullptr); 407 408 DenseSet<unsigned int> UsedRegs; 409 410 for (InstClassification Classification = Skip; Classification != Exit; ++I) { 411 // If this is the COPY of the stack pointer, it's ok to ignore. 412 if (I == StackPtrCopyInst) 413 continue; 414 Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs); 415 if (Classification != Convert) 416 continue; 417 // We know the instruction has a supported store opcode. 418 // We only want movs of the form: 419 // mov imm/reg, k(%StackPtr) 420 // If we run into something else, bail. 421 // Note that AddrBaseReg may, counter to its name, not be a register, 422 // but rather a frame index. 423 // TODO: Support the fi case. This should probably work now that we 424 // have the infrastructure to track the stack pointer within a call 425 // sequence. 426 if (!I->getOperand(X86::AddrBaseReg).isReg() || 427 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || 428 !I->getOperand(X86::AddrScaleAmt).isImm() || 429 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || 430 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || 431 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || 432 !I->getOperand(X86::AddrDisp).isImm()) 433 return; 434 435 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); 436 assert(StackDisp >= 0 && 437 "Negative stack displacement when passing parameters"); 438 439 // We really don't want to consider the unaligned case. 440 if (StackDisp & (SlotSize - 1)) 441 return; 442 StackDisp >>= Log2SlotSize; 443 444 assert((size_t)StackDisp < Context.ArgStoreVector.size() && 445 "Function call has more parameters than the stack is adjusted for."); 446 447 // If the same stack slot is being filled twice, something's fishy. 448 if (Context.ArgStoreVector[StackDisp] != nullptr) 449 return; 450 Context.ArgStoreVector[StackDisp] = &*I; 451 452 for (const MachineOperand &MO : I->uses()) { 453 if (!MO.isReg()) 454 continue; 455 Register Reg = MO.getReg(); 456 if (Register::isPhysicalRegister(Reg)) 457 UsedRegs.insert(Reg); 458 } 459 } 460 461 --I; 462 463 // We now expect the end of the sequence. If we stopped early, 464 // or reached the end of the block without finding a call, bail. 465 if (I == MBB.end() || !I->isCall()) 466 return; 467 468 Context.Call = &*I; 469 if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode()) 470 return; 471 472 // Now, go through the vector, and see that we don't have any gaps, 473 // but only a series of storing instructions. 474 auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end(); 475 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize) 476 if (*MMI == nullptr) 477 break; 478 479 // If the call had no parameters, do nothing 480 if (MMI == Context.ArgStoreVector.begin()) 481 return; 482 483 // We are either at the last parameter, or a gap. 484 // Make sure it's not a gap 485 for (; MMI != MME; ++MMI) 486 if (*MMI != nullptr) 487 return; 488 489 Context.UsePush = true; 490 } 491 492 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, 493 const CallContext &Context) { 494 // Ok, we can in fact do the transformation for this call. 495 // Do not remove the FrameSetup instruction, but adjust the parameters. 496 // PEI will end up finalizing the handling of this. 497 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup; 498 MachineBasicBlock &MBB = *(FrameSetup->getParent()); 499 TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist); 500 501 DebugLoc DL = FrameSetup->getDebugLoc(); 502 bool Is64Bit = STI->is64Bit(); 503 // Now, iterate through the vector in reverse order, and replace the store to 504 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 505 // replace uses. 506 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) { 507 MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx]; 508 MachineOperand PushOp = Store->getOperand(X86::AddrNumOperands); 509 MachineBasicBlock::iterator Push = nullptr; 510 unsigned PushOpcode; 511 switch (Store->getOpcode()) { 512 default: 513 llvm_unreachable("Unexpected Opcode!"); 514 case X86::AND16mi8: 515 case X86::AND32mi8: 516 case X86::AND64mi8: 517 case X86::OR16mi8: 518 case X86::OR32mi8: 519 case X86::OR64mi8: 520 case X86::MOV32mi: 521 case X86::MOV64mi32: 522 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32; 523 // If the operand is a small (8-bit) immediate, we can use a 524 // PUSH instruction with a shorter encoding. 525 // Note that isImm() may fail even though this is a MOVmi, because 526 // the operand can also be a symbol. 527 if (PushOp.isImm()) { 528 int64_t Val = PushOp.getImm(); 529 if (isInt<8>(Val)) 530 PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8; 531 } 532 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp); 533 break; 534 case X86::MOV32mr: 535 case X86::MOV64mr: { 536 Register Reg = PushOp.getReg(); 537 538 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg 539 // in preparation for the PUSH64. The upper 32 bits can be undef. 540 if (Is64Bit && Store->getOpcode() == X86::MOV32mr) { 541 Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass); 542 Reg = MRI->createVirtualRegister(&X86::GR64RegClass); 543 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg); 544 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg) 545 .addReg(UndefReg) 546 .add(PushOp) 547 .addImm(X86::sub_32bit); 548 } 549 550 // If PUSHrmm is not slow on this target, try to fold the source of the 551 // push into the instruction. 552 bool SlowPUSHrmm = STI->isAtom() || STI->isSLM(); 553 554 // Check that this is legal to fold. Right now, we're extremely 555 // conservative about that. 556 MachineInstr *DefMov = nullptr; 557 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { 558 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm; 559 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)); 560 561 unsigned NumOps = DefMov->getDesc().getNumOperands(); 562 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 563 Push->addOperand(DefMov->getOperand(i)); 564 565 DefMov->eraseFromParent(); 566 } else { 567 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r; 568 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)) 569 .addReg(Reg) 570 .getInstr(); 571 } 572 break; 573 } 574 } 575 576 // For debugging, when using SP-based CFA, we need to adjust the CFA 577 // offset after each push. 578 // TODO: This is needed only if we require precise CFA. 579 if (!TFL->hasFP(MF)) 580 TFL->BuildCFI( 581 MBB, std::next(Push), DL, 582 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize)); 583 584 MBB.erase(Store); 585 } 586 587 // The stack-pointer copy is no longer used in the call sequences. 588 // There should not be any other users, but we can't commit to that, so: 589 if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) 590 Context.SPCopy->eraseFromParent(); 591 592 // Once we've done this, we need to make sure PEI doesn't assume a reserved 593 // frame. 594 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 595 FuncInfo->setHasPushSequences(true); 596 } 597 598 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( 599 MachineBasicBlock::iterator FrameSetup, unsigned Reg) { 600 // Do an extremely restricted form of load folding. 601 // ISel will often create patterns like: 602 // movl 4(%edi), %eax 603 // movl 8(%edi), %ecx 604 // movl 12(%edi), %edx 605 // movl %edx, 8(%esp) 606 // movl %ecx, 4(%esp) 607 // movl %eax, (%esp) 608 // call 609 // Get rid of those with prejudice. 610 if (!Register::isVirtualRegister(Reg)) 611 return nullptr; 612 613 // Make sure this is the only use of Reg. 614 if (!MRI->hasOneNonDBGUse(Reg)) 615 return nullptr; 616 617 MachineInstr &DefMI = *MRI->getVRegDef(Reg); 618 619 // Make sure the def is a MOV from memory. 620 // If the def is in another block, give up. 621 if ((DefMI.getOpcode() != X86::MOV32rm && 622 DefMI.getOpcode() != X86::MOV64rm) || 623 DefMI.getParent() != FrameSetup->getParent()) 624 return nullptr; 625 626 // Make sure we don't have any instructions between DefMI and the 627 // push that make folding the load illegal. 628 for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I) 629 if (I->isLoadFoldBarrier()) 630 return nullptr; 631 632 return &DefMI; 633 } 634 635 FunctionPass *llvm::createX86CallFrameOptimization() { 636 return new X86CallFrameOptimization(); 637 } 638