1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is performed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "MCTargetDesc/X86BaseInfo.h"
21 #include "X86FrameLowering.h"
22 #include "X86InstrInfo.h"
23 #include "X86MachineFunctionInfo.h"
24 #include "X86RegisterInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/MC/MCDwarf.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Target/TargetInstrInfo.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <iterator>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "x86-cf-opt"
53 
54 static cl::opt<bool>
55     NoX86CFOpt("no-x86-call-frame-opt",
56                cl::desc("Avoid optimizing x86 call frames for size"),
57                cl::init(false), cl::Hidden);
58 
59 namespace {
60 
61 class X86CallFrameOptimization : public MachineFunctionPass {
62 public:
63   X86CallFrameOptimization() : MachineFunctionPass(ID) {}
64 
65   bool runOnMachineFunction(MachineFunction &MF) override;
66 
67 private:
68   // Information we know about a particular call site
69   struct CallContext {
70     CallContext() : FrameSetup(nullptr), MovVector(4, nullptr) {}
71 
72     // Iterator referring to the frame setup instruction
73     MachineBasicBlock::iterator FrameSetup;
74 
75     // Actual call instruction
76     MachineInstr *Call = nullptr;
77 
78     // A copy of the stack pointer
79     MachineInstr *SPCopy = nullptr;
80 
81     // The total displacement of all passed parameters
82     int64_t ExpectedDist = 0;
83 
84     // The sequence of movs used to pass the parameters
85     SmallVector<MachineInstr *, 4> MovVector;
86 
87     // True if this call site has no stack parameters
88     bool NoStackParams = false;
89 
90     // True if this call site can use push instructions
91     bool UsePush = false;
92   };
93 
94   typedef SmallVector<CallContext, 8> ContextVector;
95 
96   bool isLegal(MachineFunction &MF);
97 
98   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
99 
100   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
101                        MachineBasicBlock::iterator I, CallContext &Context);
102 
103   void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
104 
105   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
106                                    unsigned Reg);
107 
108   enum InstClassification { Convert, Skip, Exit };
109 
110   InstClassification classifyInstruction(MachineBasicBlock &MBB,
111                                          MachineBasicBlock::iterator MI,
112                                          const X86RegisterInfo &RegInfo,
113                                          DenseSet<unsigned int> &UsedRegs);
114 
115   StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
116 
117   const X86InstrInfo *TII;
118   const X86FrameLowering *TFL;
119   const X86Subtarget *STI;
120   MachineRegisterInfo *MRI;
121   unsigned SlotSize;
122   unsigned Log2SlotSize;
123   static char ID;
124 };
125 
126 char X86CallFrameOptimization::ID = 0;
127 
128 } // end anonymous namespace
129 
130 // This checks whether the transformation is legal.
131 // Also returns false in cases where it's potentially legal, but
132 // we don't even want to try.
133 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
134   if (NoX86CFOpt.getValue())
135     return false;
136 
137   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
138   // in the compact unwind encoding that Darwin uses. So, bail if there
139   // is a danger of that being generated.
140   if (STI->isTargetDarwin() &&
141       (!MF.getLandingPads().empty() ||
142        (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
143     return false;
144 
145   // It is not valid to change the stack pointer outside the prolog/epilog
146   // on 64-bit Windows.
147   if (STI->isTargetWin64())
148     return false;
149 
150   // You would expect straight-line code between call-frame setup and
151   // call-frame destroy. You would be wrong. There are circumstances (e.g.
152   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
153   // end up with the setup and the destroy in different basic blocks.
154   // This is bad, and breaks SP adjustment.
155   // So, check that all of the frames in the function are closed inside
156   // the same block, and, for good measure, that there are no nested frames.
157   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
158   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
159   for (MachineBasicBlock &BB : MF) {
160     bool InsideFrameSequence = false;
161     for (MachineInstr &MI : BB) {
162       if (MI.getOpcode() == FrameSetupOpcode) {
163         if (InsideFrameSequence)
164           return false;
165         InsideFrameSequence = true;
166       } else if (MI.getOpcode() == FrameDestroyOpcode) {
167         if (!InsideFrameSequence)
168           return false;
169         InsideFrameSequence = false;
170       }
171     }
172 
173     if (InsideFrameSequence)
174       return false;
175   }
176 
177   return true;
178 }
179 
180 // Check whether this transformation is profitable for a particular
181 // function - in terms of code size.
182 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
183                                             ContextVector &CallSeqVector) {
184   // This transformation is always a win when we do not expect to have
185   // a reserved call frame. Under other circumstances, it may be either
186   // a win or a loss, and requires a heuristic.
187   bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
188   if (CannotReserveFrame)
189     return true;
190 
191   unsigned StackAlign = TFL->getStackAlignment();
192 
193   int64_t Advantage = 0;
194   for (auto CC : CallSeqVector) {
195     // Call sites where no parameters are passed on the stack
196     // do not affect the cost, since there needs to be no
197     // stack adjustment.
198     if (CC.NoStackParams)
199       continue;
200 
201     if (!CC.UsePush) {
202       // If we don't use pushes for a particular call site,
203       // we pay for not having a reserved call frame with an
204       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
205       // depending on the size of the constant.
206       // TODO: Callee-pop functions should have a smaller penalty, because
207       // an add is needed even with a reserved call frame.
208       Advantage -= 6;
209     } else {
210       // We can use pushes. First, account for the fixed costs.
211       // We'll need a add after the call.
212       Advantage -= 3;
213       // If we have to realign the stack, we'll also need a sub before
214       if (CC.ExpectedDist % StackAlign)
215         Advantage -= 3;
216       // Now, for each push, we save ~3 bytes. For small constants, we actually,
217       // save more (up to 5 bytes), but 3 should be a good approximation.
218       Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
219     }
220   }
221 
222   return Advantage >= 0;
223 }
224 
225 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
226   STI = &MF.getSubtarget<X86Subtarget>();
227   TII = STI->getInstrInfo();
228   TFL = STI->getFrameLowering();
229   MRI = &MF.getRegInfo();
230 
231   const X86RegisterInfo &RegInfo =
232       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
233   SlotSize = RegInfo.getSlotSize();
234   assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
235   Log2SlotSize = Log2_32(SlotSize);
236 
237   if (skipFunction(*MF.getFunction()) || !isLegal(MF))
238     return false;
239 
240   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
241 
242   bool Changed = false;
243 
244   ContextVector CallSeqVector;
245 
246   for (auto &MBB : MF)
247     for (auto &MI : MBB)
248       if (MI.getOpcode() == FrameSetupOpcode) {
249         CallContext Context;
250         collectCallInfo(MF, MBB, MI, Context);
251         CallSeqVector.push_back(Context);
252       }
253 
254   if (!isProfitable(MF, CallSeqVector))
255     return false;
256 
257   for (auto CC : CallSeqVector) {
258     if (CC.UsePush) {
259       adjustCallSequence(MF, CC);
260       Changed = true;
261     }
262   }
263 
264   return Changed;
265 }
266 
267 X86CallFrameOptimization::InstClassification
268 X86CallFrameOptimization::classifyInstruction(
269     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
270     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
271   if (MI == MBB.end())
272     return Exit;
273 
274   // The instructions we actually care about are movs onto the stack
275   int Opcode = MI->getOpcode();
276   if (Opcode == X86::MOV32mi   || Opcode == X86::MOV32mr ||
277       Opcode == X86::MOV64mi32 || Opcode == X86::MOV64mr)
278     return Convert;
279 
280   // Not all calling conventions have only stack MOVs between the stack
281   // adjust and the call.
282 
283   // We want to tolerate other instructions, to cover more cases.
284   // In particular:
285   // a) PCrel calls, where we expect an additional COPY of the basereg.
286   // b) Passing frame-index addresses.
287   // c) Calling conventions that have inreg parameters. These generate
288   //    both copies and movs into registers.
289   // To avoid creating lots of special cases, allow any instruction
290   // that does not write into memory, does not def or use the stack
291   // pointer, and does not def any register that was used by a preceding
292   // push.
293   // (Reading from memory is allowed, even if referenced through a
294   // frame index, since these will get adjusted properly in PEI)
295 
296   // The reason for the last condition is that the pushes can't replace
297   // the movs in place, because the order must be reversed.
298   // So if we have a MOV32mr that uses EDX, then an instruction that defs
299   // EDX, and then the call, after the transformation the push will use
300   // the modified version of EDX, and not the original one.
301   // Since we are still in SSA form at this point, we only need to
302   // make sure we don't clobber any *physical* registers that were
303   // used by an earlier mov that will become a push.
304 
305   if (MI->isCall() || MI->mayStore())
306     return Exit;
307 
308   for (const MachineOperand &MO : MI->operands()) {
309     if (!MO.isReg())
310       continue;
311     unsigned int Reg = MO.getReg();
312     if (!RegInfo.isPhysicalRegister(Reg))
313       continue;
314     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
315       return Exit;
316     if (MO.isDef()) {
317       for (unsigned int U : UsedRegs)
318         if (RegInfo.regsOverlap(Reg, U))
319           return Exit;
320     }
321   }
322 
323   return Skip;
324 }
325 
326 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
327                                                MachineBasicBlock &MBB,
328                                                MachineBasicBlock::iterator I,
329                                                CallContext &Context) {
330   // Check that this particular call sequence is amenable to the
331   // transformation.
332   const X86RegisterInfo &RegInfo =
333       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
334 
335   // We expect to enter this at the beginning of a call sequence
336   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
337   MachineBasicBlock::iterator FrameSetup = I++;
338   Context.FrameSetup = FrameSetup;
339 
340   // How much do we adjust the stack? This puts an upper bound on
341   // the number of parameters actually passed on it.
342   unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
343 
344   // A zero adjustment means no stack parameters
345   if (!MaxAdjust) {
346     Context.NoStackParams = true;
347     return;
348   }
349 
350   // Skip over DEBUG_VALUE.
351   // For globals in PIC mode, we can have some LEAs here. Skip them as well.
352   // TODO: Extend this to something that covers more cases.
353   while (I->getOpcode() == X86::LEA32r || I->isDebugValue())
354     ++I;
355 
356   unsigned StackPtr = RegInfo.getStackRegister();
357   // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
358   // register here.  If it's there, use that virtual register as stack pointer
359   // instead.
360   if (I->isCopy() && I->getOperand(0).isReg() && I->getOperand(1).isReg() &&
361       I->getOperand(1).getReg() == StackPtr) {
362     Context.SPCopy = &*I++;
363     StackPtr = Context.SPCopy->getOperand(0).getReg();
364   }
365 
366   // Scan the call setup sequence for the pattern we're looking for.
367   // We only handle a simple case - a sequence of store instructions that
368   // push a sequence of stack-slot-aligned values onto the stack, with
369   // no gaps between them.
370   if (MaxAdjust > 4)
371     Context.MovVector.resize(MaxAdjust, nullptr);
372 
373   InstClassification Classification;
374   DenseSet<unsigned int> UsedRegs;
375 
376   while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
377          Exit) {
378     if (Classification == Skip) {
379       ++I;
380       continue;
381     }
382 
383     // We know the instruction has a supported store opcode.
384     // We only want movs of the form:
385     // mov imm/reg, k(%StackPtr)
386     // If we run into something else, bail.
387     // Note that AddrBaseReg may, counter to its name, not be a register,
388     // but rather a frame index.
389     // TODO: Support the fi case. This should probably work now that we
390     // have the infrastructure to track the stack pointer within a call
391     // sequence.
392     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
393         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
394         !I->getOperand(X86::AddrScaleAmt).isImm() ||
395         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
396         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
397         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
398         !I->getOperand(X86::AddrDisp).isImm())
399       return;
400 
401     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
402     assert(StackDisp >= 0 &&
403            "Negative stack displacement when passing parameters");
404 
405     // We really don't want to consider the unaligned case.
406     if (StackDisp & (SlotSize - 1))
407       return;
408     StackDisp >>= Log2SlotSize;
409 
410     assert((size_t)StackDisp < Context.MovVector.size() &&
411            "Function call has more parameters than the stack is adjusted for.");
412 
413     // If the same stack slot is being filled twice, something's fishy.
414     if (Context.MovVector[StackDisp] != nullptr)
415       return;
416     Context.MovVector[StackDisp] = &*I;
417 
418     for (const MachineOperand &MO : I->uses()) {
419       if (!MO.isReg())
420         continue;
421       unsigned int Reg = MO.getReg();
422       if (RegInfo.isPhysicalRegister(Reg))
423         UsedRegs.insert(Reg);
424     }
425 
426     ++I;
427   }
428 
429   // We now expect the end of the sequence. If we stopped early,
430   // or reached the end of the block without finding a call, bail.
431   if (I == MBB.end() || !I->isCall())
432     return;
433 
434   Context.Call = &*I;
435   if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
436     return;
437 
438   // Now, go through the vector, and see that we don't have any gaps,
439   // but only a series of MOVs.
440   auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
441   for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
442     if (*MMI == nullptr)
443       break;
444 
445   // If the call had no parameters, do nothing
446   if (MMI == Context.MovVector.begin())
447     return;
448 
449   // We are either at the last parameter, or a gap.
450   // Make sure it's not a gap
451   for (; MMI != MME; ++MMI)
452     if (*MMI != nullptr)
453       return;
454 
455   Context.UsePush = true;
456 }
457 
458 void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
459                                                   const CallContext &Context) {
460   // Ok, we can in fact do the transformation for this call.
461   // Do not remove the FrameSetup instruction, but adjust the parameters.
462   // PEI will end up finalizing the handling of this.
463   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
464   MachineBasicBlock &MBB = *(FrameSetup->getParent());
465   TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
466 
467   DebugLoc DL = FrameSetup->getDebugLoc();
468   bool Is64Bit = STI->is64Bit();
469   // Now, iterate through the vector in reverse order, and replace the movs
470   // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
471   // replace uses.
472   for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
473     MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
474     MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
475     MachineBasicBlock::iterator Push = nullptr;
476     unsigned PushOpcode;
477     switch (MOV->getOpcode()) {
478     default:
479       llvm_unreachable("Unexpected Opcode!");
480     case X86::MOV32mi:
481     case X86::MOV64mi32:
482       PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSHi32;
483       // If the operand is a small (8-bit) immediate, we can use a
484       // PUSH instruction with a shorter encoding.
485       // Note that isImm() may fail even though this is a MOVmi, because
486       // the operand can also be a symbol.
487       if (PushOp.isImm()) {
488         int64_t Val = PushOp.getImm();
489         if (isInt<8>(Val))
490           PushOpcode = Is64Bit ? X86::PUSH64i8 : X86::PUSH32i8;
491       }
492       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
493       break;
494     case X86::MOV32mr:
495     case X86::MOV64mr: {
496       unsigned int Reg = PushOp.getReg();
497 
498       // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
499       // in preparation for the PUSH64. The upper 32 bits can be undef.
500       if (Is64Bit && MOV->getOpcode() == X86::MOV32mr) {
501         unsigned UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
502         Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
503         BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
504         BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
505             .addReg(UndefReg)
506             .add(PushOp)
507             .addImm(X86::sub_32bit);
508       }
509 
510       // If PUSHrmm is not slow on this target, try to fold the source of the
511       // push into the instruction.
512       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
513 
514       // Check that this is legal to fold. Right now, we're extremely
515       // conservative about that.
516       MachineInstr *DefMov = nullptr;
517       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
518         PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
519         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
520 
521         unsigned NumOps = DefMov->getDesc().getNumOperands();
522         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
523           Push->addOperand(DefMov->getOperand(i));
524 
525         DefMov->eraseFromParent();
526       } else {
527         PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
528         Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
529                    .addReg(Reg)
530                    .getInstr();
531       }
532       break;
533     }
534     }
535 
536     // For debugging, when using SP-based CFA, we need to adjust the CFA
537     // offset after each push.
538     // TODO: This is needed only if we require precise CFA.
539     if (!TFL->hasFP(MF))
540       TFL->BuildCFI(
541           MBB, std::next(Push), DL,
542           MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
543 
544     MBB.erase(MOV);
545   }
546 
547   // The stack-pointer copy is no longer used in the call sequences.
548   // There should not be any other users, but we can't commit to that, so:
549   if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
550     Context.SPCopy->eraseFromParent();
551 
552   // Once we've done this, we need to make sure PEI doesn't assume a reserved
553   // frame.
554   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
555   FuncInfo->setHasPushSequences(true);
556 }
557 
558 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
559     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
560   // Do an extremely restricted form of load folding.
561   // ISel will often create patterns like:
562   // movl    4(%edi), %eax
563   // movl    8(%edi), %ecx
564   // movl    12(%edi), %edx
565   // movl    %edx, 8(%esp)
566   // movl    %ecx, 4(%esp)
567   // movl    %eax, (%esp)
568   // call
569   // Get rid of those with prejudice.
570   if (!TargetRegisterInfo::isVirtualRegister(Reg))
571     return nullptr;
572 
573   // Make sure this is the only use of Reg.
574   if (!MRI->hasOneNonDBGUse(Reg))
575     return nullptr;
576 
577   MachineInstr &DefMI = *MRI->getVRegDef(Reg);
578 
579   // Make sure the def is a MOV from memory.
580   // If the def is in another block, give up.
581   if ((DefMI.getOpcode() != X86::MOV32rm &&
582        DefMI.getOpcode() != X86::MOV64rm) ||
583       DefMI.getParent() != FrameSetup->getParent())
584     return nullptr;
585 
586   // Make sure we don't have any instructions between DefMI and the
587   // push that make folding the load illegal.
588   for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
589     if (I->isLoadFoldBarrier())
590       return nullptr;
591 
592   return &DefMI;
593 }
594 
595 FunctionPass *llvm::createX86CallFrameOptimization() {
596   return new X86CallFrameOptimization();
597 }
598