1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pass that optimizes call sequences on x86.
11 // Currently, it converts movs of function parameters onto the stack into
12 // pushes. This is beneficial for two main reasons:
13 // 1) The push instruction encoding is much smaller than an esp-relative mov
14 // 2) It is possible to push memory arguments directly. So, if the
15 //    the transformation is performed pre-reg-alloc, it can help relieve
16 //    register pressure.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include <algorithm>
21 
22 #include "X86.h"
23 #include "X86InstrInfo.h"
24 #include "X86MachineFunctionInfo.h"
25 #include "X86Subtarget.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "x86-cf-opt"
40 
41 static cl::opt<bool>
42     NoX86CFOpt("no-x86-call-frame-opt",
43                cl::desc("Avoid optimizing x86 call frames for size"),
44                cl::init(false), cl::Hidden);
45 
46 namespace {
47 class X86CallFrameOptimization : public MachineFunctionPass {
48 public:
49   X86CallFrameOptimization() : MachineFunctionPass(ID) {}
50 
51   bool runOnMachineFunction(MachineFunction &MF) override;
52 
53 private:
54   // Information we know about a particular call site
55   struct CallContext {
56     CallContext()
57         : FrameSetup(nullptr), Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
58           MovVector(4, nullptr), NoStackParams(false), UsePush(false) {}
59 
60     // Iterator referring to the frame setup instruction
61     MachineBasicBlock::iterator FrameSetup;
62 
63     // Actual call instruction
64     MachineInstr *Call;
65 
66     // A copy of the stack pointer
67     MachineInstr *SPCopy;
68 
69     // The total displacement of all passed parameters
70     int64_t ExpectedDist;
71 
72     // The sequence of movs used to pass the parameters
73     SmallVector<MachineInstr *, 4> MovVector;
74 
75     // True if this call site has no stack parameters
76     bool NoStackParams;
77 
78     // True if this call site can use push instructions
79     bool UsePush;
80   };
81 
82   typedef SmallVector<CallContext, 8> ContextVector;
83 
84   bool isLegal(MachineFunction &MF);
85 
86   bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
87 
88   void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
89                        MachineBasicBlock::iterator I, CallContext &Context);
90 
91   bool adjustCallSequence(MachineFunction &MF, const CallContext &Context);
92 
93   MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
94                                    unsigned Reg);
95 
96   enum InstClassification { Convert, Skip, Exit };
97 
98   InstClassification classifyInstruction(MachineBasicBlock &MBB,
99                                          MachineBasicBlock::iterator MI,
100                                          const X86RegisterInfo &RegInfo,
101                                          DenseSet<unsigned int> &UsedRegs);
102 
103   const char *getPassName() const override { return "X86 Optimize Call Frame"; }
104 
105   const TargetInstrInfo *TII;
106   const X86FrameLowering *TFL;
107   const X86Subtarget *STI;
108   const MachineRegisterInfo *MRI;
109   static char ID;
110 };
111 
112 char X86CallFrameOptimization::ID = 0;
113 } // end anonymous namespace
114 
115 FunctionPass *llvm::createX86CallFrameOptimization() {
116   return new X86CallFrameOptimization();
117 }
118 
119 // This checks whether the transformation is legal.
120 // Also returns false in cases where it's potentially legal, but
121 // we don't even want to try.
122 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
123   if (NoX86CFOpt.getValue())
124     return false;
125 
126   // We currently only support call sequences where *all* parameters.
127   // are passed on the stack.
128   // No point in running this in 64-bit mode, since some arguments are
129   // passed in-register in all common calling conventions, so the pattern
130   // we're looking for will never match.
131   if (STI->is64Bit())
132     return false;
133 
134   // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
135   // in the compact unwind encoding that Darwin uses. So, bail if there
136   // is a danger of that being generated.
137   if (STI->isTargetDarwin() &&
138       (!MF.getMMI().getLandingPads().empty() ||
139        (MF.getFunction()->needsUnwindTableEntry() && !TFL->hasFP(MF))))
140     return false;
141 
142   // You would expect straight-line code between call-frame setup and
143   // call-frame destroy. You would be wrong. There are circumstances (e.g.
144   // CMOV_GR8 expansion of a select that feeds a function call!) where we can
145   // end up with the setup and the destroy in different basic blocks.
146   // This is bad, and breaks SP adjustment.
147   // So, check that all of the frames in the function are closed inside
148   // the same block, and, for good measure, that there are no nested frames.
149   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
150   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
151   for (MachineBasicBlock &BB : MF) {
152     bool InsideFrameSequence = false;
153     for (MachineInstr &MI : BB) {
154       if (MI.getOpcode() == FrameSetupOpcode) {
155         if (InsideFrameSequence)
156           return false;
157         InsideFrameSequence = true;
158       } else if (MI.getOpcode() == FrameDestroyOpcode) {
159         if (!InsideFrameSequence)
160           return false;
161         InsideFrameSequence = false;
162       }
163     }
164 
165     if (InsideFrameSequence)
166       return false;
167   }
168 
169   return true;
170 }
171 
172 // Check whether this transformation is profitable for a particular
173 // function - in terms of code size.
174 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
175                                             ContextVector &CallSeqVector) {
176   // This transformation is always a win when we do not expect to have
177   // a reserved call frame. Under other circumstances, it may be either
178   // a win or a loss, and requires a heuristic.
179   bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
180   if (CannotReserveFrame)
181     return true;
182 
183   unsigned StackAlign = TFL->getStackAlignment();
184 
185   int64_t Advantage = 0;
186   for (auto CC : CallSeqVector) {
187     // Call sites where no parameters are passed on the stack
188     // do not affect the cost, since there needs to be no
189     // stack adjustment.
190     if (CC.NoStackParams)
191       continue;
192 
193     if (!CC.UsePush) {
194       // If we don't use pushes for a particular call site,
195       // we pay for not having a reserved call frame with an
196       // additional sub/add esp pair. The cost is ~3 bytes per instruction,
197       // depending on the size of the constant.
198       // TODO: Callee-pop functions should have a smaller penalty, because
199       // an add is needed even with a reserved call frame.
200       Advantage -= 6;
201     } else {
202       // We can use pushes. First, account for the fixed costs.
203       // We'll need a add after the call.
204       Advantage -= 3;
205       // If we have to realign the stack, we'll also need and sub before
206       if (CC.ExpectedDist % StackAlign)
207         Advantage -= 3;
208       // Now, for each push, we save ~3 bytes. For small constants, we actually,
209       // save more (up to 5 bytes), but 3 should be a good approximation.
210       Advantage += (CC.ExpectedDist / 4) * 3;
211     }
212   }
213 
214   return Advantage >= 0;
215 }
216 
217 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
218   STI = &MF.getSubtarget<X86Subtarget>();
219   TII = STI->getInstrInfo();
220   TFL = STI->getFrameLowering();
221   MRI = &MF.getRegInfo();
222 
223   if (!isLegal(MF))
224     return false;
225 
226   unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
227 
228   bool Changed = false;
229 
230   ContextVector CallSeqVector;
231 
232   for (auto &MBB : MF)
233     for (auto &MI : MBB)
234       if (MI.getOpcode() == FrameSetupOpcode) {
235         CallContext Context;
236         collectCallInfo(MF, MBB, MI, Context);
237         CallSeqVector.push_back(Context);
238       }
239 
240   if (!isProfitable(MF, CallSeqVector))
241     return false;
242 
243   for (auto CC : CallSeqVector)
244     if (CC.UsePush)
245       Changed |= adjustCallSequence(MF, CC);
246 
247   return Changed;
248 }
249 
250 X86CallFrameOptimization::InstClassification
251 X86CallFrameOptimization::classifyInstruction(
252     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
253     const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) {
254   if (MI == MBB.end())
255     return Exit;
256 
257   // The instructions we actually care about are movs onto the stack
258   int Opcode = MI->getOpcode();
259   if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr)
260     return Convert;
261 
262   // Not all calling conventions have only stack MOVs between the stack
263   // adjust and the call.
264 
265   // We want to tolerate other instructions, to cover more cases.
266   // In particular:
267   // a) PCrel calls, where we expect an additional COPY of the basereg.
268   // b) Passing frame-index addresses.
269   // c) Calling conventions that have inreg parameters. These generate
270   //    both copies and movs into registers.
271   // To avoid creating lots of special cases, allow any instruction
272   // that does not write into memory, does not def or use the stack
273   // pointer, and does not def any register that was used by a preceding
274   // push.
275   // (Reading from memory is allowed, even if referenced through a
276   // frame index, since these will get adjusted properly in PEI)
277 
278   // The reason for the last condition is that the pushes can't replace
279   // the movs in place, because the order must be reversed.
280   // So if we have a MOV32mr that uses EDX, then an instruction that defs
281   // EDX, and then the call, after the transformation the push will use
282   // the modified version of EDX, and not the original one.
283   // Since we are still in SSA form at this point, we only need to
284   // make sure we don't clobber any *physical* registers that were
285   // used by an earlier mov that will become a push.
286 
287   if (MI->isCall() || MI->mayStore())
288     return Exit;
289 
290   for (const MachineOperand &MO : MI->operands()) {
291     if (!MO.isReg())
292       continue;
293     unsigned int Reg = MO.getReg();
294     if (!RegInfo.isPhysicalRegister(Reg))
295       continue;
296     if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
297       return Exit;
298     if (MO.isDef()) {
299       for (unsigned int U : UsedRegs)
300         if (RegInfo.regsOverlap(Reg, U))
301           return Exit;
302     }
303   }
304 
305   return Skip;
306 }
307 
308 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
309                                                MachineBasicBlock &MBB,
310                                                MachineBasicBlock::iterator I,
311                                                CallContext &Context) {
312   // Check that this particular call sequence is amenable to the
313   // transformation.
314   const X86RegisterInfo &RegInfo =
315       *static_cast<const X86RegisterInfo *>(STI->getRegisterInfo());
316   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
317 
318   // We expect to enter this at the beginning of a call sequence
319   assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
320   MachineBasicBlock::iterator FrameSetup = I++;
321   Context.FrameSetup = FrameSetup;
322 
323   // How much do we adjust the stack? This puts an upper bound on
324   // the number of parameters actually passed on it.
325   unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
326 
327   // A zero adjustment means no stack parameters
328   if (!MaxAdjust) {
329     Context.NoStackParams = true;
330     return;
331   }
332 
333   // For globals in PIC mode, we can have some LEAs here.
334   // Ignore them, they don't bother us.
335   // TODO: Extend this to something that covers more cases.
336   while (I->getOpcode() == X86::LEA32r)
337     ++I;
338 
339   // We expect a copy instruction here.
340   // TODO: The copy instruction is a lowering artifact.
341   //       We should also support a copy-less version, where the stack
342   //       pointer is used directly.
343   if (!I->isCopy() || !I->getOperand(0).isReg())
344     return;
345   Context.SPCopy = I++;
346 
347   unsigned StackPtr = Context.SPCopy->getOperand(0).getReg();
348 
349   // Scan the call setup sequence for the pattern we're looking for.
350   // We only handle a simple case - a sequence of MOV32mi or MOV32mr
351   // instructions, that push a sequence of 32-bit values onto the stack, with
352   // no gaps between them.
353   if (MaxAdjust > 4)
354     Context.MovVector.resize(MaxAdjust, nullptr);
355 
356   InstClassification Classification;
357   DenseSet<unsigned int> UsedRegs;
358 
359   while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) !=
360          Exit) {
361     if (Classification == Skip) {
362       ++I;
363       continue;
364     }
365 
366     // We know the instruction is a MOV32mi/MOV32mr.
367     // We only want movs of the form:
368     // movl imm/r32, k(%esp)
369     // If we run into something else, bail.
370     // Note that AddrBaseReg may, counter to its name, not be a register,
371     // but rather a frame index.
372     // TODO: Support the fi case. This should probably work now that we
373     // have the infrastructure to track the stack pointer within a call
374     // sequence.
375     if (!I->getOperand(X86::AddrBaseReg).isReg() ||
376         (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
377         !I->getOperand(X86::AddrScaleAmt).isImm() ||
378         (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
379         (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
380         (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
381         !I->getOperand(X86::AddrDisp).isImm())
382       return;
383 
384     int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
385     assert(StackDisp >= 0 &&
386            "Negative stack displacement when passing parameters");
387 
388     // We really don't want to consider the unaligned case.
389     if (StackDisp % 4)
390       return;
391     StackDisp /= 4;
392 
393     assert((size_t)StackDisp < Context.MovVector.size() &&
394            "Function call has more parameters than the stack is adjusted for.");
395 
396     // If the same stack slot is being filled twice, something's fishy.
397     if (Context.MovVector[StackDisp] != nullptr)
398       return;
399     Context.MovVector[StackDisp] = I;
400 
401     for (const MachineOperand &MO : I->uses()) {
402       if (!MO.isReg())
403         continue;
404       unsigned int Reg = MO.getReg();
405       if (RegInfo.isPhysicalRegister(Reg))
406         UsedRegs.insert(Reg);
407     }
408 
409     ++I;
410   }
411 
412   // We now expect the end of the sequence. If we stopped early,
413   // or reached the end of the block without finding a call, bail.
414   if (I == MBB.end() || !I->isCall())
415     return;
416 
417   Context.Call = I;
418   if ((++I)->getOpcode() != FrameDestroyOpcode)
419     return;
420 
421   // Now, go through the vector, and see that we don't have any gaps,
422   // but only a series of 32-bit MOVs.
423   auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
424   for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
425     if (*MMI == nullptr)
426       break;
427 
428   // If the call had no parameters, do nothing
429   if (MMI == Context.MovVector.begin())
430     return;
431 
432   // We are either at the last parameter, or a gap.
433   // Make sure it's not a gap
434   for (; MMI != MME; ++MMI)
435     if (*MMI != nullptr)
436       return;
437 
438   Context.UsePush = true;
439 }
440 
441 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
442                                                   const CallContext &Context) {
443   // Ok, we can in fact do the transformation for this call.
444   // Do not remove the FrameSetup instruction, but adjust the parameters.
445   // PEI will end up finalizing the handling of this.
446   MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
447   MachineBasicBlock &MBB = *(FrameSetup->getParent());
448   FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
449 
450   DebugLoc DL = FrameSetup->getDebugLoc();
451   // Now, iterate through the vector in reverse order, and replace the movs
452   // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
453   // replace uses.
454   for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
455     MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
456     MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
457     MachineBasicBlock::iterator Push = nullptr;
458     if (MOV->getOpcode() == X86::MOV32mi) {
459       unsigned PushOpcode = X86::PUSHi32;
460       // If the operand is a small (8-bit) immediate, we can use a
461       // PUSH instruction with a shorter encoding.
462       // Note that isImm() may fail even though this is a MOVmi, because
463       // the operand can also be a symbol.
464       if (PushOp.isImm()) {
465         int64_t Val = PushOp.getImm();
466         if (isInt<8>(Val))
467           PushOpcode = X86::PUSH32i8;
468       }
469       Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
470                  .addOperand(PushOp);
471     } else {
472       unsigned int Reg = PushOp.getReg();
473 
474       // If PUSHrmm is not slow on this target, try to fold the source of the
475       // push into the instruction.
476       bool SlowPUSHrmm = STI->isAtom() || STI->isSLM();
477 
478       // Check that this is legal to fold. Right now, we're extremely
479       // conservative about that.
480       MachineInstr *DefMov = nullptr;
481       if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
482         Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
483 
484         unsigned NumOps = DefMov->getDesc().getNumOperands();
485         for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
486           Push->addOperand(DefMov->getOperand(i));
487 
488         DefMov->eraseFromParent();
489       } else {
490         Push = BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
491                    .addReg(Reg)
492                    .getInstr();
493       }
494     }
495 
496     // For debugging, when using SP-based CFA, we need to adjust the CFA
497     // offset after each push.
498     // TODO: This is needed only if we require precise CFA.
499     if (!TFL->hasFP(MF))
500       TFL->BuildCFI(MBB, std::next(Push), DL,
501                     MCCFIInstruction::createAdjustCfaOffset(nullptr, 4));
502 
503     MBB.erase(MOV);
504   }
505 
506   // The stack-pointer copy is no longer used in the call sequences.
507   // There should not be any other users, but we can't commit to that, so:
508   if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
509     Context.SPCopy->eraseFromParent();
510 
511   // Once we've done this, we need to make sure PEI doesn't assume a reserved
512   // frame.
513   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
514   FuncInfo->setHasPushSequences(true);
515 
516   return true;
517 }
518 
519 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
520     MachineBasicBlock::iterator FrameSetup, unsigned Reg) {
521   // Do an extremely restricted form of load folding.
522   // ISel will often create patterns like:
523   // movl    4(%edi), %eax
524   // movl    8(%edi), %ecx
525   // movl    12(%edi), %edx
526   // movl    %edx, 8(%esp)
527   // movl    %ecx, 4(%esp)
528   // movl    %eax, (%esp)
529   // call
530   // Get rid of those with prejudice.
531   if (!TargetRegisterInfo::isVirtualRegister(Reg))
532     return nullptr;
533 
534   // Make sure this is the only use of Reg.
535   if (!MRI->hasOneNonDBGUse(Reg))
536     return nullptr;
537 
538   MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg);
539 
540   // Make sure the def is a MOV from memory.
541   // If the def is an another block, give up.
542   if (DefMI->getOpcode() != X86::MOV32rm ||
543       DefMI->getParent() != FrameSetup->getParent())
544     return nullptr;
545 
546   // Make sure we don't have any instructions between DefMI and the
547   // push that make folding the load illegal.
548   for (auto I = DefMI; I != FrameSetup; ++I)
549     if (I->isLoadFoldBarrier())
550       return nullptr;
551 
552   return DefMI;
553 }
554