1 //===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines a pass that optimizes call sequences on x86. 11 // Currently, it converts movs of function parameters onto the stack into 12 // pushes. This is beneficial for two main reasons: 13 // 1) The push instruction encoding is much smaller than an esp-relative mov 14 // 2) It is possible to push memory arguments directly. So, if the 15 // the transformation is preformed pre-reg-alloc, it can help relieve 16 // register pressure. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include <algorithm> 21 22 #include "X86.h" 23 #include "X86InstrInfo.h" 24 #include "X86Subtarget.h" 25 #include "X86MachineFunctionInfo.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 36 using namespace llvm; 37 38 #define DEBUG_TYPE "x86-cf-opt" 39 40 static cl::opt<bool> 41 NoX86CFOpt("no-x86-call-frame-opt", 42 cl::desc("Avoid optimizing x86 call frames for size"), 43 cl::init(false), cl::Hidden); 44 45 namespace { 46 class X86CallFrameOptimization : public MachineFunctionPass { 47 public: 48 X86CallFrameOptimization() : MachineFunctionPass(ID) {} 49 50 bool runOnMachineFunction(MachineFunction &MF) override; 51 52 private: 53 // Information we know about a particular call site 54 struct CallContext { 55 CallContext() 56 : Call(nullptr), SPCopy(nullptr), ExpectedDist(0), 57 MovVector(4, nullptr), NoStackParams(false), UsePush(false){}; 58 59 // Actuall call instruction 60 MachineInstr *Call; 61 62 // A copy of the stack pointer 63 MachineInstr *SPCopy; 64 65 // The total displacement of all passed parameters 66 int64_t ExpectedDist; 67 68 // The sequence of movs used to pass the parameters 69 SmallVector<MachineInstr *, 4> MovVector; 70 71 // True if this call site has no stack parameters 72 bool NoStackParams; 73 74 // True of this callsite can use push instructions 75 bool UsePush; 76 }; 77 78 typedef DenseMap<MachineInstr *, CallContext> ContextMap; 79 80 bool isLegal(MachineFunction &MF); 81 82 bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap); 83 84 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB, 85 MachineBasicBlock::iterator I, CallContext &Context); 86 87 bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I, 88 const CallContext &Context); 89 90 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup, 91 unsigned Reg); 92 93 enum InstClassification { Convert, Skip, Exit }; 94 95 InstClassification classifyInstruction(MachineBasicBlock &MBB, 96 MachineBasicBlock::iterator MI, 97 const X86RegisterInfo &RegInfo, 98 DenseSet<unsigned int> &UsedRegs); 99 100 const char *getPassName() const override { return "X86 Optimize Call Frame"; } 101 102 const TargetInstrInfo *TII; 103 const TargetFrameLowering *TFL; 104 const MachineRegisterInfo *MRI; 105 static char ID; 106 }; 107 108 char X86CallFrameOptimization::ID = 0; 109 } 110 111 FunctionPass *llvm::createX86CallFrameOptimization() { 112 return new X86CallFrameOptimization(); 113 } 114 115 // This checks whether the transformation is legal. 116 // Also returns false in cases where it's potentially legal, but 117 // we don't even want to try. 118 bool X86CallFrameOptimization::isLegal(MachineFunction &MF) { 119 if (NoX86CFOpt.getValue()) 120 return false; 121 122 // We currently only support call sequences where *all* parameters. 123 // are passed on the stack. 124 // No point in running this in 64-bit mode, since some arguments are 125 // passed in-register in all common calling conventions, so the pattern 126 // we're looking for will never match. 127 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); 128 if (STI.is64Bit()) 129 return false; 130 131 // You would expect straight-line code between call-frame setup and 132 // call-frame destroy. You would be wrong. There are circumstances (e.g. 133 // CMOV_GR8 expansion of a select that feeds a function call!) where we can 134 // end up with the setup and the destroy in different basic blocks. 135 // This is bad, and breaks SP adjustment. 136 // So, check that all of the frames in the function are closed inside 137 // the same block, and, for good measure, that there are no nested frames. 138 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 139 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 140 for (MachineBasicBlock &BB : MF) { 141 bool InsideFrameSequence = false; 142 for (MachineInstr &MI : BB) { 143 if (MI.getOpcode() == FrameSetupOpcode) { 144 if (InsideFrameSequence) 145 return false; 146 InsideFrameSequence = true; 147 } else if (MI.getOpcode() == FrameDestroyOpcode) { 148 if (!InsideFrameSequence) 149 return false; 150 InsideFrameSequence = false; 151 } 152 } 153 154 if (InsideFrameSequence) 155 return false; 156 } 157 158 return true; 159 } 160 161 // Check whether this trasnformation is profitable for a particular 162 // function - in terms of code size. 163 bool X86CallFrameOptimization::isProfitable(MachineFunction &MF, 164 ContextMap &CallSeqMap) { 165 // This transformation is always a win when we do not expect to have 166 // a reserved call frame. Under other circumstances, it may be either 167 // a win or a loss, and requires a heuristic. 168 bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects(); 169 if (CannotReserveFrame) 170 return true; 171 172 // Don't do this when not optimizing for size. 173 bool OptForSize = 174 MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) || 175 MF.getFunction()->hasFnAttribute(Attribute::MinSize); 176 177 if (!OptForSize) 178 return false; 179 180 unsigned StackAlign = TFL->getStackAlignment(); 181 182 int64_t Advantage = 0; 183 for (auto CC : CallSeqMap) { 184 // Call sites where no parameters are passed on the stack 185 // do not affect the cost, since there needs to be no 186 // stack adjustment. 187 if (CC.second.NoStackParams) 188 continue; 189 190 if (!CC.second.UsePush) { 191 // If we don't use pushes for a particular call site, 192 // we pay for not having a reserved call frame with an 193 // additional sub/add esp pair. The cost is ~3 bytes per instruction, 194 // depending on the size of the constant. 195 // TODO: Callee-pop functions should have a smaller penalty, because 196 // an add is needed even with a reserved call frame. 197 Advantage -= 6; 198 } else { 199 // We can use pushes. First, account for the fixed costs. 200 // We'll need a add after the call. 201 Advantage -= 3; 202 // If we have to realign the stack, we'll also need and sub before 203 if (CC.second.ExpectedDist % StackAlign) 204 Advantage -= 3; 205 // Now, for each push, we save ~3 bytes. For small constants, we actually, 206 // save more (up to 5 bytes), but 3 should be a good approximation. 207 Advantage += (CC.second.ExpectedDist / 4) * 3; 208 } 209 } 210 211 return (Advantage >= 0); 212 } 213 214 bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) { 215 TII = MF.getSubtarget().getInstrInfo(); 216 TFL = MF.getSubtarget().getFrameLowering(); 217 MRI = &MF.getRegInfo(); 218 219 if (!isLegal(MF)) 220 return false; 221 222 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 223 224 bool Changed = false; 225 226 ContextMap CallSeqMap; 227 228 for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) 229 for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) 230 if (I->getOpcode() == FrameSetupOpcode) { 231 CallContext &Context = CallSeqMap[I]; 232 collectCallInfo(MF, *BB, I, Context); 233 } 234 235 if (!isProfitable(MF, CallSeqMap)) 236 return false; 237 238 for (auto CC : CallSeqMap) 239 if (CC.second.UsePush) 240 Changed |= adjustCallSequence(MF, CC.first, CC.second); 241 242 return Changed; 243 } 244 245 X86CallFrameOptimization::InstClassification 246 X86CallFrameOptimization::classifyInstruction( 247 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 248 const X86RegisterInfo &RegInfo, DenseSet<unsigned int> &UsedRegs) { 249 if (MI == MBB.end()) 250 return Exit; 251 252 // The instructions we actually care about are movs onto the stack 253 int Opcode = MI->getOpcode(); 254 if (Opcode == X86::MOV32mi || Opcode == X86::MOV32mr) 255 return Convert; 256 257 // Not all calling conventions have only stack MOVs between the stack 258 // adjust and the call. 259 260 // We want to tolerate other instructions, to cover more cases. 261 // In particular: 262 // a) PCrel calls, where we expect an additional COPY of the basereg. 263 // b) Passing frame-index addresses. 264 // c) Calling conventions that have inreg parameters. These generate 265 // both copies and movs into registers. 266 // To avoid creating lots of special cases, allow any instruction 267 // that does not write into memory, does not def or use the stack 268 // pointer, and does not def any register that was used by a preceding 269 // push. 270 // (Reading from memory is allowed, even if referenced through a 271 // frame index, since these will get adjusted properly in PEI) 272 273 // The reason for the last condition is that the pushes can't replace 274 // the movs in place, because the order must be reversed. 275 // So if we have a MOV32mr that uses EDX, then an instruction that defs 276 // EDX, and then the call, after the transformation the push will use 277 // the modified version of EDX, and not the original one. 278 // Since we are still in SSA form at this point, we only need to 279 // make sure we don't clobber any *physical* registers that were 280 // used by an earlier mov that will become a push. 281 282 if (MI->isCall() || MI->mayStore()) 283 return Exit; 284 285 for (const MachineOperand &MO : MI->operands()) { 286 if (!MO.isReg()) 287 continue; 288 unsigned int Reg = MO.getReg(); 289 if (!RegInfo.isPhysicalRegister(Reg)) 290 continue; 291 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister())) 292 return Exit; 293 if (MO.isDef()) { 294 for (unsigned int U : UsedRegs) 295 if (RegInfo.regsOverlap(Reg, U)) 296 return Exit; 297 } 298 } 299 300 return Skip; 301 } 302 303 void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF, 304 MachineBasicBlock &MBB, 305 MachineBasicBlock::iterator I, 306 CallContext &Context) { 307 // Check that this particular call sequence is amenable to the 308 // transformation. 309 const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>( 310 MF.getSubtarget().getRegisterInfo()); 311 unsigned StackPtr = RegInfo.getStackRegister(); 312 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 313 314 // We expect to enter this at the beginning of a call sequence 315 assert(I->getOpcode() == TII->getCallFrameSetupOpcode()); 316 MachineBasicBlock::iterator FrameSetup = I++; 317 318 // How much do we adjust the stack? This puts an upper bound on 319 // the number of parameters actually passed on it. 320 unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4; 321 322 // A zero adjustment means no stack parameters 323 if (!MaxAdjust) { 324 Context.NoStackParams = true; 325 return; 326 } 327 328 // For globals in PIC mode, we can have some LEAs here. 329 // Ignore them, they don't bother us. 330 // TODO: Extend this to something that covers more cases. 331 while (I->getOpcode() == X86::LEA32r) 332 ++I; 333 334 // We expect a copy instruction here. 335 // TODO: The copy instruction is a lowering artifact. 336 // We should also support a copy-less version, where the stack 337 // pointer is used directly. 338 if (!I->isCopy() || !I->getOperand(0).isReg()) 339 return; 340 Context.SPCopy = I++; 341 StackPtr = Context.SPCopy->getOperand(0).getReg(); 342 343 // Scan the call setup sequence for the pattern we're looking for. 344 // We only handle a simple case - a sequence of MOV32mi or MOV32mr 345 // instructions, that push a sequence of 32-bit values onto the stack, with 346 // no gaps between them. 347 if (MaxAdjust > 4) 348 Context.MovVector.resize(MaxAdjust, nullptr); 349 350 InstClassification Classification; 351 DenseSet<unsigned int> UsedRegs; 352 353 while ((Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs)) != 354 Exit) { 355 if (Classification == Skip) { 356 ++I; 357 continue; 358 } 359 360 // We know the instruction is a MOV32mi/MOV32mr. 361 // We only want movs of the form: 362 // movl imm/r32, k(%esp) 363 // If we run into something else, bail. 364 // Note that AddrBaseReg may, counter to its name, not be a register, 365 // but rather a frame index. 366 // TODO: Support the fi case. This should probably work now that we 367 // have the infrastructure to track the stack pointer within a call 368 // sequence. 369 if (!I->getOperand(X86::AddrBaseReg).isReg() || 370 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) || 371 !I->getOperand(X86::AddrScaleAmt).isImm() || 372 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) || 373 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) || 374 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) || 375 !I->getOperand(X86::AddrDisp).isImm()) 376 return; 377 378 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm(); 379 assert(StackDisp >= 0 && 380 "Negative stack displacement when passing parameters"); 381 382 // We really don't want to consider the unaligned case. 383 if (StackDisp % 4) 384 return; 385 StackDisp /= 4; 386 387 assert((size_t)StackDisp < Context.MovVector.size() && 388 "Function call has more parameters than the stack is adjusted for."); 389 390 // If the same stack slot is being filled twice, something's fishy. 391 if (Context.MovVector[StackDisp] != nullptr) 392 return; 393 Context.MovVector[StackDisp] = I; 394 395 for (const MachineOperand &MO : I->uses()) { 396 if (!MO.isReg()) 397 continue; 398 unsigned int Reg = MO.getReg(); 399 if (RegInfo.isPhysicalRegister(Reg)) 400 UsedRegs.insert(Reg); 401 } 402 403 ++I; 404 } 405 406 // We now expect the end of the sequence. If we stopped early, 407 // or reached the end of the block without finding a call, bail. 408 if (I == MBB.end() || !I->isCall()) 409 return; 410 411 Context.Call = I; 412 if ((++I)->getOpcode() != FrameDestroyOpcode) 413 return; 414 415 // Now, go through the vector, and see that we don't have any gaps, 416 // but only a series of 32-bit MOVs. 417 auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end(); 418 for (; MMI != MME; ++MMI, Context.ExpectedDist += 4) 419 if (*MMI == nullptr) 420 break; 421 422 // If the call had no parameters, do nothing 423 if (MMI == Context.MovVector.begin()) 424 return; 425 426 // We are either at the last parameter, or a gap. 427 // Make sure it's not a gap 428 for (; MMI != MME; ++MMI) 429 if (*MMI != nullptr) 430 return; 431 432 Context.UsePush = true; 433 return; 434 } 435 436 bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF, 437 MachineBasicBlock::iterator I, 438 const CallContext &Context) { 439 // Ok, we can in fact do the transformation for this call. 440 // Do not remove the FrameSetup instruction, but adjust the parameters. 441 // PEI will end up finalizing the handling of this. 442 MachineBasicBlock::iterator FrameSetup = I; 443 MachineBasicBlock &MBB = *(I->getParent()); 444 FrameSetup->getOperand(1).setImm(Context.ExpectedDist); 445 446 DebugLoc DL = I->getDebugLoc(); 447 // Now, iterate through the vector in reverse order, and replace the movs 448 // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to 449 // replace uses. 450 for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) { 451 MachineBasicBlock::iterator MOV = *Context.MovVector[Idx]; 452 MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands); 453 if (MOV->getOpcode() == X86::MOV32mi) { 454 unsigned PushOpcode = X86::PUSHi32; 455 // If the operand is a small (8-bit) immediate, we can use a 456 // PUSH instruction with a shorter encoding. 457 // Note that isImm() may fail even though this is a MOVmi, because 458 // the operand can also be a symbol. 459 if (PushOp.isImm()) { 460 int64_t Val = PushOp.getImm(); 461 if (isInt<8>(Val)) 462 PushOpcode = X86::PUSH32i8; 463 } 464 BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp); 465 } else { 466 unsigned int Reg = PushOp.getReg(); 467 468 // If PUSHrmm is not slow on this target, try to fold the source of the 469 // push into the instruction. 470 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); 471 bool SlowPUSHrmm = ST.isAtom() || ST.isSLM(); 472 473 // Check that this is legal to fold. Right now, we're extremely 474 // conservative about that. 475 MachineInstr *DefMov = nullptr; 476 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) { 477 MachineInstr *Push = 478 BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm)); 479 480 unsigned NumOps = DefMov->getDesc().getNumOperands(); 481 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i) 482 Push->addOperand(DefMov->getOperand(i)); 483 484 DefMov->eraseFromParent(); 485 } else { 486 BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r)) 487 .addReg(Reg) 488 .getInstr(); 489 } 490 } 491 492 MBB.erase(MOV); 493 } 494 495 // The stack-pointer copy is no longer used in the call sequences. 496 // There should not be any other users, but we can't commit to that, so: 497 if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg())) 498 Context.SPCopy->eraseFromParent(); 499 500 // Once we've done this, we need to make sure PEI doesn't assume a reserved 501 // frame. 502 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 503 FuncInfo->setHasPushSequences(true); 504 505 return true; 506 } 507 508 MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush( 509 MachineBasicBlock::iterator FrameSetup, unsigned Reg) { 510 // Do an extremely restricted form of load folding. 511 // ISel will often create patterns like: 512 // movl 4(%edi), %eax 513 // movl 8(%edi), %ecx 514 // movl 12(%edi), %edx 515 // movl %edx, 8(%esp) 516 // movl %ecx, 4(%esp) 517 // movl %eax, (%esp) 518 // call 519 // Get rid of those with prejudice. 520 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 521 return nullptr; 522 523 // Make sure this is the only use of Reg. 524 if (!MRI->hasOneNonDBGUse(Reg)) 525 return nullptr; 526 527 MachineBasicBlock::iterator DefMI = MRI->getVRegDef(Reg); 528 529 // Make sure the def is a MOV from memory. 530 // If the def is an another block, give up. 531 if (DefMI->getOpcode() != X86::MOV32rm || 532 DefMI->getParent() != FrameSetup->getParent()) 533 return nullptr; 534 535 // Now, make sure everything else up until the ADJCALLSTACK is a sequence 536 // of MOVs. To be less conservative would require duplicating a lot of the 537 // logic from PeepholeOptimizer. 538 // FIXME: A possibly better approach would be to teach the PeepholeOptimizer 539 // to be smarter about folding into pushes. 540 for (auto I = DefMI; I != FrameSetup; ++I) 541 if (I->getOpcode() != X86::MOV32rm) 542 return nullptr; 543 544 return DefMI; 545 } 546