1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/TargetRegistry.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint16_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP5:
154     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP6:
157     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   }
160 
161   switch (dec->modrm_type) {
162   default:
163     llvm_unreachable("Corrupt table!  Unknown modrm_type");
164     return 0;
165   case MODRM_ONEENTRY:
166     return modRMTable[dec->instructionIDs];
167   case MODRM_SPLITRM:
168     if (modFromModRM(modRM) == 0x3)
169       return modRMTable[dec->instructionIDs + 1];
170     return modRMTable[dec->instructionIDs];
171   case MODRM_SPLITREG:
172     if (modFromModRM(modRM) == 0x3)
173       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
174     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
175   case MODRM_SPLITMISC:
176     if (modFromModRM(modRM) == 0x3)
177       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
178     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
179   case MODRM_FULL:
180     return modRMTable[dec->instructionIDs + modRM];
181   }
182 }
183 
184 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
185   uint64_t offset = insn->readerCursor - insn->startLocation;
186   if (offset >= insn->bytes.size())
187     return true;
188   byte = insn->bytes[offset];
189   return false;
190 }
191 
192 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
193   auto r = insn->bytes;
194   uint64_t offset = insn->readerCursor - insn->startLocation;
195   if (offset + sizeof(T) > r.size())
196     return true;
197   T ret = 0;
198   for (unsigned i = 0; i < sizeof(T); ++i)
199     ret |= (uint64_t)r[offset + i] << (i * 8);
200   ptr = ret;
201   insn->readerCursor += sizeof(T);
202   return false;
203 }
204 
205 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
206   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
207 }
208 
209 // Consumes all of an instruction's prefix bytes, and marks the
210 // instruction as having them.  Also sets the instruction's default operand,
211 // address, and other relevant data sizes to report operands correctly.
212 //
213 // insn must not be empty.
214 static int readPrefixes(struct InternalInstruction *insn) {
215   bool isPrefix = true;
216   uint8_t byte = 0;
217   uint8_t nextByte;
218 
219   LLVM_DEBUG(dbgs() << "readPrefixes()");
220 
221   while (isPrefix) {
222     // If we fail reading prefixes, just stop here and let the opcode reader
223     // deal with it.
224     if (consume(insn, byte))
225       break;
226 
227     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
228     // break and let it be disassembled as a normal "instruction".
229     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
230       break;
231 
232     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
233       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
234       // met:
235       // - it is followed by a LOCK (0xf0) prefix
236       // - it is followed by an xchg instruction
237       // then it should be disassembled as a xacquire/xrelease not repne/rep.
238       if (((nextByte == 0xf0) ||
239            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
240         insn->xAcquireRelease = true;
241         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
242           break;
243       }
244       // Also if the byte is 0xf3, and the following condition is met:
245       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
246       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
247       // then it should be disassembled as an xrelease not rep.
248       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
249                            nextByte == 0xc6 || nextByte == 0xc7)) {
250         insn->xAcquireRelease = true;
251         break;
252       }
253       if (isREX(insn, nextByte)) {
254         uint8_t nnextByte;
255         // Go to REX prefix after the current one
256         if (consume(insn, nnextByte))
257           return -1;
258         // We should be able to read next byte after REX prefix
259         if (peek(insn, nnextByte))
260           return -1;
261         --insn->readerCursor;
262       }
263     }
264 
265     switch (byte) {
266     case 0xf0: // LOCK
267       insn->hasLockPrefix = true;
268       break;
269     case 0xf2: // REPNE/REPNZ
270     case 0xf3: { // REP or REPE/REPZ
271       uint8_t nextByte;
272       if (peek(insn, nextByte))
273         break;
274       // TODO:
275       //  1. There could be several 0x66
276       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
277       //      it's not mandatory prefix
278       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
279       //     0x0f exactly after it to be mandatory prefix
280       if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
281         // The last of 0xf2 /0xf3 is mandatory prefix
282         insn->mandatoryPrefix = byte;
283       insn->repeatPrefix = byte;
284       break;
285     }
286     case 0x2e: // CS segment override -OR- Branch not taken
287       insn->segmentOverride = SEG_OVERRIDE_CS;
288       break;
289     case 0x36: // SS segment override -OR- Branch taken
290       insn->segmentOverride = SEG_OVERRIDE_SS;
291       break;
292     case 0x3e: // DS segment override
293       insn->segmentOverride = SEG_OVERRIDE_DS;
294       break;
295     case 0x26: // ES segment override
296       insn->segmentOverride = SEG_OVERRIDE_ES;
297       break;
298     case 0x64: // FS segment override
299       insn->segmentOverride = SEG_OVERRIDE_FS;
300       break;
301     case 0x65: // GS segment override
302       insn->segmentOverride = SEG_OVERRIDE_GS;
303       break;
304     case 0x66: { // Operand-size override {
305       uint8_t nextByte;
306       insn->hasOpSize = true;
307       if (peek(insn, nextByte))
308         break;
309       // 0x66 can't overwrite existing mandatory prefix and should be ignored
310       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
311         insn->mandatoryPrefix = byte;
312       break;
313     }
314     case 0x67: // Address-size override
315       insn->hasAdSize = true;
316       break;
317     default: // Not a prefix byte
318       isPrefix = false;
319       break;
320     }
321 
322     if (isPrefix)
323       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
324   }
325 
326   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
327 
328   if (byte == 0x62) {
329     uint8_t byte1, byte2;
330     if (consume(insn, byte1)) {
331       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
332       return -1;
333     }
334 
335     if (peek(insn, byte2)) {
336       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
337       return -1;
338     }
339 
340     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
341         ((~byte1 & 0x8) == 0x8) && ((byte2 & 0x4) == 0x4)) {
342       insn->vectorExtensionType = TYPE_EVEX;
343     } else {
344       --insn->readerCursor; // unconsume byte1
345       --insn->readerCursor; // unconsume byte
346     }
347 
348     if (insn->vectorExtensionType == TYPE_EVEX) {
349       insn->vectorExtensionPrefix[0] = byte;
350       insn->vectorExtensionPrefix[1] = byte1;
351       if (consume(insn, insn->vectorExtensionPrefix[2])) {
352         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
353         return -1;
354       }
355       if (consume(insn, insn->vectorExtensionPrefix[3])) {
356         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
357         return -1;
358       }
359 
360       // We simulate the REX prefix for simplicity's sake
361       if (insn->mode == MODE_64BIT) {
362         insn->rexPrefix = 0x40 |
363                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
364                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
365                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
366                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
367       }
368 
369       LLVM_DEBUG(
370           dbgs() << format(
371               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
372               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
373               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
374     }
375   } else if (byte == 0xc4) {
376     uint8_t byte1;
377     if (peek(insn, byte1)) {
378       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
379       return -1;
380     }
381 
382     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
383       insn->vectorExtensionType = TYPE_VEX_3B;
384     else
385       --insn->readerCursor;
386 
387     if (insn->vectorExtensionType == TYPE_VEX_3B) {
388       insn->vectorExtensionPrefix[0] = byte;
389       consume(insn, insn->vectorExtensionPrefix[1]);
390       consume(insn, insn->vectorExtensionPrefix[2]);
391 
392       // We simulate the REX prefix for simplicity's sake
393 
394       if (insn->mode == MODE_64BIT)
395         insn->rexPrefix = 0x40 |
396                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
397                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
398                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
399                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
400 
401       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
402                                   insn->vectorExtensionPrefix[0],
403                                   insn->vectorExtensionPrefix[1],
404                                   insn->vectorExtensionPrefix[2]));
405     }
406   } else if (byte == 0xc5) {
407     uint8_t byte1;
408     if (peek(insn, byte1)) {
409       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
410       return -1;
411     }
412 
413     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
414       insn->vectorExtensionType = TYPE_VEX_2B;
415     else
416       --insn->readerCursor;
417 
418     if (insn->vectorExtensionType == TYPE_VEX_2B) {
419       insn->vectorExtensionPrefix[0] = byte;
420       consume(insn, insn->vectorExtensionPrefix[1]);
421 
422       if (insn->mode == MODE_64BIT)
423         insn->rexPrefix =
424             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
425 
426       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
427       default:
428         break;
429       case VEX_PREFIX_66:
430         insn->hasOpSize = true;
431         break;
432       }
433 
434       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
435                                   insn->vectorExtensionPrefix[0],
436                                   insn->vectorExtensionPrefix[1]));
437     }
438   } else if (byte == 0x8f) {
439     uint8_t byte1;
440     if (peek(insn, byte1)) {
441       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
442       return -1;
443     }
444 
445     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
446       insn->vectorExtensionType = TYPE_XOP;
447     else
448       --insn->readerCursor;
449 
450     if (insn->vectorExtensionType == TYPE_XOP) {
451       insn->vectorExtensionPrefix[0] = byte;
452       consume(insn, insn->vectorExtensionPrefix[1]);
453       consume(insn, insn->vectorExtensionPrefix[2]);
454 
455       // We simulate the REX prefix for simplicity's sake
456 
457       if (insn->mode == MODE_64BIT)
458         insn->rexPrefix = 0x40 |
459                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
460                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
461                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
462                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
463 
464       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
465       default:
466         break;
467       case VEX_PREFIX_66:
468         insn->hasOpSize = true;
469         break;
470       }
471 
472       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
473                                   insn->vectorExtensionPrefix[0],
474                                   insn->vectorExtensionPrefix[1],
475                                   insn->vectorExtensionPrefix[2]));
476     }
477   } else if (isREX(insn, byte)) {
478     if (peek(insn, nextByte))
479       return -1;
480     insn->rexPrefix = byte;
481     LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
482   } else
483     --insn->readerCursor;
484 
485   if (insn->mode == MODE_16BIT) {
486     insn->registerSize = (insn->hasOpSize ? 4 : 2);
487     insn->addressSize = (insn->hasAdSize ? 4 : 2);
488     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
489     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
490   } else if (insn->mode == MODE_32BIT) {
491     insn->registerSize = (insn->hasOpSize ? 2 : 4);
492     insn->addressSize = (insn->hasAdSize ? 2 : 4);
493     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
494     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
495   } else if (insn->mode == MODE_64BIT) {
496     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
497       insn->registerSize = 8;
498       insn->addressSize = (insn->hasAdSize ? 4 : 8);
499       insn->displacementSize = 4;
500       insn->immediateSize = 4;
501       insn->hasOpSize = false;
502     } else {
503       insn->registerSize = (insn->hasOpSize ? 2 : 4);
504       insn->addressSize = (insn->hasAdSize ? 4 : 8);
505       insn->displacementSize = (insn->hasOpSize ? 2 : 4);
506       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
507     }
508   }
509 
510   return 0;
511 }
512 
513 // Consumes the SIB byte to determine addressing information.
514 static int readSIB(struct InternalInstruction *insn) {
515   SIBBase sibBaseBase = SIB_BASE_NONE;
516   uint8_t index, base;
517 
518   LLVM_DEBUG(dbgs() << "readSIB()");
519   switch (insn->addressSize) {
520   case 2:
521   default:
522     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
523   case 4:
524     insn->sibIndexBase = SIB_INDEX_EAX;
525     sibBaseBase = SIB_BASE_EAX;
526     break;
527   case 8:
528     insn->sibIndexBase = SIB_INDEX_RAX;
529     sibBaseBase = SIB_BASE_RAX;
530     break;
531   }
532 
533   if (consume(insn, insn->sib))
534     return -1;
535 
536   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
537 
538   if (index == 0x4) {
539     insn->sibIndex = SIB_INDEX_NONE;
540   } else {
541     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
542   }
543 
544   insn->sibScale = 1 << scaleFromSIB(insn->sib);
545 
546   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
547 
548   switch (base) {
549   case 0x5:
550   case 0xd:
551     switch (modFromModRM(insn->modRM)) {
552     case 0x0:
553       insn->eaDisplacement = EA_DISP_32;
554       insn->sibBase = SIB_BASE_NONE;
555       break;
556     case 0x1:
557       insn->eaDisplacement = EA_DISP_8;
558       insn->sibBase = (SIBBase)(sibBaseBase + base);
559       break;
560     case 0x2:
561       insn->eaDisplacement = EA_DISP_32;
562       insn->sibBase = (SIBBase)(sibBaseBase + base);
563       break;
564     default:
565       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
566     }
567     break;
568   default:
569     insn->sibBase = (SIBBase)(sibBaseBase + base);
570     break;
571   }
572 
573   return 0;
574 }
575 
576 static int readDisplacement(struct InternalInstruction *insn) {
577   int8_t d8;
578   int16_t d16;
579   int32_t d32;
580   LLVM_DEBUG(dbgs() << "readDisplacement()");
581 
582   insn->displacementOffset = insn->readerCursor - insn->startLocation;
583   switch (insn->eaDisplacement) {
584   case EA_DISP_NONE:
585     break;
586   case EA_DISP_8:
587     if (consume(insn, d8))
588       return -1;
589     insn->displacement = d8;
590     break;
591   case EA_DISP_16:
592     if (consume(insn, d16))
593       return -1;
594     insn->displacement = d16;
595     break;
596   case EA_DISP_32:
597     if (consume(insn, d32))
598       return -1;
599     insn->displacement = d32;
600     break;
601   }
602 
603   return 0;
604 }
605 
606 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
607 static int readModRM(struct InternalInstruction *insn) {
608   uint8_t mod, rm, reg, evexrm;
609   LLVM_DEBUG(dbgs() << "readModRM()");
610 
611   if (insn->consumedModRM)
612     return 0;
613 
614   if (consume(insn, insn->modRM))
615     return -1;
616   insn->consumedModRM = true;
617 
618   mod = modFromModRM(insn->modRM);
619   rm = rmFromModRM(insn->modRM);
620   reg = regFromModRM(insn->modRM);
621 
622   // This goes by insn->registerSize to pick the correct register, which messes
623   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
624   // fixupReg().
625   switch (insn->registerSize) {
626   case 2:
627     insn->regBase = MODRM_REG_AX;
628     insn->eaRegBase = EA_REG_AX;
629     break;
630   case 4:
631     insn->regBase = MODRM_REG_EAX;
632     insn->eaRegBase = EA_REG_EAX;
633     break;
634   case 8:
635     insn->regBase = MODRM_REG_RAX;
636     insn->eaRegBase = EA_REG_RAX;
637     break;
638   }
639 
640   reg |= rFromREX(insn->rexPrefix) << 3;
641   rm |= bFromREX(insn->rexPrefix) << 3;
642 
643   evexrm = 0;
644   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
645     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
646     evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
647   }
648 
649   insn->reg = (Reg)(insn->regBase + reg);
650 
651   switch (insn->addressSize) {
652   case 2: {
653     EABase eaBaseBase = EA_BASE_BX_SI;
654 
655     switch (mod) {
656     case 0x0:
657       if (rm == 0x6) {
658         insn->eaBase = EA_BASE_NONE;
659         insn->eaDisplacement = EA_DISP_16;
660         if (readDisplacement(insn))
661           return -1;
662       } else {
663         insn->eaBase = (EABase)(eaBaseBase + rm);
664         insn->eaDisplacement = EA_DISP_NONE;
665       }
666       break;
667     case 0x1:
668       insn->eaBase = (EABase)(eaBaseBase + rm);
669       insn->eaDisplacement = EA_DISP_8;
670       insn->displacementSize = 1;
671       if (readDisplacement(insn))
672         return -1;
673       break;
674     case 0x2:
675       insn->eaBase = (EABase)(eaBaseBase + rm);
676       insn->eaDisplacement = EA_DISP_16;
677       if (readDisplacement(insn))
678         return -1;
679       break;
680     case 0x3:
681       insn->eaBase = (EABase)(insn->eaRegBase + rm);
682       if (readDisplacement(insn))
683         return -1;
684       break;
685     }
686     break;
687   }
688   case 4:
689   case 8: {
690     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
691 
692     switch (mod) {
693     case 0x0:
694       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
695       // In determining whether RIP-relative mode is used (rm=5),
696       // or whether a SIB byte is present (rm=4),
697       // the extension bits (REX.b and EVEX.x) are ignored.
698       switch (rm & 7) {
699       case 0x4: // SIB byte is present
700         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
701         if (readSIB(insn) || readDisplacement(insn))
702           return -1;
703         break;
704       case 0x5: // RIP-relative
705         insn->eaBase = EA_BASE_NONE;
706         insn->eaDisplacement = EA_DISP_32;
707         if (readDisplacement(insn))
708           return -1;
709         break;
710       default:
711         insn->eaBase = (EABase)(eaBaseBase + rm);
712         break;
713       }
714       break;
715     case 0x1:
716       insn->displacementSize = 1;
717       LLVM_FALLTHROUGH;
718     case 0x2:
719       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
720       switch (rm & 7) {
721       case 0x4: // SIB byte is present
722         insn->eaBase = EA_BASE_sib;
723         if (readSIB(insn) || readDisplacement(insn))
724           return -1;
725         break;
726       default:
727         insn->eaBase = (EABase)(eaBaseBase + rm);
728         if (readDisplacement(insn))
729           return -1;
730         break;
731       }
732       break;
733     case 0x3:
734       insn->eaDisplacement = EA_DISP_NONE;
735       insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
736       break;
737     }
738     break;
739   }
740   } // switch (insn->addressSize)
741 
742   return 0;
743 }
744 
745 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)                           \
746   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
747                        uint8_t index, uint8_t *valid) {                        \
748     *valid = 1;                                                                \
749     switch (type) {                                                            \
750     default:                                                                   \
751       debug("Unhandled register type");                                        \
752       *valid = 0;                                                              \
753       return 0;                                                                \
754     case TYPE_Rv:                                                              \
755       return base + index;                                                     \
756     case TYPE_R8:                                                              \
757       index &= mask;                                                           \
758       if (index > 0xf)                                                         \
759         *valid = 0;                                                            \
760       if (insn->rexPrefix && index >= 4 && index <= 7) {                       \
761         return prefix##_SPL + (index - 4);                                     \
762       } else {                                                                 \
763         return prefix##_AL + index;                                            \
764       }                                                                        \
765     case TYPE_R16:                                                             \
766       index &= mask;                                                           \
767       if (index > 0xf)                                                         \
768         *valid = 0;                                                            \
769       return prefix##_AX + index;                                              \
770     case TYPE_R32:                                                             \
771       index &= mask;                                                           \
772       if (index > 0xf)                                                         \
773         *valid = 0;                                                            \
774       return prefix##_EAX + index;                                             \
775     case TYPE_R64:                                                             \
776       index &= mask;                                                           \
777       if (index > 0xf)                                                         \
778         *valid = 0;                                                            \
779       return prefix##_RAX + index;                                             \
780     case TYPE_ZMM:                                                             \
781       return prefix##_ZMM0 + index;                                            \
782     case TYPE_YMM:                                                             \
783       return prefix##_YMM0 + index;                                            \
784     case TYPE_XMM:                                                             \
785       return prefix##_XMM0 + index;                                            \
786     case TYPE_TMM:                                                             \
787       if (index > 7)                                                           \
788         *valid = 0;                                                            \
789       return prefix##_TMM0 + index;                                            \
790     case TYPE_VK:                                                              \
791       index &= 0xf;                                                            \
792       if (index > 7)                                                           \
793         *valid = 0;                                                            \
794       return prefix##_K0 + index;                                              \
795     case TYPE_VK_PAIR:                                                         \
796       if (index > 7)                                                           \
797         *valid = 0;                                                            \
798       return prefix##_K0_K1 + (index / 2);                                     \
799     case TYPE_MM64:                                                            \
800       return prefix##_MM0 + (index & 0x7);                                     \
801     case TYPE_SEGMENTREG:                                                      \
802       if ((index & 7) > 5)                                                     \
803         *valid = 0;                                                            \
804       return prefix##_ES + (index & 7);                                        \
805     case TYPE_DEBUGREG:                                                        \
806       return prefix##_DR0 + index;                                             \
807     case TYPE_CONTROLREG:                                                      \
808       return prefix##_CR0 + index;                                             \
809     case TYPE_BNDR:                                                            \
810       if (index > 3)                                                           \
811         *valid = 0;                                                            \
812       return prefix##_BND0 + index;                                            \
813     case TYPE_MVSIBX:                                                          \
814       return prefix##_XMM0 + index;                                            \
815     case TYPE_MVSIBY:                                                          \
816       return prefix##_YMM0 + index;                                            \
817     case TYPE_MVSIBZ:                                                          \
818       return prefix##_ZMM0 + index;                                            \
819     }                                                                          \
820   }
821 
822 // Consult an operand type to determine the meaning of the reg or R/M field. If
823 // the operand is an XMM operand, for example, an operand would be XMM0 instead
824 // of AX, which readModRM() would otherwise misinterpret it as.
825 //
826 // @param insn  - The instruction containing the operand.
827 // @param type  - The operand type.
828 // @param index - The existing value of the field as reported by readModRM().
829 // @param valid - The address of a uint8_t.  The target is set to 1 if the
830 //                field is valid for the register class; 0 if not.
831 // @return      - The proper value.
832 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f)
833 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf)
834 
835 // Consult an operand specifier to determine which of the fixup*Value functions
836 // to use in correcting readModRM()'ss interpretation.
837 //
838 // @param insn  - See fixup*Value().
839 // @param op    - The operand specifier.
840 // @return      - 0 if fixup was successful; -1 if the register returned was
841 //                invalid for its class.
842 static int fixupReg(struct InternalInstruction *insn,
843                     const struct OperandSpecifier *op) {
844   uint8_t valid;
845   LLVM_DEBUG(dbgs() << "fixupReg()");
846 
847   switch ((OperandEncoding)op->encoding) {
848   default:
849     debug("Expected a REG or R/M encoding in fixupReg");
850     return -1;
851   case ENCODING_VVVV:
852     insn->vvvv =
853         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
854     if (!valid)
855       return -1;
856     break;
857   case ENCODING_REG:
858     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
859                                    insn->reg - insn->regBase, &valid);
860     if (!valid)
861       return -1;
862     break;
863   case ENCODING_SIB:
864   CASE_ENCODING_RM:
865     if (insn->eaBase >= insn->eaRegBase) {
866       insn->eaBase = (EABase)fixupRMValue(
867           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
868       if (!valid)
869         return -1;
870     }
871     break;
872   }
873 
874   return 0;
875 }
876 
877 // Read the opcode (except the ModR/M byte in the case of extended or escape
878 // opcodes).
879 static bool readOpcode(struct InternalInstruction *insn) {
880   uint8_t current;
881   LLVM_DEBUG(dbgs() << "readOpcode()");
882 
883   insn->opcodeType = ONEBYTE;
884   if (insn->vectorExtensionType == TYPE_EVEX) {
885     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
886     default:
887       LLVM_DEBUG(
888           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
889                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
890       return true;
891     case VEX_LOB_0F:
892       insn->opcodeType = TWOBYTE;
893       return consume(insn, insn->opcode);
894     case VEX_LOB_0F38:
895       insn->opcodeType = THREEBYTE_38;
896       return consume(insn, insn->opcode);
897     case VEX_LOB_0F3A:
898       insn->opcodeType = THREEBYTE_3A;
899       return consume(insn, insn->opcode);
900     case VEX_LOB_MAP5:
901       insn->opcodeType = MAP5;
902       return consume(insn, insn->opcode);
903     case VEX_LOB_MAP6:
904       insn->opcodeType = MAP6;
905       return consume(insn, insn->opcode);
906     }
907   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
908     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
909     default:
910       LLVM_DEBUG(
911           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
912                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
913       return true;
914     case VEX_LOB_0F:
915       insn->opcodeType = TWOBYTE;
916       return consume(insn, insn->opcode);
917     case VEX_LOB_0F38:
918       insn->opcodeType = THREEBYTE_38;
919       return consume(insn, insn->opcode);
920     case VEX_LOB_0F3A:
921       insn->opcodeType = THREEBYTE_3A;
922       return consume(insn, insn->opcode);
923     case VEX_LOB_MAP5:
924       insn->opcodeType = MAP5;
925       return consume(insn, insn->opcode);
926     case VEX_LOB_MAP6:
927       insn->opcodeType = MAP6;
928       return consume(insn, insn->opcode);
929     }
930   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
931     insn->opcodeType = TWOBYTE;
932     return consume(insn, insn->opcode);
933   } else if (insn->vectorExtensionType == TYPE_XOP) {
934     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
935     default:
936       LLVM_DEBUG(
937           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
938                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
939       return true;
940     case XOP_MAP_SELECT_8:
941       insn->opcodeType = XOP8_MAP;
942       return consume(insn, insn->opcode);
943     case XOP_MAP_SELECT_9:
944       insn->opcodeType = XOP9_MAP;
945       return consume(insn, insn->opcode);
946     case XOP_MAP_SELECT_A:
947       insn->opcodeType = XOPA_MAP;
948       return consume(insn, insn->opcode);
949     }
950   }
951 
952   if (consume(insn, current))
953     return true;
954 
955   if (current == 0x0f) {
956     LLVM_DEBUG(
957         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
958     if (consume(insn, current))
959       return true;
960 
961     if (current == 0x38) {
962       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
963                                   current));
964       if (consume(insn, current))
965         return true;
966 
967       insn->opcodeType = THREEBYTE_38;
968     } else if (current == 0x3a) {
969       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
970                                   current));
971       if (consume(insn, current))
972         return true;
973 
974       insn->opcodeType = THREEBYTE_3A;
975     } else if (current == 0x0f) {
976       LLVM_DEBUG(
977           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
978 
979       // Consume operands before the opcode to comply with the 3DNow encoding
980       if (readModRM(insn))
981         return true;
982 
983       if (consume(insn, current))
984         return true;
985 
986       insn->opcodeType = THREEDNOW_MAP;
987     } else {
988       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
989       insn->opcodeType = TWOBYTE;
990     }
991   } else if (insn->mandatoryPrefix)
992     // The opcode with mandatory prefix must start with opcode escape.
993     // If not it's legacy repeat prefix
994     insn->mandatoryPrefix = 0;
995 
996   // At this point we have consumed the full opcode.
997   // Anything we consume from here on must be unconsumed.
998   insn->opcode = current;
999 
1000   return false;
1001 }
1002 
1003 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1004 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1005   for (int i = 0;; i++) {
1006     if (orig[i] == '\0' && equiv[i] == '\0')
1007       return true;
1008     if (orig[i] == '\0' || equiv[i] == '\0')
1009       return false;
1010     if (orig[i] != equiv[i]) {
1011       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1012         continue;
1013       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1014         continue;
1015       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1016         continue;
1017       return false;
1018     }
1019   }
1020 }
1021 
1022 // Determine whether this instruction is a 64-bit instruction.
1023 static bool is64Bit(const char *name) {
1024   for (int i = 0;; ++i) {
1025     if (name[i] == '\0')
1026       return false;
1027     if (name[i] == '6' && name[i + 1] == '4')
1028       return true;
1029   }
1030 }
1031 
1032 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1033 // for extended and escape opcodes, and using a supplied attribute mask.
1034 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1035                                         struct InternalInstruction *insn,
1036                                         uint16_t attrMask) {
1037   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1038   const ContextDecision *decision;
1039   switch (insn->opcodeType) {
1040   case ONEBYTE:
1041     decision = &ONEBYTE_SYM;
1042     break;
1043   case TWOBYTE:
1044     decision = &TWOBYTE_SYM;
1045     break;
1046   case THREEBYTE_38:
1047     decision = &THREEBYTE38_SYM;
1048     break;
1049   case THREEBYTE_3A:
1050     decision = &THREEBYTE3A_SYM;
1051     break;
1052   case XOP8_MAP:
1053     decision = &XOP8_MAP_SYM;
1054     break;
1055   case XOP9_MAP:
1056     decision = &XOP9_MAP_SYM;
1057     break;
1058   case XOPA_MAP:
1059     decision = &XOPA_MAP_SYM;
1060     break;
1061   case THREEDNOW_MAP:
1062     decision = &THREEDNOW_MAP_SYM;
1063     break;
1064   case MAP5:
1065     decision = &MAP5_SYM;
1066     break;
1067   case MAP6:
1068     decision = &MAP6_SYM;
1069     break;
1070   }
1071 
1072   if (decision->opcodeDecisions[insnCtx]
1073           .modRMDecisions[insn->opcode]
1074           .modrm_type != MODRM_ONEENTRY) {
1075     if (readModRM(insn))
1076       return -1;
1077     *instructionID =
1078         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1079   } else {
1080     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1081   }
1082 
1083   return 0;
1084 }
1085 
1086 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1087 // for extended and escape opcodes. Determines the attributes and context for
1088 // the instruction before doing so.
1089 static int getInstructionID(struct InternalInstruction *insn,
1090                             const MCInstrInfo *mii) {
1091   uint16_t attrMask;
1092   uint16_t instructionID;
1093 
1094   LLVM_DEBUG(dbgs() << "getID()");
1095 
1096   attrMask = ATTR_NONE;
1097 
1098   if (insn->mode == MODE_64BIT)
1099     attrMask |= ATTR_64BIT;
1100 
1101   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1102     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1103 
1104     if (insn->vectorExtensionType == TYPE_EVEX) {
1105       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1106       case VEX_PREFIX_66:
1107         attrMask |= ATTR_OPSIZE;
1108         break;
1109       case VEX_PREFIX_F3:
1110         attrMask |= ATTR_XS;
1111         break;
1112       case VEX_PREFIX_F2:
1113         attrMask |= ATTR_XD;
1114         break;
1115       }
1116 
1117       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1118         attrMask |= ATTR_EVEXKZ;
1119       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1120         attrMask |= ATTR_EVEXB;
1121       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1122         attrMask |= ATTR_EVEXK;
1123       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1124         attrMask |= ATTR_VEXL;
1125       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1126         attrMask |= ATTR_EVEXL2;
1127     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1128       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1129       case VEX_PREFIX_66:
1130         attrMask |= ATTR_OPSIZE;
1131         break;
1132       case VEX_PREFIX_F3:
1133         attrMask |= ATTR_XS;
1134         break;
1135       case VEX_PREFIX_F2:
1136         attrMask |= ATTR_XD;
1137         break;
1138       }
1139 
1140       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1141         attrMask |= ATTR_VEXL;
1142     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1143       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1144       case VEX_PREFIX_66:
1145         attrMask |= ATTR_OPSIZE;
1146         if (insn->hasAdSize)
1147           attrMask |= ATTR_ADSIZE;
1148         break;
1149       case VEX_PREFIX_F3:
1150         attrMask |= ATTR_XS;
1151         break;
1152       case VEX_PREFIX_F2:
1153         attrMask |= ATTR_XD;
1154         break;
1155       }
1156 
1157       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1158         attrMask |= ATTR_VEXL;
1159     } else if (insn->vectorExtensionType == TYPE_XOP) {
1160       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1161       case VEX_PREFIX_66:
1162         attrMask |= ATTR_OPSIZE;
1163         break;
1164       case VEX_PREFIX_F3:
1165         attrMask |= ATTR_XS;
1166         break;
1167       case VEX_PREFIX_F2:
1168         attrMask |= ATTR_XD;
1169         break;
1170       }
1171 
1172       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1173         attrMask |= ATTR_VEXL;
1174     } else {
1175       return -1;
1176     }
1177   } else if (!insn->mandatoryPrefix) {
1178     // If we don't have mandatory prefix we should use legacy prefixes here
1179     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1180       attrMask |= ATTR_OPSIZE;
1181     if (insn->hasAdSize)
1182       attrMask |= ATTR_ADSIZE;
1183     if (insn->opcodeType == ONEBYTE) {
1184       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1185         // Special support for PAUSE
1186         attrMask |= ATTR_XS;
1187     } else {
1188       if (insn->repeatPrefix == 0xf2)
1189         attrMask |= ATTR_XD;
1190       else if (insn->repeatPrefix == 0xf3)
1191         attrMask |= ATTR_XS;
1192     }
1193   } else {
1194     switch (insn->mandatoryPrefix) {
1195     case 0xf2:
1196       attrMask |= ATTR_XD;
1197       break;
1198     case 0xf3:
1199       attrMask |= ATTR_XS;
1200       break;
1201     case 0x66:
1202       if (insn->mode != MODE_16BIT)
1203         attrMask |= ATTR_OPSIZE;
1204       if (insn->hasAdSize)
1205         attrMask |= ATTR_ADSIZE;
1206       break;
1207     case 0x67:
1208       attrMask |= ATTR_ADSIZE;
1209       break;
1210     }
1211   }
1212 
1213   if (insn->rexPrefix & 0x08) {
1214     attrMask |= ATTR_REXW;
1215     attrMask &= ~ATTR_ADSIZE;
1216   }
1217 
1218   if (insn->mode == MODE_16BIT) {
1219     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1220     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1221     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1222       attrMask ^= ATTR_ADSIZE;
1223     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1224     // prefix isn't present, we need to force the opsize attribute since the
1225     // prefix is inverted relative to 32-bit mode.
1226     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1227         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1228       attrMask |= ATTR_OPSIZE;
1229 
1230     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1231         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1232       attrMask |= ATTR_OPSIZE;
1233   }
1234 
1235 
1236   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1237     return -1;
1238 
1239   // The following clauses compensate for limitations of the tables.
1240 
1241   if (insn->mode != MODE_64BIT &&
1242       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1243     // The tables can't distinquish between cases where the W-bit is used to
1244     // select register size and cases where its a required part of the opcode.
1245     if ((insn->vectorExtensionType == TYPE_EVEX &&
1246          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1247         (insn->vectorExtensionType == TYPE_VEX_3B &&
1248          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1249         (insn->vectorExtensionType == TYPE_XOP &&
1250          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1251 
1252       uint16_t instructionIDWithREXW;
1253       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1254                                        attrMask | ATTR_REXW)) {
1255         insn->instructionID = instructionID;
1256         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1257         return 0;
1258       }
1259 
1260       auto SpecName = mii->getName(instructionIDWithREXW);
1261       // If not a 64-bit instruction. Switch the opcode.
1262       if (!is64Bit(SpecName.data())) {
1263         insn->instructionID = instructionIDWithREXW;
1264         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1265         return 0;
1266       }
1267     }
1268   }
1269 
1270   // Absolute moves, umonitor, and movdir64b need special handling.
1271   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1272   //  inverted w.r.t.
1273   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1274   //  any position.
1275   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1276       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1277       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1278     // Make sure we observed the prefixes in any position.
1279     if (insn->hasAdSize)
1280       attrMask |= ATTR_ADSIZE;
1281     if (insn->hasOpSize)
1282       attrMask |= ATTR_OPSIZE;
1283 
1284     // In 16-bit, invert the attributes.
1285     if (insn->mode == MODE_16BIT) {
1286       attrMask ^= ATTR_ADSIZE;
1287 
1288       // The OpSize attribute is only valid with the absolute moves.
1289       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1290         attrMask ^= ATTR_OPSIZE;
1291     }
1292 
1293     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1294       return -1;
1295 
1296     insn->instructionID = instructionID;
1297     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1298     return 0;
1299   }
1300 
1301   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1302       !(attrMask & ATTR_OPSIZE)) {
1303     // The instruction tables make no distinction between instructions that
1304     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1305     // particular spot (i.e., many MMX operations). In general we're
1306     // conservative, but in the specific case where OpSize is present but not in
1307     // the right place we check if there's a 16-bit operation.
1308     const struct InstructionSpecifier *spec;
1309     uint16_t instructionIDWithOpsize;
1310     llvm::StringRef specName, specWithOpSizeName;
1311 
1312     spec = &INSTRUCTIONS_SYM[instructionID];
1313 
1314     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1315                                      attrMask | ATTR_OPSIZE)) {
1316       // ModRM required with OpSize but not present. Give up and return the
1317       // version without OpSize set.
1318       insn->instructionID = instructionID;
1319       insn->spec = spec;
1320       return 0;
1321     }
1322 
1323     specName = mii->getName(instructionID);
1324     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1325 
1326     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1327         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1328       insn->instructionID = instructionIDWithOpsize;
1329       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1330     } else {
1331       insn->instructionID = instructionID;
1332       insn->spec = spec;
1333     }
1334     return 0;
1335   }
1336 
1337   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1338       insn->rexPrefix & 0x01) {
1339     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1340     // as XCHG %r8, %eax.
1341     const struct InstructionSpecifier *spec;
1342     uint16_t instructionIDWithNewOpcode;
1343     const struct InstructionSpecifier *specWithNewOpcode;
1344 
1345     spec = &INSTRUCTIONS_SYM[instructionID];
1346 
1347     // Borrow opcode from one of the other XCHGar opcodes
1348     insn->opcode = 0x91;
1349 
1350     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1351                                      attrMask)) {
1352       insn->opcode = 0x90;
1353 
1354       insn->instructionID = instructionID;
1355       insn->spec = spec;
1356       return 0;
1357     }
1358 
1359     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1360 
1361     // Change back
1362     insn->opcode = 0x90;
1363 
1364     insn->instructionID = instructionIDWithNewOpcode;
1365     insn->spec = specWithNewOpcode;
1366 
1367     return 0;
1368   }
1369 
1370   insn->instructionID = instructionID;
1371   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1372 
1373   return 0;
1374 }
1375 
1376 // Read an operand from the opcode field of an instruction and interprets it
1377 // appropriately given the operand width. Handles AddRegFrm instructions.
1378 //
1379 // @param insn  - the instruction whose opcode field is to be read.
1380 // @param size  - The width (in bytes) of the register being specified.
1381 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1382 //                RAX.
1383 // @return      - 0 on success; nonzero otherwise.
1384 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1385   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1386 
1387   if (size == 0)
1388     size = insn->registerSize;
1389 
1390   switch (size) {
1391   case 1:
1392     insn->opcodeRegister = (Reg)(
1393         MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1394     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1395         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1396       insn->opcodeRegister =
1397           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1398     }
1399 
1400     break;
1401   case 2:
1402     insn->opcodeRegister = (Reg)(
1403         MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1404     break;
1405   case 4:
1406     insn->opcodeRegister =
1407         (Reg)(MODRM_REG_EAX +
1408               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1409     break;
1410   case 8:
1411     insn->opcodeRegister =
1412         (Reg)(MODRM_REG_RAX +
1413               ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7)));
1414     break;
1415   }
1416 
1417   return 0;
1418 }
1419 
1420 // Consume an immediate operand from an instruction, given the desired operand
1421 // size.
1422 //
1423 // @param insn  - The instruction whose operand is to be read.
1424 // @param size  - The width (in bytes) of the operand.
1425 // @return      - 0 if the immediate was successfully consumed; nonzero
1426 //                otherwise.
1427 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1428   uint8_t imm8;
1429   uint16_t imm16;
1430   uint32_t imm32;
1431   uint64_t imm64;
1432 
1433   LLVM_DEBUG(dbgs() << "readImmediate()");
1434 
1435   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1436 
1437   insn->immediateSize = size;
1438   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1439 
1440   switch (size) {
1441   case 1:
1442     if (consume(insn, imm8))
1443       return -1;
1444     insn->immediates[insn->numImmediatesConsumed] = imm8;
1445     break;
1446   case 2:
1447     if (consume(insn, imm16))
1448       return -1;
1449     insn->immediates[insn->numImmediatesConsumed] = imm16;
1450     break;
1451   case 4:
1452     if (consume(insn, imm32))
1453       return -1;
1454     insn->immediates[insn->numImmediatesConsumed] = imm32;
1455     break;
1456   case 8:
1457     if (consume(insn, imm64))
1458       return -1;
1459     insn->immediates[insn->numImmediatesConsumed] = imm64;
1460     break;
1461   default:
1462     llvm_unreachable("invalid size");
1463   }
1464 
1465   insn->numImmediatesConsumed++;
1466 
1467   return 0;
1468 }
1469 
1470 // Consume vvvv from an instruction if it has a VEX prefix.
1471 static int readVVVV(struct InternalInstruction *insn) {
1472   LLVM_DEBUG(dbgs() << "readVVVV()");
1473 
1474   int vvvv;
1475   if (insn->vectorExtensionType == TYPE_EVEX)
1476     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1477             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1478   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1479     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1480   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1481     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1482   else if (insn->vectorExtensionType == TYPE_XOP)
1483     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1484   else
1485     return -1;
1486 
1487   if (insn->mode != MODE_64BIT)
1488     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1489 
1490   insn->vvvv = static_cast<Reg>(vvvv);
1491   return 0;
1492 }
1493 
1494 // Read an mask register from the opcode field of an instruction.
1495 //
1496 // @param insn    - The instruction whose opcode field is to be read.
1497 // @return        - 0 on success; nonzero otherwise.
1498 static int readMaskRegister(struct InternalInstruction *insn) {
1499   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1500 
1501   if (insn->vectorExtensionType != TYPE_EVEX)
1502     return -1;
1503 
1504   insn->writemask =
1505       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1506   return 0;
1507 }
1508 
1509 // Consults the specifier for an instruction and consumes all
1510 // operands for that instruction, interpreting them as it goes.
1511 static int readOperands(struct InternalInstruction *insn) {
1512   int hasVVVV, needVVVV;
1513   int sawRegImm = 0;
1514 
1515   LLVM_DEBUG(dbgs() << "readOperands()");
1516 
1517   // If non-zero vvvv specified, make sure one of the operands uses it.
1518   hasVVVV = !readVVVV(insn);
1519   needVVVV = hasVVVV && (insn->vvvv != 0);
1520 
1521   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1522     switch (Op.encoding) {
1523     case ENCODING_NONE:
1524     case ENCODING_SI:
1525     case ENCODING_DI:
1526       break;
1527     CASE_ENCODING_VSIB:
1528       // VSIB can use the V2 bit so check only the other bits.
1529       if (needVVVV)
1530         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1531       if (readModRM(insn))
1532         return -1;
1533 
1534       // Reject if SIB wasn't used.
1535       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1536         return -1;
1537 
1538       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1539       if (insn->sibIndex == SIB_INDEX_NONE)
1540         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1541 
1542       // If EVEX.v2 is set this is one of the 16-31 registers.
1543       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1544           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1545         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1546 
1547       // Adjust the index register to the correct size.
1548       switch ((OperandType)Op.type) {
1549       default:
1550         debug("Unhandled VSIB index type");
1551         return -1;
1552       case TYPE_MVSIBX:
1553         insn->sibIndex =
1554             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1555         break;
1556       case TYPE_MVSIBY:
1557         insn->sibIndex =
1558             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1559         break;
1560       case TYPE_MVSIBZ:
1561         insn->sibIndex =
1562             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1563         break;
1564       }
1565 
1566       // Apply the AVX512 compressed displacement scaling factor.
1567       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1568         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1569       break;
1570     case ENCODING_SIB:
1571       // Reject if SIB wasn't used.
1572       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1573         return -1;
1574       if (readModRM(insn))
1575         return -1;
1576       if (fixupReg(insn, &Op))
1577         return -1;
1578       break;
1579     case ENCODING_REG:
1580     CASE_ENCODING_RM:
1581       if (readModRM(insn))
1582         return -1;
1583       if (fixupReg(insn, &Op))
1584         return -1;
1585       // Apply the AVX512 compressed displacement scaling factor.
1586       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1587         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1588       break;
1589     case ENCODING_IB:
1590       if (sawRegImm) {
1591         // Saw a register immediate so don't read again and instead split the
1592         // previous immediate. FIXME: This is a hack.
1593         insn->immediates[insn->numImmediatesConsumed] =
1594             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1595         ++insn->numImmediatesConsumed;
1596         break;
1597       }
1598       if (readImmediate(insn, 1))
1599         return -1;
1600       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1601         sawRegImm = 1;
1602       break;
1603     case ENCODING_IW:
1604       if (readImmediate(insn, 2))
1605         return -1;
1606       break;
1607     case ENCODING_ID:
1608       if (readImmediate(insn, 4))
1609         return -1;
1610       break;
1611     case ENCODING_IO:
1612       if (readImmediate(insn, 8))
1613         return -1;
1614       break;
1615     case ENCODING_Iv:
1616       if (readImmediate(insn, insn->immediateSize))
1617         return -1;
1618       break;
1619     case ENCODING_Ia:
1620       if (readImmediate(insn, insn->addressSize))
1621         return -1;
1622       break;
1623     case ENCODING_IRC:
1624       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1625                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1626       break;
1627     case ENCODING_RB:
1628       if (readOpcodeRegister(insn, 1))
1629         return -1;
1630       break;
1631     case ENCODING_RW:
1632       if (readOpcodeRegister(insn, 2))
1633         return -1;
1634       break;
1635     case ENCODING_RD:
1636       if (readOpcodeRegister(insn, 4))
1637         return -1;
1638       break;
1639     case ENCODING_RO:
1640       if (readOpcodeRegister(insn, 8))
1641         return -1;
1642       break;
1643     case ENCODING_Rv:
1644       if (readOpcodeRegister(insn, 0))
1645         return -1;
1646       break;
1647     case ENCODING_CC:
1648       insn->immediates[1] = insn->opcode & 0xf;
1649       break;
1650     case ENCODING_FP:
1651       break;
1652     case ENCODING_VVVV:
1653       needVVVV = 0; // Mark that we have found a VVVV operand.
1654       if (!hasVVVV)
1655         return -1;
1656       if (insn->mode != MODE_64BIT)
1657         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1658       if (fixupReg(insn, &Op))
1659         return -1;
1660       break;
1661     case ENCODING_WRITEMASK:
1662       if (readMaskRegister(insn))
1663         return -1;
1664       break;
1665     case ENCODING_DUP:
1666       break;
1667     default:
1668       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1669       return -1;
1670     }
1671   }
1672 
1673   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1674   if (needVVVV)
1675     return -1;
1676 
1677   return 0;
1678 }
1679 
1680 namespace llvm {
1681 
1682 // Fill-ins to make the compiler happy. These constants are never actually
1683 // assigned; they are just filler to make an automatically-generated switch
1684 // statement work.
1685 namespace X86 {
1686   enum {
1687     BX_SI = 500,
1688     BX_DI = 501,
1689     BP_SI = 502,
1690     BP_DI = 503,
1691     sib   = 504,
1692     sib64 = 505
1693   };
1694 } // namespace X86
1695 
1696 } // namespace llvm
1697 
1698 static bool translateInstruction(MCInst &target,
1699                                 InternalInstruction &source,
1700                                 const MCDisassembler *Dis);
1701 
1702 namespace {
1703 
1704 /// Generic disassembler for all X86 platforms. All each platform class should
1705 /// have to do is subclass the constructor, and provide a different
1706 /// disassemblerMode value.
1707 class X86GenericDisassembler : public MCDisassembler {
1708   std::unique_ptr<const MCInstrInfo> MII;
1709 public:
1710   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1711                          std::unique_ptr<const MCInstrInfo> MII);
1712 public:
1713   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1714                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1715                               raw_ostream &cStream) const override;
1716 
1717 private:
1718   DisassemblerMode              fMode;
1719 };
1720 
1721 } // namespace
1722 
1723 X86GenericDisassembler::X86GenericDisassembler(
1724                                          const MCSubtargetInfo &STI,
1725                                          MCContext &Ctx,
1726                                          std::unique_ptr<const MCInstrInfo> MII)
1727   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1728   const FeatureBitset &FB = STI.getFeatureBits();
1729   if (FB[X86::Mode16Bit]) {
1730     fMode = MODE_16BIT;
1731     return;
1732   } else if (FB[X86::Mode32Bit]) {
1733     fMode = MODE_32BIT;
1734     return;
1735   } else if (FB[X86::Mode64Bit]) {
1736     fMode = MODE_64BIT;
1737     return;
1738   }
1739 
1740   llvm_unreachable("Invalid CPU mode");
1741 }
1742 
1743 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1744     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1745     raw_ostream &CStream) const {
1746   CommentStream = &CStream;
1747 
1748   InternalInstruction Insn;
1749   memset(&Insn, 0, sizeof(InternalInstruction));
1750   Insn.bytes = Bytes;
1751   Insn.startLocation = Address;
1752   Insn.readerCursor = Address;
1753   Insn.mode = fMode;
1754 
1755   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1756       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1757       readOperands(&Insn)) {
1758     Size = Insn.readerCursor - Address;
1759     return Fail;
1760   }
1761 
1762   Insn.operands = x86OperandSets[Insn.spec->operands];
1763   Insn.length = Insn.readerCursor - Insn.startLocation;
1764   Size = Insn.length;
1765   if (Size > 15)
1766     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1767 
1768   bool Ret = translateInstruction(Instr, Insn, this);
1769   if (!Ret) {
1770     unsigned Flags = X86::IP_NO_PREFIX;
1771     if (Insn.hasAdSize)
1772       Flags |= X86::IP_HAS_AD_SIZE;
1773     if (!Insn.mandatoryPrefix) {
1774       if (Insn.hasOpSize)
1775         Flags |= X86::IP_HAS_OP_SIZE;
1776       if (Insn.repeatPrefix == 0xf2)
1777         Flags |= X86::IP_HAS_REPEAT_NE;
1778       else if (Insn.repeatPrefix == 0xf3 &&
1779                // It should not be 'pause' f3 90
1780                Insn.opcode != 0x90)
1781         Flags |= X86::IP_HAS_REPEAT;
1782       if (Insn.hasLockPrefix)
1783         Flags |= X86::IP_HAS_LOCK;
1784     }
1785     Instr.setFlags(Flags);
1786   }
1787   return (!Ret) ? Success : Fail;
1788 }
1789 
1790 //
1791 // Private code that translates from struct InternalInstructions to MCInsts.
1792 //
1793 
1794 /// translateRegister - Translates an internal register to the appropriate LLVM
1795 ///   register, and appends it as an operand to an MCInst.
1796 ///
1797 /// @param mcInst     - The MCInst to append to.
1798 /// @param reg        - The Reg to append.
1799 static void translateRegister(MCInst &mcInst, Reg reg) {
1800 #define ENTRY(x) X86::x,
1801   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1802 #undef ENTRY
1803 
1804   MCPhysReg llvmRegnum = llvmRegnums[reg];
1805   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1806 }
1807 
1808 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
1809 /// immediate Value in the MCInst.
1810 ///
1811 /// @param Value      - The immediate Value, has had any PC adjustment made by
1812 ///                     the caller.
1813 /// @param isBranch   - If the instruction is a branch instruction
1814 /// @param Address    - The starting address of the instruction
1815 /// @param Offset     - The byte offset to this immediate in the instruction
1816 /// @param Width      - The byte width of this immediate in the instruction
1817 ///
1818 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
1819 /// called then that function is called to get any symbolic information for the
1820 /// immediate in the instruction using the Address, Offset and Width.  If that
1821 /// returns non-zero then the symbolic information it returns is used to create
1822 /// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
1823 /// returns zero and isBranch is true then a symbol look up for immediate Value
1824 /// is done and if a symbol is found an MCExpr is created with that, else
1825 /// an MCExpr with the immediate Value is created.  This function returns true
1826 /// if it adds an operand to the MCInst and false otherwise.
1827 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
1828                                      uint64_t Address, uint64_t Offset,
1829                                      uint64_t Width, MCInst &MI,
1830                                      const MCDisassembler *Dis) {
1831   return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
1832                                        Offset, Width);
1833 }
1834 
1835 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
1836 /// referenced by a load instruction with the base register that is the rip.
1837 /// These can often be addresses in a literal pool.  The Address of the
1838 /// instruction and its immediate Value are used to determine the address
1839 /// being referenced in the literal pool entry.  The SymbolLookUp call back will
1840 /// return a pointer to a literal 'C' string if the referenced address is an
1841 /// address into a section with 'C' string literals.
1842 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
1843                                             const void *Decoder) {
1844   const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
1845   Dis->tryAddingPcLoadReferenceComment(Value, Address);
1846 }
1847 
1848 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1849   0,        // SEG_OVERRIDE_NONE
1850   X86::CS,
1851   X86::SS,
1852   X86::DS,
1853   X86::ES,
1854   X86::FS,
1855   X86::GS
1856 };
1857 
1858 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1859 ///
1860 /// @param mcInst       - The MCInst to append to.
1861 /// @param insn         - The internal instruction.
1862 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1863   unsigned baseRegNo;
1864 
1865   if (insn.mode == MODE_64BIT)
1866     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1867   else if (insn.mode == MODE_32BIT)
1868     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1869   else {
1870     assert(insn.mode == MODE_16BIT);
1871     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1872   }
1873   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1874   mcInst.addOperand(baseReg);
1875 
1876   MCOperand segmentReg;
1877   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1878   mcInst.addOperand(segmentReg);
1879   return false;
1880 }
1881 
1882 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1883 ///
1884 /// @param mcInst       - The MCInst to append to.
1885 /// @param insn         - The internal instruction.
1886 
1887 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1888   unsigned baseRegNo;
1889 
1890   if (insn.mode == MODE_64BIT)
1891     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1892   else if (insn.mode == MODE_32BIT)
1893     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1894   else {
1895     assert(insn.mode == MODE_16BIT);
1896     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1897   }
1898   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1899   mcInst.addOperand(baseReg);
1900   return false;
1901 }
1902 
1903 /// translateImmediate  - Appends an immediate operand to an MCInst.
1904 ///
1905 /// @param mcInst       - The MCInst to append to.
1906 /// @param immediate    - The immediate value to append.
1907 /// @param operand      - The operand, as stored in the descriptor table.
1908 /// @param insn         - The internal instruction.
1909 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
1910                                const OperandSpecifier &operand,
1911                                InternalInstruction &insn,
1912                                const MCDisassembler *Dis) {
1913   // Sign-extend the immediate if necessary.
1914 
1915   OperandType type = (OperandType)operand.type;
1916 
1917   bool isBranch = false;
1918   uint64_t pcrel = 0;
1919   if (type == TYPE_REL) {
1920     isBranch = true;
1921     pcrel = insn.startLocation +
1922             insn.immediateOffset + insn.immediateSize;
1923     switch (operand.encoding) {
1924     default:
1925       break;
1926     case ENCODING_Iv:
1927       switch (insn.displacementSize) {
1928       default:
1929         break;
1930       case 1:
1931         if(immediate & 0x80)
1932           immediate |= ~(0xffull);
1933         break;
1934       case 2:
1935         if(immediate & 0x8000)
1936           immediate |= ~(0xffffull);
1937         break;
1938       case 4:
1939         if(immediate & 0x80000000)
1940           immediate |= ~(0xffffffffull);
1941         break;
1942       case 8:
1943         break;
1944       }
1945       break;
1946     case ENCODING_IB:
1947       if(immediate & 0x80)
1948         immediate |= ~(0xffull);
1949       break;
1950     case ENCODING_IW:
1951       if(immediate & 0x8000)
1952         immediate |= ~(0xffffull);
1953       break;
1954     case ENCODING_ID:
1955       if(immediate & 0x80000000)
1956         immediate |= ~(0xffffffffull);
1957       break;
1958     }
1959   }
1960   // By default sign-extend all X86 immediates based on their encoding.
1961   else if (type == TYPE_IMM) {
1962     switch (operand.encoding) {
1963     default:
1964       break;
1965     case ENCODING_IB:
1966       if(immediate & 0x80)
1967         immediate |= ~(0xffull);
1968       break;
1969     case ENCODING_IW:
1970       if(immediate & 0x8000)
1971         immediate |= ~(0xffffull);
1972       break;
1973     case ENCODING_ID:
1974       if(immediate & 0x80000000)
1975         immediate |= ~(0xffffffffull);
1976       break;
1977     case ENCODING_IO:
1978       break;
1979     }
1980   }
1981 
1982   switch (type) {
1983   case TYPE_XMM:
1984     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
1985     return;
1986   case TYPE_YMM:
1987     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
1988     return;
1989   case TYPE_ZMM:
1990     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
1991     return;
1992   default:
1993     // operand is 64 bits wide.  Do nothing.
1994     break;
1995   }
1996 
1997   if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
1998                                insn.immediateOffset, insn.immediateSize,
1999                                mcInst, Dis))
2000     mcInst.addOperand(MCOperand::createImm(immediate));
2001 
2002   if (type == TYPE_MOFFS) {
2003     MCOperand segmentReg;
2004     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2005     mcInst.addOperand(segmentReg);
2006   }
2007 }
2008 
2009 /// translateRMRegister - Translates a register stored in the R/M field of the
2010 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2011 /// @param mcInst       - The MCInst to append to.
2012 /// @param insn         - The internal instruction to extract the R/M field
2013 ///                       from.
2014 /// @return             - 0 on success; -1 otherwise
2015 static bool translateRMRegister(MCInst &mcInst,
2016                                 InternalInstruction &insn) {
2017   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2018     debug("A R/M register operand may not have a SIB byte");
2019     return true;
2020   }
2021 
2022   switch (insn.eaBase) {
2023   default:
2024     debug("Unexpected EA base register");
2025     return true;
2026   case EA_BASE_NONE:
2027     debug("EA_BASE_NONE for ModR/M base");
2028     return true;
2029 #define ENTRY(x) case EA_BASE_##x:
2030   ALL_EA_BASES
2031 #undef ENTRY
2032     debug("A R/M register operand may not have a base; "
2033           "the operand must be a register.");
2034     return true;
2035 #define ENTRY(x)                                                      \
2036   case EA_REG_##x:                                                    \
2037     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2038   ALL_REGS
2039 #undef ENTRY
2040   }
2041 
2042   return false;
2043 }
2044 
2045 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2046 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2047 ///   operand in LLVM's format, and appends it to an MCInst.
2048 ///
2049 /// @param mcInst       - The MCInst to append to.
2050 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2051 ///                       from.
2052 /// @param ForceSIB     - The instruction must use SIB.
2053 /// @return             - 0 on success; nonzero otherwise
2054 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2055                               const MCDisassembler *Dis,
2056                               bool ForceSIB = false) {
2057   // Addresses in an MCInst are represented as five operands:
2058   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2059   //                                SIB base
2060   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2061   //                                scale amount
2062   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2063   //                                the index (which is multiplied by the
2064   //                                scale amount)
2065   //   4. displacement  (immediate) 0, or the displacement if there is one
2066   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2067   //                                if we have segment overrides
2068 
2069   MCOperand baseReg;
2070   MCOperand scaleAmount;
2071   MCOperand indexReg;
2072   MCOperand displacement;
2073   MCOperand segmentReg;
2074   uint64_t pcrel = 0;
2075 
2076   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2077     if (insn.sibBase != SIB_BASE_NONE) {
2078       switch (insn.sibBase) {
2079       default:
2080         debug("Unexpected sibBase");
2081         return true;
2082 #define ENTRY(x)                                          \
2083       case SIB_BASE_##x:                                  \
2084         baseReg = MCOperand::createReg(X86::x); break;
2085       ALL_SIB_BASES
2086 #undef ENTRY
2087       }
2088     } else {
2089       baseReg = MCOperand::createReg(X86::NoRegister);
2090     }
2091 
2092     if (insn.sibIndex != SIB_INDEX_NONE) {
2093       switch (insn.sibIndex) {
2094       default:
2095         debug("Unexpected sibIndex");
2096         return true;
2097 #define ENTRY(x)                                          \
2098       case SIB_INDEX_##x:                                 \
2099         indexReg = MCOperand::createReg(X86::x); break;
2100       EA_BASES_32BIT
2101       EA_BASES_64BIT
2102       REGS_XMM
2103       REGS_YMM
2104       REGS_ZMM
2105 #undef ENTRY
2106       }
2107     } else {
2108       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2109       // but no index is used and modrm alone should have been enough.
2110       // -No base register in 32-bit mode. In 64-bit mode this is used to
2111       //  avoid rip-relative addressing.
2112       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2113       //  base always requires a SIB byte.
2114       // -A scale other than 1 is used.
2115       if (!ForceSIB &&
2116           (insn.sibScale != 1 ||
2117            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2118            (insn.sibBase != SIB_BASE_NONE &&
2119             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2120             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2121         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2122                                                                 X86::RIZ);
2123       } else
2124         indexReg = MCOperand::createReg(X86::NoRegister);
2125     }
2126 
2127     scaleAmount = MCOperand::createImm(insn.sibScale);
2128   } else {
2129     switch (insn.eaBase) {
2130     case EA_BASE_NONE:
2131       if (insn.eaDisplacement == EA_DISP_NONE) {
2132         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2133         return true;
2134       }
2135       if (insn.mode == MODE_64BIT){
2136         pcrel = insn.startLocation +
2137                 insn.displacementOffset + insn.displacementSize;
2138         tryAddingPcLoadReferenceComment(insn.startLocation +
2139                                         insn.displacementOffset,
2140                                         insn.displacement + pcrel, Dis);
2141         // Section 2.2.1.6
2142         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2143                                                                X86::RIP);
2144       }
2145       else
2146         baseReg = MCOperand::createReg(X86::NoRegister);
2147 
2148       indexReg = MCOperand::createReg(X86::NoRegister);
2149       break;
2150     case EA_BASE_BX_SI:
2151       baseReg = MCOperand::createReg(X86::BX);
2152       indexReg = MCOperand::createReg(X86::SI);
2153       break;
2154     case EA_BASE_BX_DI:
2155       baseReg = MCOperand::createReg(X86::BX);
2156       indexReg = MCOperand::createReg(X86::DI);
2157       break;
2158     case EA_BASE_BP_SI:
2159       baseReg = MCOperand::createReg(X86::BP);
2160       indexReg = MCOperand::createReg(X86::SI);
2161       break;
2162     case EA_BASE_BP_DI:
2163       baseReg = MCOperand::createReg(X86::BP);
2164       indexReg = MCOperand::createReg(X86::DI);
2165       break;
2166     default:
2167       indexReg = MCOperand::createReg(X86::NoRegister);
2168       switch (insn.eaBase) {
2169       default:
2170         debug("Unexpected eaBase");
2171         return true;
2172         // Here, we will use the fill-ins defined above.  However,
2173         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2174         //   sib and sib64 were handled in the top-level if, so they're only
2175         //   placeholders to keep the compiler happy.
2176 #define ENTRY(x)                                        \
2177       case EA_BASE_##x:                                 \
2178         baseReg = MCOperand::createReg(X86::x); break;
2179       ALL_EA_BASES
2180 #undef ENTRY
2181 #define ENTRY(x) case EA_REG_##x:
2182       ALL_REGS
2183 #undef ENTRY
2184         debug("A R/M memory operand may not be a register; "
2185               "the base field must be a base.");
2186         return true;
2187       }
2188     }
2189 
2190     scaleAmount = MCOperand::createImm(1);
2191   }
2192 
2193   displacement = MCOperand::createImm(insn.displacement);
2194 
2195   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2196 
2197   mcInst.addOperand(baseReg);
2198   mcInst.addOperand(scaleAmount);
2199   mcInst.addOperand(indexReg);
2200   if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
2201                                insn.startLocation, insn.displacementOffset,
2202                                insn.displacementSize, mcInst, Dis))
2203     mcInst.addOperand(displacement);
2204   mcInst.addOperand(segmentReg);
2205   return false;
2206 }
2207 
2208 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2209 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2210 ///
2211 /// @param mcInst       - The MCInst to append to.
2212 /// @param operand      - The operand, as stored in the descriptor table.
2213 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2214 ///                       from.
2215 /// @return             - 0 on success; nonzero otherwise
2216 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2217                         InternalInstruction &insn, const MCDisassembler *Dis) {
2218   switch (operand.type) {
2219   default:
2220     debug("Unexpected type for a R/M operand");
2221     return true;
2222   case TYPE_R8:
2223   case TYPE_R16:
2224   case TYPE_R32:
2225   case TYPE_R64:
2226   case TYPE_Rv:
2227   case TYPE_MM64:
2228   case TYPE_XMM:
2229   case TYPE_YMM:
2230   case TYPE_ZMM:
2231   case TYPE_TMM:
2232   case TYPE_VK_PAIR:
2233   case TYPE_VK:
2234   case TYPE_DEBUGREG:
2235   case TYPE_CONTROLREG:
2236   case TYPE_BNDR:
2237     return translateRMRegister(mcInst, insn);
2238   case TYPE_M:
2239   case TYPE_MVSIBX:
2240   case TYPE_MVSIBY:
2241   case TYPE_MVSIBZ:
2242     return translateRMMemory(mcInst, insn, Dis);
2243   case TYPE_MSIB:
2244     return translateRMMemory(mcInst, insn, Dis, true);
2245   }
2246 }
2247 
2248 /// translateFPRegister - Translates a stack position on the FPU stack to its
2249 ///   LLVM form, and appends it to an MCInst.
2250 ///
2251 /// @param mcInst       - The MCInst to append to.
2252 /// @param stackPos     - The stack position to translate.
2253 static void translateFPRegister(MCInst &mcInst,
2254                                 uint8_t stackPos) {
2255   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2256 }
2257 
2258 /// translateMaskRegister - Translates a 3-bit mask register number to
2259 ///   LLVM form, and appends it to an MCInst.
2260 ///
2261 /// @param mcInst       - The MCInst to append to.
2262 /// @param maskRegNum   - Number of mask register from 0 to 7.
2263 /// @return             - false on success; true otherwise.
2264 static bool translateMaskRegister(MCInst &mcInst,
2265                                 uint8_t maskRegNum) {
2266   if (maskRegNum >= 8) {
2267     debug("Invalid mask register number");
2268     return true;
2269   }
2270 
2271   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2272   return false;
2273 }
2274 
2275 /// translateOperand - Translates an operand stored in an internal instruction
2276 ///   to LLVM's format and appends it to an MCInst.
2277 ///
2278 /// @param mcInst       - The MCInst to append to.
2279 /// @param operand      - The operand, as stored in the descriptor table.
2280 /// @param insn         - The internal instruction.
2281 /// @return             - false on success; true otherwise.
2282 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2283                              InternalInstruction &insn,
2284                              const MCDisassembler *Dis) {
2285   switch (operand.encoding) {
2286   default:
2287     debug("Unhandled operand encoding during translation");
2288     return true;
2289   case ENCODING_REG:
2290     translateRegister(mcInst, insn.reg);
2291     return false;
2292   case ENCODING_WRITEMASK:
2293     return translateMaskRegister(mcInst, insn.writemask);
2294   case ENCODING_SIB:
2295   CASE_ENCODING_RM:
2296   CASE_ENCODING_VSIB:
2297     return translateRM(mcInst, operand, insn, Dis);
2298   case ENCODING_IB:
2299   case ENCODING_IW:
2300   case ENCODING_ID:
2301   case ENCODING_IO:
2302   case ENCODING_Iv:
2303   case ENCODING_Ia:
2304     translateImmediate(mcInst,
2305                        insn.immediates[insn.numImmediatesTranslated++],
2306                        operand,
2307                        insn,
2308                        Dis);
2309     return false;
2310   case ENCODING_IRC:
2311     mcInst.addOperand(MCOperand::createImm(insn.RC));
2312     return false;
2313   case ENCODING_SI:
2314     return translateSrcIndex(mcInst, insn);
2315   case ENCODING_DI:
2316     return translateDstIndex(mcInst, insn);
2317   case ENCODING_RB:
2318   case ENCODING_RW:
2319   case ENCODING_RD:
2320   case ENCODING_RO:
2321   case ENCODING_Rv:
2322     translateRegister(mcInst, insn.opcodeRegister);
2323     return false;
2324   case ENCODING_CC:
2325     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2326     return false;
2327   case ENCODING_FP:
2328     translateFPRegister(mcInst, insn.modRM & 7);
2329     return false;
2330   case ENCODING_VVVV:
2331     translateRegister(mcInst, insn.vvvv);
2332     return false;
2333   case ENCODING_DUP:
2334     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2335                             insn, Dis);
2336   }
2337 }
2338 
2339 /// translateInstruction - Translates an internal instruction and all its
2340 ///   operands to an MCInst.
2341 ///
2342 /// @param mcInst       - The MCInst to populate with the instruction's data.
2343 /// @param insn         - The internal instruction.
2344 /// @return             - false on success; true otherwise.
2345 static bool translateInstruction(MCInst &mcInst,
2346                                 InternalInstruction &insn,
2347                                 const MCDisassembler *Dis) {
2348   if (!insn.spec) {
2349     debug("Instruction has no specification");
2350     return true;
2351   }
2352 
2353   mcInst.clear();
2354   mcInst.setOpcode(insn.instructionID);
2355   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2356   // prefix bytes should be disassembled as xrelease and xacquire then set the
2357   // opcode to those instead of the rep and repne opcodes.
2358   if (insn.xAcquireRelease) {
2359     if(mcInst.getOpcode() == X86::REP_PREFIX)
2360       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2361     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2362       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2363   }
2364 
2365   insn.numImmediatesTranslated = 0;
2366 
2367   for (const auto &Op : insn.operands) {
2368     if (Op.encoding != ENCODING_NONE) {
2369       if (translateOperand(mcInst, Op, insn, Dis)) {
2370         return true;
2371       }
2372     }
2373   }
2374 
2375   return false;
2376 }
2377 
2378 static MCDisassembler *createX86Disassembler(const Target &T,
2379                                              const MCSubtargetInfo &STI,
2380                                              MCContext &Ctx) {
2381   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2382   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2383 }
2384 
2385 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Disassembler() {
2386   // Register the disassembler.
2387   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2388                                          createX86Disassembler);
2389   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2390                                          createX86Disassembler);
2391 }
2392