1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler. 10 // It contains code to translate the data produced by the decoder into 11 // MCInsts. 12 // 13 // 14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and 15 // 64-bit X86 instruction sets. The main decode sequence for an assembly 16 // instruction in this disassembler is: 17 // 18 // 1. Read the prefix bytes and determine the attributes of the instruction. 19 // These attributes, recorded in enum attributeBits 20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM 21 // provides a mapping from bitmasks to contexts, which are represented by 22 // enum InstructionContext (ibid.). 23 // 24 // 2. Read the opcode, and determine what kind of opcode it is. The 25 // disassembler distinguishes four kinds of opcodes, which are enumerated in 26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte 27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a 28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. 29 // 30 // 3. Depending on the opcode type, look in one of four ClassDecision structures 31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which 32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get 33 // a ModRMDecision (ibid.). 34 // 35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even 36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the 37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from 38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the 39 // ModR/M byte is required and how to interpret it. 40 // 41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID 42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in 43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and 44 // meanings of its operands. 45 // 46 // 6. For each operand, its encoding is an entry from OperandEncoding 47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from 48 // OperandType (ibid.). The encoding indicates how to read it from the 49 // instruction; the type indicates how to interpret the value once it has 50 // been read. For example, a register operand could be stored in the R/M 51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to 52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM 53 // register, for instance). Given this information, the operands can be 54 // extracted and interpreted. 55 // 56 // 7. As the last step, the disassembler translates the instruction information 57 // and operands into a format understandable by the client - in this case, an 58 // MCInst for use by the MC infrastructure. 59 // 60 // The disassembler is broken broadly into two parts: the table emitter that 61 // emits the instruction decode tables discussed above during compilation, and 62 // the disassembler itself. The table emitter is documented in more detail in 63 // utils/TableGen/X86DisassemblerEmitter.h. 64 // 65 // X86Disassembler.cpp contains the code responsible for step 7, and for 66 // invoking the decoder to execute steps 1-6. 67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the 68 // table emitter and the disassembler. 69 // X86DisassemblerDecoder.h contains the public interface of the decoder, 70 // factored out into C for possible use by other projects. 71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is 72 // responsible for steps 1-6. 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "MCTargetDesc/X86BaseInfo.h" 77 #include "MCTargetDesc/X86MCTargetDesc.h" 78 #include "TargetInfo/X86TargetInfo.h" 79 #include "X86DisassemblerDecoder.h" 80 #include "llvm/MC/MCContext.h" 81 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 82 #include "llvm/MC/MCExpr.h" 83 #include "llvm/MC/MCInst.h" 84 #include "llvm/MC/MCInstrInfo.h" 85 #include "llvm/MC/MCSubtargetInfo.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/TargetRegistry.h" 89 #include "llvm/Support/raw_ostream.h" 90 91 using namespace llvm; 92 using namespace llvm::X86Disassembler; 93 94 #define DEBUG_TYPE "x86-disassembler" 95 96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s); 97 98 // Specifies whether a ModR/M byte is needed and (if so) which 99 // instruction each possible value of the ModR/M byte corresponds to. Once 100 // this information is known, we have narrowed down to a single instruction. 101 struct ModRMDecision { 102 uint8_t modrm_type; 103 uint16_t instructionIDs; 104 }; 105 106 // Specifies which set of ModR/M->instruction tables to look at 107 // given a particular opcode. 108 struct OpcodeDecision { 109 ModRMDecision modRMDecisions[256]; 110 }; 111 112 // Specifies which opcode->instruction tables to look at given 113 // a particular context (set of attributes). Since there are many possible 114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context 115 // applies given a specific set of attributes. Hence there are only IC_max 116 // entries in this table, rather than 2^(ATTR_max). 117 struct ContextDecision { 118 OpcodeDecision opcodeDecisions[IC_max]; 119 }; 120 121 #include "X86GenDisassemblerTables.inc" 122 123 static InstrUID decode(OpcodeType type, InstructionContext insnContext, 124 uint8_t opcode, uint8_t modRM) { 125 const struct ModRMDecision *dec; 126 127 switch (type) { 128 case ONEBYTE: 129 dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 130 break; 131 case TWOBYTE: 132 dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 133 break; 134 case THREEBYTE_38: 135 dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 136 break; 137 case THREEBYTE_3A: 138 dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 139 break; 140 case XOP8_MAP: 141 dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 142 break; 143 case XOP9_MAP: 144 dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 145 break; 146 case XOPA_MAP: 147 dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 148 break; 149 case THREEDNOW_MAP: 150 dec = 151 &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; 152 break; 153 } 154 155 switch (dec->modrm_type) { 156 default: 157 llvm_unreachable("Corrupt table! Unknown modrm_type"); 158 return 0; 159 case MODRM_ONEENTRY: 160 return modRMTable[dec->instructionIDs]; 161 case MODRM_SPLITRM: 162 if (modFromModRM(modRM) == 0x3) 163 return modRMTable[dec->instructionIDs + 1]; 164 return modRMTable[dec->instructionIDs]; 165 case MODRM_SPLITREG: 166 if (modFromModRM(modRM) == 0x3) 167 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8]; 168 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 169 case MODRM_SPLITMISC: 170 if (modFromModRM(modRM) == 0x3) 171 return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8]; 172 return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)]; 173 case MODRM_FULL: 174 return modRMTable[dec->instructionIDs + modRM]; 175 } 176 } 177 178 static bool peek(struct InternalInstruction *insn, uint8_t &byte) { 179 uint64_t offset = insn->readerCursor - insn->startLocation; 180 if (offset >= insn->bytes.size()) 181 return true; 182 byte = insn->bytes[offset]; 183 return false; 184 } 185 186 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) { 187 auto r = insn->bytes; 188 uint64_t offset = insn->readerCursor - insn->startLocation; 189 if (offset + sizeof(T) > r.size()) 190 return true; 191 T ret = 0; 192 for (unsigned i = 0; i < sizeof(T); ++i) 193 ret |= (uint64_t)r[offset + i] << (i * 8); 194 ptr = ret; 195 insn->readerCursor += sizeof(T); 196 return false; 197 } 198 199 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { 200 return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f; 201 } 202 203 // Consumes all of an instruction's prefix bytes, and marks the 204 // instruction as having them. Also sets the instruction's default operand, 205 // address, and other relevant data sizes to report operands correctly. 206 static int readPrefixes(struct InternalInstruction *insn) { 207 bool isPrefix = true; 208 uint8_t byte = 0; 209 uint8_t nextByte; 210 211 LLVM_DEBUG(dbgs() << "readPrefixes()"); 212 213 while (isPrefix) { 214 // If we fail reading prefixes, just stop here and let the opcode reader 215 // deal with it. 216 if (consume(insn, byte)) 217 break; 218 219 // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then 220 // break and let it be disassembled as a normal "instruction". 221 if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK 222 break; 223 224 if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) { 225 // If the byte is 0xf2 or 0xf3, and any of the following conditions are 226 // met: 227 // - it is followed by a LOCK (0xf0) prefix 228 // - it is followed by an xchg instruction 229 // then it should be disassembled as a xacquire/xrelease not repne/rep. 230 if (((nextByte == 0xf0) || 231 ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { 232 insn->xAcquireRelease = true; 233 if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support 234 break; 235 } 236 // Also if the byte is 0xf3, and the following condition is met: 237 // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or 238 // "mov mem, imm" (opcode 0xc6/0xc7) instructions. 239 // then it should be disassembled as an xrelease not rep. 240 if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || 241 nextByte == 0xc6 || nextByte == 0xc7)) { 242 insn->xAcquireRelease = true; 243 break; 244 } 245 if (isREX(insn, nextByte)) { 246 uint8_t nnextByte; 247 // Go to REX prefix after the current one 248 if (consume(insn, nnextByte)) 249 return -1; 250 // We should be able to read next byte after REX prefix 251 if (peek(insn, nnextByte)) 252 return -1; 253 --insn->readerCursor; 254 } 255 } 256 257 switch (byte) { 258 case 0xf0: // LOCK 259 insn->hasLockPrefix = true; 260 break; 261 case 0xf2: // REPNE/REPNZ 262 case 0xf3: { // REP or REPE/REPZ 263 uint8_t nextByte; 264 if (peek(insn, nextByte)) 265 break; 266 // TODO: 267 // 1. There could be several 0x66 268 // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then 269 // it's not mandatory prefix 270 // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need 271 // 0x0f exactly after it to be mandatory prefix 272 if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) 273 // The last of 0xf2 /0xf3 is mandatory prefix 274 insn->mandatoryPrefix = byte; 275 insn->repeatPrefix = byte; 276 break; 277 } 278 case 0x2e: // CS segment override -OR- Branch not taken 279 insn->segmentOverride = SEG_OVERRIDE_CS; 280 break; 281 case 0x36: // SS segment override -OR- Branch taken 282 insn->segmentOverride = SEG_OVERRIDE_SS; 283 break; 284 case 0x3e: // DS segment override 285 insn->segmentOverride = SEG_OVERRIDE_DS; 286 break; 287 case 0x26: // ES segment override 288 insn->segmentOverride = SEG_OVERRIDE_ES; 289 break; 290 case 0x64: // FS segment override 291 insn->segmentOverride = SEG_OVERRIDE_FS; 292 break; 293 case 0x65: // GS segment override 294 insn->segmentOverride = SEG_OVERRIDE_GS; 295 break; 296 case 0x66: { // Operand-size override { 297 uint8_t nextByte; 298 insn->hasOpSize = true; 299 if (peek(insn, nextByte)) 300 break; 301 // 0x66 can't overwrite existing mandatory prefix and should be ignored 302 if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) 303 insn->mandatoryPrefix = byte; 304 break; 305 } 306 case 0x67: // Address-size override 307 insn->hasAdSize = true; 308 break; 309 default: // Not a prefix byte 310 isPrefix = false; 311 break; 312 } 313 314 if (isPrefix) 315 LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte)); 316 } 317 318 insn->vectorExtensionType = TYPE_NO_VEX_XOP; 319 320 if (byte == 0x62) { 321 uint8_t byte1, byte2; 322 if (consume(insn, byte1)) { 323 LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix"); 324 return -1; 325 } 326 327 if (peek(insn, byte2)) { 328 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 329 return -1; 330 } 331 332 if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && 333 ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) { 334 insn->vectorExtensionType = TYPE_EVEX; 335 } else { 336 --insn->readerCursor; // unconsume byte1 337 --insn->readerCursor; // unconsume byte 338 } 339 340 if (insn->vectorExtensionType == TYPE_EVEX) { 341 insn->vectorExtensionPrefix[0] = byte; 342 insn->vectorExtensionPrefix[1] = byte1; 343 if (consume(insn, insn->vectorExtensionPrefix[2])) { 344 LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix"); 345 return -1; 346 } 347 if (consume(insn, insn->vectorExtensionPrefix[3])) { 348 LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix"); 349 return -1; 350 } 351 352 // We simulate the REX prefix for simplicity's sake 353 if (insn->mode == MODE_64BIT) { 354 insn->rexPrefix = 0x40 | 355 (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) | 356 (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) | 357 (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) | 358 (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); 359 } 360 361 LLVM_DEBUG( 362 dbgs() << format( 363 "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", 364 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], 365 insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3])); 366 } 367 } else if (byte == 0xc4) { 368 uint8_t byte1; 369 if (peek(insn, byte1)) { 370 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 371 return -1; 372 } 373 374 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 375 insn->vectorExtensionType = TYPE_VEX_3B; 376 else 377 --insn->readerCursor; 378 379 if (insn->vectorExtensionType == TYPE_VEX_3B) { 380 insn->vectorExtensionPrefix[0] = byte; 381 consume(insn, insn->vectorExtensionPrefix[1]); 382 consume(insn, insn->vectorExtensionPrefix[2]); 383 384 // We simulate the REX prefix for simplicity's sake 385 386 if (insn->mode == MODE_64BIT) 387 insn->rexPrefix = 0x40 | 388 (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) | 389 (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) | 390 (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) | 391 (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); 392 393 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", 394 insn->vectorExtensionPrefix[0], 395 insn->vectorExtensionPrefix[1], 396 insn->vectorExtensionPrefix[2])); 397 } 398 } else if (byte == 0xc5) { 399 uint8_t byte1; 400 if (peek(insn, byte1)) { 401 LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX"); 402 return -1; 403 } 404 405 if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) 406 insn->vectorExtensionType = TYPE_VEX_2B; 407 else 408 --insn->readerCursor; 409 410 if (insn->vectorExtensionType == TYPE_VEX_2B) { 411 insn->vectorExtensionPrefix[0] = byte; 412 consume(insn, insn->vectorExtensionPrefix[1]); 413 414 if (insn->mode == MODE_64BIT) 415 insn->rexPrefix = 416 0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); 417 418 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 419 default: 420 break; 421 case VEX_PREFIX_66: 422 insn->hasOpSize = true; 423 break; 424 } 425 426 LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx", 427 insn->vectorExtensionPrefix[0], 428 insn->vectorExtensionPrefix[1])); 429 } 430 } else if (byte == 0x8f) { 431 uint8_t byte1; 432 if (peek(insn, byte1)) { 433 LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP"); 434 return -1; 435 } 436 437 if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction. 438 insn->vectorExtensionType = TYPE_XOP; 439 else 440 --insn->readerCursor; 441 442 if (insn->vectorExtensionType == TYPE_XOP) { 443 insn->vectorExtensionPrefix[0] = byte; 444 consume(insn, insn->vectorExtensionPrefix[1]); 445 consume(insn, insn->vectorExtensionPrefix[2]); 446 447 // We simulate the REX prefix for simplicity's sake 448 449 if (insn->mode == MODE_64BIT) 450 insn->rexPrefix = 0x40 | 451 (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) | 452 (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) | 453 (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) | 454 (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); 455 456 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 457 default: 458 break; 459 case VEX_PREFIX_66: 460 insn->hasOpSize = true; 461 break; 462 } 463 464 LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", 465 insn->vectorExtensionPrefix[0], 466 insn->vectorExtensionPrefix[1], 467 insn->vectorExtensionPrefix[2])); 468 } 469 } else if (isREX(insn, byte)) { 470 if (peek(insn, nextByte)) 471 return -1; 472 insn->rexPrefix = byte; 473 LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte)); 474 } else 475 --insn->readerCursor; 476 477 if (insn->mode == MODE_16BIT) { 478 insn->registerSize = (insn->hasOpSize ? 4 : 2); 479 insn->addressSize = (insn->hasAdSize ? 4 : 2); 480 insn->displacementSize = (insn->hasAdSize ? 4 : 2); 481 insn->immediateSize = (insn->hasOpSize ? 4 : 2); 482 } else if (insn->mode == MODE_32BIT) { 483 insn->registerSize = (insn->hasOpSize ? 2 : 4); 484 insn->addressSize = (insn->hasAdSize ? 2 : 4); 485 insn->displacementSize = (insn->hasAdSize ? 2 : 4); 486 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 487 } else if (insn->mode == MODE_64BIT) { 488 if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { 489 insn->registerSize = 8; 490 insn->addressSize = (insn->hasAdSize ? 4 : 8); 491 insn->displacementSize = 4; 492 insn->immediateSize = 4; 493 } else { 494 insn->registerSize = (insn->hasOpSize ? 2 : 4); 495 insn->addressSize = (insn->hasAdSize ? 4 : 8); 496 insn->displacementSize = (insn->hasOpSize ? 2 : 4); 497 insn->immediateSize = (insn->hasOpSize ? 2 : 4); 498 } 499 } 500 501 return 0; 502 } 503 504 // Consumes the SIB byte to determine addressing information. 505 static int readSIB(struct InternalInstruction *insn) { 506 SIBBase sibBaseBase = SIB_BASE_NONE; 507 uint8_t index, base; 508 509 LLVM_DEBUG(dbgs() << "readSIB()"); 510 switch (insn->addressSize) { 511 case 2: 512 default: 513 llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode"); 514 case 4: 515 insn->sibIndexBase = SIB_INDEX_EAX; 516 sibBaseBase = SIB_BASE_EAX; 517 break; 518 case 8: 519 insn->sibIndexBase = SIB_INDEX_RAX; 520 sibBaseBase = SIB_BASE_RAX; 521 break; 522 } 523 524 if (consume(insn, insn->sib)) 525 return -1; 526 527 index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); 528 529 if (index == 0x4) { 530 insn->sibIndex = SIB_INDEX_NONE; 531 } else { 532 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); 533 } 534 535 insn->sibScale = 1 << scaleFromSIB(insn->sib); 536 537 base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); 538 539 switch (base) { 540 case 0x5: 541 case 0xd: 542 switch (modFromModRM(insn->modRM)) { 543 case 0x0: 544 insn->eaDisplacement = EA_DISP_32; 545 insn->sibBase = SIB_BASE_NONE; 546 break; 547 case 0x1: 548 insn->eaDisplacement = EA_DISP_8; 549 insn->sibBase = (SIBBase)(sibBaseBase + base); 550 break; 551 case 0x2: 552 insn->eaDisplacement = EA_DISP_32; 553 insn->sibBase = (SIBBase)(sibBaseBase + base); 554 break; 555 default: 556 llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte"); 557 } 558 break; 559 default: 560 insn->sibBase = (SIBBase)(sibBaseBase + base); 561 break; 562 } 563 564 return 0; 565 } 566 567 static int readDisplacement(struct InternalInstruction *insn) { 568 int8_t d8; 569 int16_t d16; 570 int32_t d32; 571 LLVM_DEBUG(dbgs() << "readDisplacement()"); 572 573 insn->displacementOffset = insn->readerCursor - insn->startLocation; 574 switch (insn->eaDisplacement) { 575 case EA_DISP_NONE: 576 break; 577 case EA_DISP_8: 578 if (consume(insn, d8)) 579 return -1; 580 insn->displacement = d8; 581 break; 582 case EA_DISP_16: 583 if (consume(insn, d16)) 584 return -1; 585 insn->displacement = d16; 586 break; 587 case EA_DISP_32: 588 if (consume(insn, d32)) 589 return -1; 590 insn->displacement = d32; 591 break; 592 } 593 594 return 0; 595 } 596 597 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement. 598 static int readModRM(struct InternalInstruction *insn) { 599 uint8_t mod, rm, reg, evexrm; 600 LLVM_DEBUG(dbgs() << "readModRM()"); 601 602 if (insn->consumedModRM) 603 return 0; 604 605 if (consume(insn, insn->modRM)) 606 return -1; 607 insn->consumedModRM = true; 608 609 mod = modFromModRM(insn->modRM); 610 rm = rmFromModRM(insn->modRM); 611 reg = regFromModRM(insn->modRM); 612 613 // This goes by insn->registerSize to pick the correct register, which messes 614 // up if we're using (say) XMM or 8-bit register operands. That gets fixed in 615 // fixupReg(). 616 switch (insn->registerSize) { 617 case 2: 618 insn->regBase = MODRM_REG_AX; 619 insn->eaRegBase = EA_REG_AX; 620 break; 621 case 4: 622 insn->regBase = MODRM_REG_EAX; 623 insn->eaRegBase = EA_REG_EAX; 624 break; 625 case 8: 626 insn->regBase = MODRM_REG_RAX; 627 insn->eaRegBase = EA_REG_RAX; 628 break; 629 } 630 631 reg |= rFromREX(insn->rexPrefix) << 3; 632 rm |= bFromREX(insn->rexPrefix) << 3; 633 634 evexrm = 0; 635 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { 636 reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; 637 evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; 638 } 639 640 insn->reg = (Reg)(insn->regBase + reg); 641 642 switch (insn->addressSize) { 643 case 2: { 644 EABase eaBaseBase = EA_BASE_BX_SI; 645 646 switch (mod) { 647 case 0x0: 648 if (rm == 0x6) { 649 insn->eaBase = EA_BASE_NONE; 650 insn->eaDisplacement = EA_DISP_16; 651 if (readDisplacement(insn)) 652 return -1; 653 } else { 654 insn->eaBase = (EABase)(eaBaseBase + rm); 655 insn->eaDisplacement = EA_DISP_NONE; 656 } 657 break; 658 case 0x1: 659 insn->eaBase = (EABase)(eaBaseBase + rm); 660 insn->eaDisplacement = EA_DISP_8; 661 insn->displacementSize = 1; 662 if (readDisplacement(insn)) 663 return -1; 664 break; 665 case 0x2: 666 insn->eaBase = (EABase)(eaBaseBase + rm); 667 insn->eaDisplacement = EA_DISP_16; 668 if (readDisplacement(insn)) 669 return -1; 670 break; 671 case 0x3: 672 insn->eaBase = (EABase)(insn->eaRegBase + rm); 673 if (readDisplacement(insn)) 674 return -1; 675 break; 676 } 677 break; 678 } 679 case 4: 680 case 8: { 681 EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); 682 683 switch (mod) { 684 case 0x0: 685 insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this 686 // In determining whether RIP-relative mode is used (rm=5), 687 // or whether a SIB byte is present (rm=4), 688 // the extension bits (REX.b and EVEX.x) are ignored. 689 switch (rm & 7) { 690 case 0x4: // SIB byte is present 691 insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64); 692 if (readSIB(insn) || readDisplacement(insn)) 693 return -1; 694 break; 695 case 0x5: // RIP-relative 696 insn->eaBase = EA_BASE_NONE; 697 insn->eaDisplacement = EA_DISP_32; 698 if (readDisplacement(insn)) 699 return -1; 700 break; 701 default: 702 insn->eaBase = (EABase)(eaBaseBase + rm); 703 break; 704 } 705 break; 706 case 0x1: 707 insn->displacementSize = 1; 708 LLVM_FALLTHROUGH; 709 case 0x2: 710 insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); 711 switch (rm & 7) { 712 case 0x4: // SIB byte is present 713 insn->eaBase = EA_BASE_sib; 714 if (readSIB(insn) || readDisplacement(insn)) 715 return -1; 716 break; 717 default: 718 insn->eaBase = (EABase)(eaBaseBase + rm); 719 if (readDisplacement(insn)) 720 return -1; 721 break; 722 } 723 break; 724 case 0x3: 725 insn->eaDisplacement = EA_DISP_NONE; 726 insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); 727 break; 728 } 729 break; 730 } 731 } // switch (insn->addressSize) 732 733 return 0; 734 } 735 736 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \ 737 static uint16_t name(struct InternalInstruction *insn, OperandType type, \ 738 uint8_t index, uint8_t *valid) { \ 739 *valid = 1; \ 740 switch (type) { \ 741 default: \ 742 debug("Unhandled register type"); \ 743 *valid = 0; \ 744 return 0; \ 745 case TYPE_Rv: \ 746 return base + index; \ 747 case TYPE_R8: \ 748 index &= mask; \ 749 if (index > 0xf) \ 750 *valid = 0; \ 751 if (insn->rexPrefix && index >= 4 && index <= 7) { \ 752 return prefix##_SPL + (index - 4); \ 753 } else { \ 754 return prefix##_AL + index; \ 755 } \ 756 case TYPE_R16: \ 757 index &= mask; \ 758 if (index > 0xf) \ 759 *valid = 0; \ 760 return prefix##_AX + index; \ 761 case TYPE_R32: \ 762 index &= mask; \ 763 if (index > 0xf) \ 764 *valid = 0; \ 765 return prefix##_EAX + index; \ 766 case TYPE_R64: \ 767 index &= mask; \ 768 if (index > 0xf) \ 769 *valid = 0; \ 770 return prefix##_RAX + index; \ 771 case TYPE_ZMM: \ 772 return prefix##_ZMM0 + index; \ 773 case TYPE_YMM: \ 774 return prefix##_YMM0 + index; \ 775 case TYPE_XMM: \ 776 return prefix##_XMM0 + index; \ 777 case TYPE_VK: \ 778 index &= 0xf; \ 779 if (index > 7) \ 780 *valid = 0; \ 781 return prefix##_K0 + index; \ 782 case TYPE_VK_PAIR: \ 783 if (index > 7) \ 784 *valid = 0; \ 785 return prefix##_K0_K1 + (index / 2); \ 786 case TYPE_MM64: \ 787 return prefix##_MM0 + (index & 0x7); \ 788 case TYPE_SEGMENTREG: \ 789 if ((index & 7) > 5) \ 790 *valid = 0; \ 791 return prefix##_ES + (index & 7); \ 792 case TYPE_DEBUGREG: \ 793 return prefix##_DR0 + index; \ 794 case TYPE_CONTROLREG: \ 795 return prefix##_CR0 + index; \ 796 case TYPE_BNDR: \ 797 if (index > 3) \ 798 *valid = 0; \ 799 return prefix##_BND0 + index; \ 800 case TYPE_MVSIBX: \ 801 return prefix##_XMM0 + index; \ 802 case TYPE_MVSIBY: \ 803 return prefix##_YMM0 + index; \ 804 case TYPE_MVSIBZ: \ 805 return prefix##_ZMM0 + index; \ 806 } \ 807 } 808 809 // Consult an operand type to determine the meaning of the reg or R/M field. If 810 // the operand is an XMM operand, for example, an operand would be XMM0 instead 811 // of AX, which readModRM() would otherwise misinterpret it as. 812 // 813 // @param insn - The instruction containing the operand. 814 // @param type - The operand type. 815 // @param index - The existing value of the field as reported by readModRM(). 816 // @param valid - The address of a uint8_t. The target is set to 1 if the 817 // field is valid for the register class; 0 if not. 818 // @return - The proper value. 819 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) 820 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) 821 822 // Consult an operand specifier to determine which of the fixup*Value functions 823 // to use in correcting readModRM()'ss interpretation. 824 // 825 // @param insn - See fixup*Value(). 826 // @param op - The operand specifier. 827 // @return - 0 if fixup was successful; -1 if the register returned was 828 // invalid for its class. 829 static int fixupReg(struct InternalInstruction *insn, 830 const struct OperandSpecifier *op) { 831 uint8_t valid; 832 LLVM_DEBUG(dbgs() << "fixupReg()"); 833 834 switch ((OperandEncoding)op->encoding) { 835 default: 836 debug("Expected a REG or R/M encoding in fixupReg"); 837 return -1; 838 case ENCODING_VVVV: 839 insn->vvvv = 840 (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid); 841 if (!valid) 842 return -1; 843 break; 844 case ENCODING_REG: 845 insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type, 846 insn->reg - insn->regBase, &valid); 847 if (!valid) 848 return -1; 849 break; 850 CASE_ENCODING_RM: 851 if (insn->eaBase >= insn->eaRegBase) { 852 insn->eaBase = (EABase)fixupRMValue( 853 insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid); 854 if (!valid) 855 return -1; 856 } 857 break; 858 } 859 860 return 0; 861 } 862 863 // Read the opcode (except the ModR/M byte in the case of extended or escape 864 // opcodes). 865 static bool readOpcode(struct InternalInstruction *insn) { 866 uint8_t current; 867 LLVM_DEBUG(dbgs() << "readOpcode()"); 868 869 insn->opcodeType = ONEBYTE; 870 if (insn->vectorExtensionType == TYPE_EVEX) { 871 switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { 872 default: 873 LLVM_DEBUG( 874 dbgs() << format("Unhandled mm field for instruction (0x%hhx)", 875 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]))); 876 return true; 877 case VEX_LOB_0F: 878 insn->opcodeType = TWOBYTE; 879 return consume(insn, insn->opcode); 880 case VEX_LOB_0F38: 881 insn->opcodeType = THREEBYTE_38; 882 return consume(insn, insn->opcode); 883 case VEX_LOB_0F3A: 884 insn->opcodeType = THREEBYTE_3A; 885 return consume(insn, insn->opcode); 886 } 887 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 888 switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { 889 default: 890 LLVM_DEBUG( 891 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 892 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 893 return true; 894 case VEX_LOB_0F: 895 insn->opcodeType = TWOBYTE; 896 return consume(insn, insn->opcode); 897 case VEX_LOB_0F38: 898 insn->opcodeType = THREEBYTE_38; 899 return consume(insn, insn->opcode); 900 case VEX_LOB_0F3A: 901 insn->opcodeType = THREEBYTE_3A; 902 return consume(insn, insn->opcode); 903 } 904 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 905 insn->opcodeType = TWOBYTE; 906 return consume(insn, insn->opcode); 907 } else if (insn->vectorExtensionType == TYPE_XOP) { 908 switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { 909 default: 910 LLVM_DEBUG( 911 dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)", 912 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]))); 913 return true; 914 case XOP_MAP_SELECT_8: 915 insn->opcodeType = XOP8_MAP; 916 return consume(insn, insn->opcode); 917 case XOP_MAP_SELECT_9: 918 insn->opcodeType = XOP9_MAP; 919 return consume(insn, insn->opcode); 920 case XOP_MAP_SELECT_A: 921 insn->opcodeType = XOPA_MAP; 922 return consume(insn, insn->opcode); 923 } 924 } 925 926 if (consume(insn, current)) 927 return true; 928 929 if (current == 0x0f) { 930 LLVM_DEBUG( 931 dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current)); 932 if (consume(insn, current)) 933 return true; 934 935 if (current == 0x38) { 936 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 937 current)); 938 if (consume(insn, current)) 939 return -1; 940 941 insn->opcodeType = THREEBYTE_38; 942 } else if (current == 0x3a) { 943 LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)", 944 current)); 945 if (consume(insn, current)) 946 return -1; 947 948 insn->opcodeType = THREEBYTE_3A; 949 } else if (current == 0x0f) { 950 LLVM_DEBUG( 951 dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current)); 952 953 // Consume operands before the opcode to comply with the 3DNow encoding 954 if (readModRM(insn)) 955 return true; 956 957 if (consume(insn, current)) 958 return true; 959 960 insn->opcodeType = THREEDNOW_MAP; 961 } else { 962 LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix"); 963 insn->opcodeType = TWOBYTE; 964 } 965 } else if (insn->mandatoryPrefix) 966 // The opcode with mandatory prefix must start with opcode escape. 967 // If not it's legacy repeat prefix 968 insn->mandatoryPrefix = 0; 969 970 // At this point we have consumed the full opcode. 971 // Anything we consume from here on must be unconsumed. 972 insn->opcode = current; 973 974 return false; 975 } 976 977 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit). 978 static bool is16BitEquivalent(const char *orig, const char *equiv) { 979 for (int i = 0;; i++) { 980 if (orig[i] == '\0' && equiv[i] == '\0') 981 return true; 982 if (orig[i] == '\0' || equiv[i] == '\0') 983 return false; 984 if (orig[i] != equiv[i]) { 985 if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') 986 continue; 987 if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') 988 continue; 989 if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') 990 continue; 991 return false; 992 } 993 } 994 } 995 996 // Determine whether this instruction is a 64-bit instruction. 997 static bool is64Bit(const char *name) { 998 for (int i = 0;; ++i) { 999 if (name[i] == '\0') 1000 return false; 1001 if (name[i] == '6' && name[i + 1] == '4') 1002 return true; 1003 } 1004 } 1005 1006 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1007 // for extended and escape opcodes, and using a supplied attribute mask. 1008 static int getInstructionIDWithAttrMask(uint16_t *instructionID, 1009 struct InternalInstruction *insn, 1010 uint16_t attrMask) { 1011 auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]); 1012 const ContextDecision *decision; 1013 switch (insn->opcodeType) { 1014 case ONEBYTE: 1015 decision = &ONEBYTE_SYM; 1016 break; 1017 case TWOBYTE: 1018 decision = &TWOBYTE_SYM; 1019 break; 1020 case THREEBYTE_38: 1021 decision = &THREEBYTE38_SYM; 1022 break; 1023 case THREEBYTE_3A: 1024 decision = &THREEBYTE3A_SYM; 1025 break; 1026 case XOP8_MAP: 1027 decision = &XOP8_MAP_SYM; 1028 break; 1029 case XOP9_MAP: 1030 decision = &XOP9_MAP_SYM; 1031 break; 1032 case XOPA_MAP: 1033 decision = &XOPA_MAP_SYM; 1034 break; 1035 case THREEDNOW_MAP: 1036 decision = &THREEDNOW_MAP_SYM; 1037 break; 1038 } 1039 1040 if (decision->opcodeDecisions[insnCtx] 1041 .modRMDecisions[insn->opcode] 1042 .modrm_type != MODRM_ONEENTRY) { 1043 if (readModRM(insn)) 1044 return -1; 1045 *instructionID = 1046 decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM); 1047 } else { 1048 *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0); 1049 } 1050 1051 return 0; 1052 } 1053 1054 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate 1055 // for extended and escape opcodes. Determines the attributes and context for 1056 // the instruction before doing so. 1057 static int getInstructionID(struct InternalInstruction *insn, 1058 const MCInstrInfo *mii) { 1059 uint16_t attrMask; 1060 uint16_t instructionID; 1061 1062 LLVM_DEBUG(dbgs() << "getID()"); 1063 1064 attrMask = ATTR_NONE; 1065 1066 if (insn->mode == MODE_64BIT) 1067 attrMask |= ATTR_64BIT; 1068 1069 if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1070 attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; 1071 1072 if (insn->vectorExtensionType == TYPE_EVEX) { 1073 switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { 1074 case VEX_PREFIX_66: 1075 attrMask |= ATTR_OPSIZE; 1076 break; 1077 case VEX_PREFIX_F3: 1078 attrMask |= ATTR_XS; 1079 break; 1080 case VEX_PREFIX_F2: 1081 attrMask |= ATTR_XD; 1082 break; 1083 } 1084 1085 if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1086 attrMask |= ATTR_EVEXKZ; 1087 if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1088 attrMask |= ATTR_EVEXB; 1089 if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1090 attrMask |= ATTR_EVEXK; 1091 if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) 1092 attrMask |= ATTR_VEXL; 1093 if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1094 attrMask |= ATTR_EVEXL2; 1095 } else if (insn->vectorExtensionType == TYPE_VEX_3B) { 1096 switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { 1097 case VEX_PREFIX_66: 1098 attrMask |= ATTR_OPSIZE; 1099 break; 1100 case VEX_PREFIX_F3: 1101 attrMask |= ATTR_XS; 1102 break; 1103 case VEX_PREFIX_F2: 1104 attrMask |= ATTR_XD; 1105 break; 1106 } 1107 1108 if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) 1109 attrMask |= ATTR_VEXL; 1110 } else if (insn->vectorExtensionType == TYPE_VEX_2B) { 1111 switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { 1112 case VEX_PREFIX_66: 1113 attrMask |= ATTR_OPSIZE; 1114 break; 1115 case VEX_PREFIX_F3: 1116 attrMask |= ATTR_XS; 1117 break; 1118 case VEX_PREFIX_F2: 1119 attrMask |= ATTR_XD; 1120 break; 1121 } 1122 1123 if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) 1124 attrMask |= ATTR_VEXL; 1125 } else if (insn->vectorExtensionType == TYPE_XOP) { 1126 switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { 1127 case VEX_PREFIX_66: 1128 attrMask |= ATTR_OPSIZE; 1129 break; 1130 case VEX_PREFIX_F3: 1131 attrMask |= ATTR_XS; 1132 break; 1133 case VEX_PREFIX_F2: 1134 attrMask |= ATTR_XD; 1135 break; 1136 } 1137 1138 if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) 1139 attrMask |= ATTR_VEXL; 1140 } else { 1141 return -1; 1142 } 1143 } else if (!insn->mandatoryPrefix) { 1144 // If we don't have mandatory prefix we should use legacy prefixes here 1145 if (insn->hasOpSize && (insn->mode != MODE_16BIT)) 1146 attrMask |= ATTR_OPSIZE; 1147 if (insn->hasAdSize) 1148 attrMask |= ATTR_ADSIZE; 1149 if (insn->opcodeType == ONEBYTE) { 1150 if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) 1151 // Special support for PAUSE 1152 attrMask |= ATTR_XS; 1153 } else { 1154 if (insn->repeatPrefix == 0xf2) 1155 attrMask |= ATTR_XD; 1156 else if (insn->repeatPrefix == 0xf3) 1157 attrMask |= ATTR_XS; 1158 } 1159 } else { 1160 switch (insn->mandatoryPrefix) { 1161 case 0xf2: 1162 attrMask |= ATTR_XD; 1163 break; 1164 case 0xf3: 1165 attrMask |= ATTR_XS; 1166 break; 1167 case 0x66: 1168 if (insn->mode != MODE_16BIT) 1169 attrMask |= ATTR_OPSIZE; 1170 break; 1171 case 0x67: 1172 attrMask |= ATTR_ADSIZE; 1173 break; 1174 } 1175 } 1176 1177 if (insn->rexPrefix & 0x08) { 1178 attrMask |= ATTR_REXW; 1179 attrMask &= ~ATTR_ADSIZE; 1180 } 1181 1182 if (insn->mode == MODE_16BIT) { 1183 // JCXZ/JECXZ need special handling for 16-bit mode because the meaning 1184 // of the AdSize prefix is inverted w.r.t. 32-bit mode. 1185 if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3) 1186 attrMask ^= ATTR_ADSIZE; 1187 // If we're in 16-bit mode and this is one of the relative jumps and opsize 1188 // prefix isn't present, we need to force the opsize attribute since the 1189 // prefix is inverted relative to 32-bit mode. 1190 if (!insn->hasOpSize && insn->opcodeType == ONEBYTE && 1191 (insn->opcode == 0xE8 || insn->opcode == 0xE9)) 1192 attrMask |= ATTR_OPSIZE; 1193 1194 if (!insn->hasOpSize && insn->opcodeType == TWOBYTE && 1195 insn->opcode >= 0x80 && insn->opcode <= 0x8F) 1196 attrMask |= ATTR_OPSIZE; 1197 } 1198 1199 1200 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1201 return -1; 1202 1203 // The following clauses compensate for limitations of the tables. 1204 1205 if (insn->mode != MODE_64BIT && 1206 insn->vectorExtensionType != TYPE_NO_VEX_XOP) { 1207 // The tables can't distinquish between cases where the W-bit is used to 1208 // select register size and cases where its a required part of the opcode. 1209 if ((insn->vectorExtensionType == TYPE_EVEX && 1210 wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || 1211 (insn->vectorExtensionType == TYPE_VEX_3B && 1212 wFromVEX3of3(insn->vectorExtensionPrefix[2])) || 1213 (insn->vectorExtensionType == TYPE_XOP && 1214 wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { 1215 1216 uint16_t instructionIDWithREXW; 1217 if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn, 1218 attrMask | ATTR_REXW)) { 1219 insn->instructionID = instructionID; 1220 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1221 return 0; 1222 } 1223 1224 auto SpecName = mii->getName(instructionIDWithREXW); 1225 // If not a 64-bit instruction. Switch the opcode. 1226 if (!is64Bit(SpecName.data())) { 1227 insn->instructionID = instructionIDWithREXW; 1228 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW]; 1229 return 0; 1230 } 1231 } 1232 } 1233 1234 // Absolute moves, umonitor, and movdir64b need special handling. 1235 // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are 1236 // inverted w.r.t. 1237 // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in 1238 // any position. 1239 if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || 1240 (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || 1241 (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { 1242 // Make sure we observed the prefixes in any position. 1243 if (insn->hasAdSize) 1244 attrMask |= ATTR_ADSIZE; 1245 if (insn->hasOpSize) 1246 attrMask |= ATTR_OPSIZE; 1247 1248 // In 16-bit, invert the attributes. 1249 if (insn->mode == MODE_16BIT) { 1250 attrMask ^= ATTR_ADSIZE; 1251 1252 // The OpSize attribute is only valid with the absolute moves. 1253 if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) 1254 attrMask ^= ATTR_OPSIZE; 1255 } 1256 1257 if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask)) 1258 return -1; 1259 1260 insn->instructionID = instructionID; 1261 insn->spec = &INSTRUCTIONS_SYM[instructionID]; 1262 return 0; 1263 } 1264 1265 if ((insn->mode == MODE_16BIT || insn->hasOpSize) && 1266 !(attrMask & ATTR_OPSIZE)) { 1267 // The instruction tables make no distinction between instructions that 1268 // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a 1269 // particular spot (i.e., many MMX operations). In general we're 1270 // conservative, but in the specific case where OpSize is present but not in 1271 // the right place we check if there's a 16-bit operation. 1272 const struct InstructionSpecifier *spec; 1273 uint16_t instructionIDWithOpsize; 1274 llvm::StringRef specName, specWithOpSizeName; 1275 1276 spec = &INSTRUCTIONS_SYM[instructionID]; 1277 1278 if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn, 1279 attrMask | ATTR_OPSIZE)) { 1280 // ModRM required with OpSize but not present. Give up and return the 1281 // version without OpSize set. 1282 insn->instructionID = instructionID; 1283 insn->spec = spec; 1284 return 0; 1285 } 1286 1287 specName = mii->getName(instructionID); 1288 specWithOpSizeName = mii->getName(instructionIDWithOpsize); 1289 1290 if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && 1291 (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { 1292 insn->instructionID = instructionIDWithOpsize; 1293 insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize]; 1294 } else { 1295 insn->instructionID = instructionID; 1296 insn->spec = spec; 1297 } 1298 return 0; 1299 } 1300 1301 if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && 1302 insn->rexPrefix & 0x01) { 1303 // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode 1304 // as XCHG %r8, %eax. 1305 const struct InstructionSpecifier *spec; 1306 uint16_t instructionIDWithNewOpcode; 1307 const struct InstructionSpecifier *specWithNewOpcode; 1308 1309 spec = &INSTRUCTIONS_SYM[instructionID]; 1310 1311 // Borrow opcode from one of the other XCHGar opcodes 1312 insn->opcode = 0x91; 1313 1314 if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn, 1315 attrMask)) { 1316 insn->opcode = 0x90; 1317 1318 insn->instructionID = instructionID; 1319 insn->spec = spec; 1320 return 0; 1321 } 1322 1323 specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode]; 1324 1325 // Change back 1326 insn->opcode = 0x90; 1327 1328 insn->instructionID = instructionIDWithNewOpcode; 1329 insn->spec = specWithNewOpcode; 1330 1331 return 0; 1332 } 1333 1334 insn->instructionID = instructionID; 1335 insn->spec = &INSTRUCTIONS_SYM[insn->instructionID]; 1336 1337 return 0; 1338 } 1339 1340 // Read an operand from the opcode field of an instruction and interprets it 1341 // appropriately given the operand width. Handles AddRegFrm instructions. 1342 // 1343 // @param insn - the instruction whose opcode field is to be read. 1344 // @param size - The width (in bytes) of the register being specified. 1345 // 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means 1346 // RAX. 1347 // @return - 0 on success; nonzero otherwise. 1348 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) { 1349 LLVM_DEBUG(dbgs() << "readOpcodeRegister()"); 1350 1351 if (size == 0) 1352 size = insn->registerSize; 1353 1354 switch (size) { 1355 case 1: 1356 insn->opcodeRegister = (Reg)( 1357 MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1358 if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 && 1359 insn->opcodeRegister < MODRM_REG_AL + 0x8) { 1360 insn->opcodeRegister = 1361 (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4)); 1362 } 1363 1364 break; 1365 case 2: 1366 insn->opcodeRegister = (Reg)( 1367 MODRM_REG_AX + ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1368 break; 1369 case 4: 1370 insn->opcodeRegister = 1371 (Reg)(MODRM_REG_EAX + 1372 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1373 break; 1374 case 8: 1375 insn->opcodeRegister = 1376 (Reg)(MODRM_REG_RAX + 1377 ((bFromREX(insn->rexPrefix) << 3) | (insn->opcode & 7))); 1378 break; 1379 } 1380 1381 return 0; 1382 } 1383 1384 // Consume an immediate operand from an instruction, given the desired operand 1385 // size. 1386 // 1387 // @param insn - The instruction whose operand is to be read. 1388 // @param size - The width (in bytes) of the operand. 1389 // @return - 0 if the immediate was successfully consumed; nonzero 1390 // otherwise. 1391 static int readImmediate(struct InternalInstruction *insn, uint8_t size) { 1392 uint8_t imm8; 1393 uint16_t imm16; 1394 uint32_t imm32; 1395 uint64_t imm64; 1396 1397 LLVM_DEBUG(dbgs() << "readImmediate()"); 1398 1399 assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates"); 1400 1401 insn->immediateSize = size; 1402 insn->immediateOffset = insn->readerCursor - insn->startLocation; 1403 1404 switch (size) { 1405 case 1: 1406 if (consume(insn, imm8)) 1407 return -1; 1408 insn->immediates[insn->numImmediatesConsumed] = imm8; 1409 break; 1410 case 2: 1411 if (consume(insn, imm16)) 1412 return -1; 1413 insn->immediates[insn->numImmediatesConsumed] = imm16; 1414 break; 1415 case 4: 1416 if (consume(insn, imm32)) 1417 return -1; 1418 insn->immediates[insn->numImmediatesConsumed] = imm32; 1419 break; 1420 case 8: 1421 if (consume(insn, imm64)) 1422 return -1; 1423 insn->immediates[insn->numImmediatesConsumed] = imm64; 1424 break; 1425 default: 1426 llvm_unreachable("invalid size"); 1427 } 1428 1429 insn->numImmediatesConsumed++; 1430 1431 return 0; 1432 } 1433 1434 // Consume vvvv from an instruction if it has a VEX prefix. 1435 static int readVVVV(struct InternalInstruction *insn) { 1436 LLVM_DEBUG(dbgs() << "readVVVV()"); 1437 1438 int vvvv; 1439 if (insn->vectorExtensionType == TYPE_EVEX) 1440 vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | 1441 vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); 1442 else if (insn->vectorExtensionType == TYPE_VEX_3B) 1443 vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); 1444 else if (insn->vectorExtensionType == TYPE_VEX_2B) 1445 vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); 1446 else if (insn->vectorExtensionType == TYPE_XOP) 1447 vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); 1448 else 1449 return -1; 1450 1451 if (insn->mode != MODE_64BIT) 1452 vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. 1453 1454 insn->vvvv = static_cast<Reg>(vvvv); 1455 return 0; 1456 } 1457 1458 // Read an mask register from the opcode field of an instruction. 1459 // 1460 // @param insn - The instruction whose opcode field is to be read. 1461 // @return - 0 on success; nonzero otherwise. 1462 static int readMaskRegister(struct InternalInstruction *insn) { 1463 LLVM_DEBUG(dbgs() << "readMaskRegister()"); 1464 1465 if (insn->vectorExtensionType != TYPE_EVEX) 1466 return -1; 1467 1468 insn->writemask = 1469 static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); 1470 return 0; 1471 } 1472 1473 // Consults the specifier for an instruction and consumes all 1474 // operands for that instruction, interpreting them as it goes. 1475 static int readOperands(struct InternalInstruction *insn) { 1476 int hasVVVV, needVVVV; 1477 int sawRegImm = 0; 1478 1479 LLVM_DEBUG(dbgs() << "readOperands()"); 1480 1481 // If non-zero vvvv specified, make sure one of the operands uses it. 1482 hasVVVV = !readVVVV(insn); 1483 needVVVV = hasVVVV && (insn->vvvv != 0); 1484 1485 for (const auto &Op : x86OperandSets[insn->spec->operands]) { 1486 switch (Op.encoding) { 1487 case ENCODING_NONE: 1488 case ENCODING_SI: 1489 case ENCODING_DI: 1490 break; 1491 CASE_ENCODING_VSIB: 1492 // VSIB can use the V2 bit so check only the other bits. 1493 if (needVVVV) 1494 needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); 1495 if (readModRM(insn)) 1496 return -1; 1497 1498 // Reject if SIB wasn't used. 1499 if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) 1500 return -1; 1501 1502 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. 1503 if (insn->sibIndex == SIB_INDEX_NONE) 1504 insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); 1505 1506 // If EVEX.v2 is set this is one of the 16-31 registers. 1507 if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && 1508 v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) 1509 insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); 1510 1511 // Adjust the index register to the correct size. 1512 switch ((OperandType)Op.type) { 1513 default: 1514 debug("Unhandled VSIB index type"); 1515 return -1; 1516 case TYPE_MVSIBX: 1517 insn->sibIndex = 1518 (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase)); 1519 break; 1520 case TYPE_MVSIBY: 1521 insn->sibIndex = 1522 (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase)); 1523 break; 1524 case TYPE_MVSIBZ: 1525 insn->sibIndex = 1526 (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase)); 1527 break; 1528 } 1529 1530 // Apply the AVX512 compressed displacement scaling factor. 1531 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1532 insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); 1533 break; 1534 case ENCODING_REG: 1535 CASE_ENCODING_RM: 1536 if (readModRM(insn)) 1537 return -1; 1538 if (fixupReg(insn, &Op)) 1539 return -1; 1540 // Apply the AVX512 compressed displacement scaling factor. 1541 if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) 1542 insn->displacement *= 1 << (Op.encoding - ENCODING_RM); 1543 break; 1544 case ENCODING_IB: 1545 if (sawRegImm) { 1546 // Saw a register immediate so don't read again and instead split the 1547 // previous immediate. FIXME: This is a hack. 1548 insn->immediates[insn->numImmediatesConsumed] = 1549 insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; 1550 ++insn->numImmediatesConsumed; 1551 break; 1552 } 1553 if (readImmediate(insn, 1)) 1554 return -1; 1555 if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) 1556 sawRegImm = 1; 1557 break; 1558 case ENCODING_IW: 1559 if (readImmediate(insn, 2)) 1560 return -1; 1561 break; 1562 case ENCODING_ID: 1563 if (readImmediate(insn, 4)) 1564 return -1; 1565 break; 1566 case ENCODING_IO: 1567 if (readImmediate(insn, 8)) 1568 return -1; 1569 break; 1570 case ENCODING_Iv: 1571 if (readImmediate(insn, insn->immediateSize)) 1572 return -1; 1573 break; 1574 case ENCODING_Ia: 1575 if (readImmediate(insn, insn->addressSize)) 1576 return -1; 1577 break; 1578 case ENCODING_IRC: 1579 insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | 1580 lFromEVEX4of4(insn->vectorExtensionPrefix[3]); 1581 break; 1582 case ENCODING_RB: 1583 if (readOpcodeRegister(insn, 1)) 1584 return -1; 1585 break; 1586 case ENCODING_RW: 1587 if (readOpcodeRegister(insn, 2)) 1588 return -1; 1589 break; 1590 case ENCODING_RD: 1591 if (readOpcodeRegister(insn, 4)) 1592 return -1; 1593 break; 1594 case ENCODING_RO: 1595 if (readOpcodeRegister(insn, 8)) 1596 return -1; 1597 break; 1598 case ENCODING_Rv: 1599 if (readOpcodeRegister(insn, 0)) 1600 return -1; 1601 break; 1602 case ENCODING_CC: 1603 insn->immediates[1] = insn->opcode & 0xf; 1604 break; 1605 case ENCODING_FP: 1606 break; 1607 case ENCODING_VVVV: 1608 needVVVV = 0; // Mark that we have found a VVVV operand. 1609 if (!hasVVVV) 1610 return -1; 1611 if (insn->mode != MODE_64BIT) 1612 insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); 1613 if (fixupReg(insn, &Op)) 1614 return -1; 1615 break; 1616 case ENCODING_WRITEMASK: 1617 if (readMaskRegister(insn)) 1618 return -1; 1619 break; 1620 case ENCODING_DUP: 1621 break; 1622 default: 1623 LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding."); 1624 return -1; 1625 } 1626 } 1627 1628 // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail 1629 if (needVVVV) 1630 return -1; 1631 1632 return 0; 1633 } 1634 1635 namespace llvm { 1636 1637 // Fill-ins to make the compiler happy. These constants are never actually 1638 // assigned; they are just filler to make an automatically-generated switch 1639 // statement work. 1640 namespace X86 { 1641 enum { 1642 BX_SI = 500, 1643 BX_DI = 501, 1644 BP_SI = 502, 1645 BP_DI = 503, 1646 sib = 504, 1647 sib64 = 505 1648 }; 1649 } 1650 1651 } 1652 1653 static bool translateInstruction(MCInst &target, 1654 InternalInstruction &source, 1655 const MCDisassembler *Dis); 1656 1657 namespace { 1658 1659 /// Generic disassembler for all X86 platforms. All each platform class should 1660 /// have to do is subclass the constructor, and provide a different 1661 /// disassemblerMode value. 1662 class X86GenericDisassembler : public MCDisassembler { 1663 std::unique_ptr<const MCInstrInfo> MII; 1664 public: 1665 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, 1666 std::unique_ptr<const MCInstrInfo> MII); 1667 public: 1668 DecodeStatus getInstruction(MCInst &instr, uint64_t &size, 1669 ArrayRef<uint8_t> Bytes, uint64_t Address, 1670 raw_ostream &cStream) const override; 1671 1672 private: 1673 DisassemblerMode fMode; 1674 }; 1675 1676 } 1677 1678 X86GenericDisassembler::X86GenericDisassembler( 1679 const MCSubtargetInfo &STI, 1680 MCContext &Ctx, 1681 std::unique_ptr<const MCInstrInfo> MII) 1682 : MCDisassembler(STI, Ctx), MII(std::move(MII)) { 1683 const FeatureBitset &FB = STI.getFeatureBits(); 1684 if (FB[X86::Mode16Bit]) { 1685 fMode = MODE_16BIT; 1686 return; 1687 } else if (FB[X86::Mode32Bit]) { 1688 fMode = MODE_32BIT; 1689 return; 1690 } else if (FB[X86::Mode64Bit]) { 1691 fMode = MODE_64BIT; 1692 return; 1693 } 1694 1695 llvm_unreachable("Invalid CPU mode"); 1696 } 1697 1698 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( 1699 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, 1700 raw_ostream &CStream) const { 1701 CommentStream = &CStream; 1702 1703 InternalInstruction Insn; 1704 memset(&Insn, 0, sizeof(InternalInstruction)); 1705 Insn.bytes = Bytes; 1706 Insn.startLocation = Address; 1707 Insn.readerCursor = Address; 1708 Insn.mode = fMode; 1709 1710 if (readPrefixes(&Insn) || readOpcode(&Insn) || 1711 getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 || 1712 readOperands(&Insn)) { 1713 Size = Insn.readerCursor - Address; 1714 return Fail; 1715 } 1716 1717 Insn.operands = x86OperandSets[Insn.spec->operands]; 1718 Insn.length = Insn.readerCursor - Insn.startLocation; 1719 Size = Insn.length; 1720 if (Size > 15) 1721 LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit"); 1722 1723 bool Ret = translateInstruction(Instr, Insn, this); 1724 if (!Ret) { 1725 unsigned Flags = X86::IP_NO_PREFIX; 1726 if (Insn.hasAdSize) 1727 Flags |= X86::IP_HAS_AD_SIZE; 1728 if (!Insn.mandatoryPrefix) { 1729 if (Insn.hasOpSize) 1730 Flags |= X86::IP_HAS_OP_SIZE; 1731 if (Insn.repeatPrefix == 0xf2) 1732 Flags |= X86::IP_HAS_REPEAT_NE; 1733 else if (Insn.repeatPrefix == 0xf3 && 1734 // It should not be 'pause' f3 90 1735 Insn.opcode != 0x90) 1736 Flags |= X86::IP_HAS_REPEAT; 1737 if (Insn.hasLockPrefix) 1738 Flags |= X86::IP_HAS_LOCK; 1739 } 1740 Instr.setFlags(Flags); 1741 } 1742 return (!Ret) ? Success : Fail; 1743 } 1744 1745 // 1746 // Private code that translates from struct InternalInstructions to MCInsts. 1747 // 1748 1749 /// translateRegister - Translates an internal register to the appropriate LLVM 1750 /// register, and appends it as an operand to an MCInst. 1751 /// 1752 /// @param mcInst - The MCInst to append to. 1753 /// @param reg - The Reg to append. 1754 static void translateRegister(MCInst &mcInst, Reg reg) { 1755 #define ENTRY(x) X86::x, 1756 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; 1757 #undef ENTRY 1758 1759 MCPhysReg llvmRegnum = llvmRegnums[reg]; 1760 mcInst.addOperand(MCOperand::createReg(llvmRegnum)); 1761 } 1762 1763 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the 1764 /// immediate Value in the MCInst. 1765 /// 1766 /// @param Value - The immediate Value, has had any PC adjustment made by 1767 /// the caller. 1768 /// @param isBranch - If the instruction is a branch instruction 1769 /// @param Address - The starting address of the instruction 1770 /// @param Offset - The byte offset to this immediate in the instruction 1771 /// @param Width - The byte width of this immediate in the instruction 1772 /// 1773 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was 1774 /// called then that function is called to get any symbolic information for the 1775 /// immediate in the instruction using the Address, Offset and Width. If that 1776 /// returns non-zero then the symbolic information it returns is used to create 1777 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() 1778 /// returns zero and isBranch is true then a symbol look up for immediate Value 1779 /// is done and if a symbol is found an MCExpr is created with that, else 1780 /// an MCExpr with the immediate Value is created. This function returns true 1781 /// if it adds an operand to the MCInst and false otherwise. 1782 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, 1783 uint64_t Address, uint64_t Offset, 1784 uint64_t Width, MCInst &MI, 1785 const MCDisassembler *Dis) { 1786 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, 1787 Offset, Width); 1788 } 1789 1790 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being 1791 /// referenced by a load instruction with the base register that is the rip. 1792 /// These can often be addresses in a literal pool. The Address of the 1793 /// instruction and its immediate Value are used to determine the address 1794 /// being referenced in the literal pool entry. The SymbolLookUp call back will 1795 /// return a pointer to a literal 'C' string if the referenced address is an 1796 /// address into a section with 'C' string literals. 1797 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, 1798 const void *Decoder) { 1799 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); 1800 Dis->tryAddingPcLoadReferenceComment(Value, Address); 1801 } 1802 1803 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 1804 0, // SEG_OVERRIDE_NONE 1805 X86::CS, 1806 X86::SS, 1807 X86::DS, 1808 X86::ES, 1809 X86::FS, 1810 X86::GS 1811 }; 1812 1813 /// translateSrcIndex - Appends a source index operand to an MCInst. 1814 /// 1815 /// @param mcInst - The MCInst to append to. 1816 /// @param insn - The internal instruction. 1817 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { 1818 unsigned baseRegNo; 1819 1820 if (insn.mode == MODE_64BIT) 1821 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; 1822 else if (insn.mode == MODE_32BIT) 1823 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; 1824 else { 1825 assert(insn.mode == MODE_16BIT); 1826 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; 1827 } 1828 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1829 mcInst.addOperand(baseReg); 1830 1831 MCOperand segmentReg; 1832 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 1833 mcInst.addOperand(segmentReg); 1834 return false; 1835 } 1836 1837 /// translateDstIndex - Appends a destination index operand to an MCInst. 1838 /// 1839 /// @param mcInst - The MCInst to append to. 1840 /// @param insn - The internal instruction. 1841 1842 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { 1843 unsigned baseRegNo; 1844 1845 if (insn.mode == MODE_64BIT) 1846 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; 1847 else if (insn.mode == MODE_32BIT) 1848 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; 1849 else { 1850 assert(insn.mode == MODE_16BIT); 1851 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; 1852 } 1853 MCOperand baseReg = MCOperand::createReg(baseRegNo); 1854 mcInst.addOperand(baseReg); 1855 return false; 1856 } 1857 1858 /// translateImmediate - Appends an immediate operand to an MCInst. 1859 /// 1860 /// @param mcInst - The MCInst to append to. 1861 /// @param immediate - The immediate value to append. 1862 /// @param operand - The operand, as stored in the descriptor table. 1863 /// @param insn - The internal instruction. 1864 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 1865 const OperandSpecifier &operand, 1866 InternalInstruction &insn, 1867 const MCDisassembler *Dis) { 1868 // Sign-extend the immediate if necessary. 1869 1870 OperandType type = (OperandType)operand.type; 1871 1872 bool isBranch = false; 1873 uint64_t pcrel = 0; 1874 if (type == TYPE_REL) { 1875 isBranch = true; 1876 pcrel = insn.startLocation + 1877 insn.immediateOffset + insn.immediateSize; 1878 switch (operand.encoding) { 1879 default: 1880 break; 1881 case ENCODING_Iv: 1882 switch (insn.displacementSize) { 1883 default: 1884 break; 1885 case 1: 1886 if(immediate & 0x80) 1887 immediate |= ~(0xffull); 1888 break; 1889 case 2: 1890 if(immediate & 0x8000) 1891 immediate |= ~(0xffffull); 1892 break; 1893 case 4: 1894 if(immediate & 0x80000000) 1895 immediate |= ~(0xffffffffull); 1896 break; 1897 case 8: 1898 break; 1899 } 1900 break; 1901 case ENCODING_IB: 1902 if(immediate & 0x80) 1903 immediate |= ~(0xffull); 1904 break; 1905 case ENCODING_IW: 1906 if(immediate & 0x8000) 1907 immediate |= ~(0xffffull); 1908 break; 1909 case ENCODING_ID: 1910 if(immediate & 0x80000000) 1911 immediate |= ~(0xffffffffull); 1912 break; 1913 } 1914 } 1915 // By default sign-extend all X86 immediates based on their encoding. 1916 else if (type == TYPE_IMM) { 1917 switch (operand.encoding) { 1918 default: 1919 break; 1920 case ENCODING_IB: 1921 if(immediate & 0x80) 1922 immediate |= ~(0xffull); 1923 break; 1924 case ENCODING_IW: 1925 if(immediate & 0x8000) 1926 immediate |= ~(0xffffull); 1927 break; 1928 case ENCODING_ID: 1929 if(immediate & 0x80000000) 1930 immediate |= ~(0xffffffffull); 1931 break; 1932 case ENCODING_IO: 1933 break; 1934 } 1935 } 1936 1937 switch (type) { 1938 case TYPE_XMM: 1939 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); 1940 return; 1941 case TYPE_YMM: 1942 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); 1943 return; 1944 case TYPE_ZMM: 1945 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); 1946 return; 1947 default: 1948 // operand is 64 bits wide. Do nothing. 1949 break; 1950 } 1951 1952 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, 1953 insn.immediateOffset, insn.immediateSize, 1954 mcInst, Dis)) 1955 mcInst.addOperand(MCOperand::createImm(immediate)); 1956 1957 if (type == TYPE_MOFFS) { 1958 MCOperand segmentReg; 1959 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 1960 mcInst.addOperand(segmentReg); 1961 } 1962 } 1963 1964 /// translateRMRegister - Translates a register stored in the R/M field of the 1965 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 1966 /// @param mcInst - The MCInst to append to. 1967 /// @param insn - The internal instruction to extract the R/M field 1968 /// from. 1969 /// @return - 0 on success; -1 otherwise 1970 static bool translateRMRegister(MCInst &mcInst, 1971 InternalInstruction &insn) { 1972 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 1973 debug("A R/M register operand may not have a SIB byte"); 1974 return true; 1975 } 1976 1977 switch (insn.eaBase) { 1978 default: 1979 debug("Unexpected EA base register"); 1980 return true; 1981 case EA_BASE_NONE: 1982 debug("EA_BASE_NONE for ModR/M base"); 1983 return true; 1984 #define ENTRY(x) case EA_BASE_##x: 1985 ALL_EA_BASES 1986 #undef ENTRY 1987 debug("A R/M register operand may not have a base; " 1988 "the operand must be a register."); 1989 return true; 1990 #define ENTRY(x) \ 1991 case EA_REG_##x: \ 1992 mcInst.addOperand(MCOperand::createReg(X86::x)); break; 1993 ALL_REGS 1994 #undef ENTRY 1995 } 1996 1997 return false; 1998 } 1999 2000 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 2001 /// fields of an internal instruction (and possibly its SIB byte) to a memory 2002 /// operand in LLVM's format, and appends it to an MCInst. 2003 /// 2004 /// @param mcInst - The MCInst to append to. 2005 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2006 /// from. 2007 /// @return - 0 on success; nonzero otherwise 2008 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 2009 const MCDisassembler *Dis) { 2010 // Addresses in an MCInst are represented as five operands: 2011 // 1. basereg (register) The R/M base, or (if there is a SIB) the 2012 // SIB base 2013 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 2014 // scale amount 2015 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 2016 // the index (which is multiplied by the 2017 // scale amount) 2018 // 4. displacement (immediate) 0, or the displacement if there is one 2019 // 5. segmentreg (register) x86_registerNONE for now, but could be set 2020 // if we have segment overrides 2021 2022 MCOperand baseReg; 2023 MCOperand scaleAmount; 2024 MCOperand indexReg; 2025 MCOperand displacement; 2026 MCOperand segmentReg; 2027 uint64_t pcrel = 0; 2028 2029 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 2030 if (insn.sibBase != SIB_BASE_NONE) { 2031 switch (insn.sibBase) { 2032 default: 2033 debug("Unexpected sibBase"); 2034 return true; 2035 #define ENTRY(x) \ 2036 case SIB_BASE_##x: \ 2037 baseReg = MCOperand::createReg(X86::x); break; 2038 ALL_SIB_BASES 2039 #undef ENTRY 2040 } 2041 } else { 2042 baseReg = MCOperand::createReg(X86::NoRegister); 2043 } 2044 2045 if (insn.sibIndex != SIB_INDEX_NONE) { 2046 switch (insn.sibIndex) { 2047 default: 2048 debug("Unexpected sibIndex"); 2049 return true; 2050 #define ENTRY(x) \ 2051 case SIB_INDEX_##x: \ 2052 indexReg = MCOperand::createReg(X86::x); break; 2053 EA_BASES_32BIT 2054 EA_BASES_64BIT 2055 REGS_XMM 2056 REGS_YMM 2057 REGS_ZMM 2058 #undef ENTRY 2059 } 2060 } else { 2061 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, 2062 // but no index is used and modrm alone should have been enough. 2063 // -No base register in 32-bit mode. In 64-bit mode this is used to 2064 // avoid rip-relative addressing. 2065 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a 2066 // base always requires a SIB byte. 2067 // -A scale other than 1 is used. 2068 if (insn.sibScale != 1 || 2069 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || 2070 (insn.sibBase != SIB_BASE_NONE && 2071 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && 2072 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) { 2073 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : 2074 X86::RIZ); 2075 } else 2076 indexReg = MCOperand::createReg(X86::NoRegister); 2077 } 2078 2079 scaleAmount = MCOperand::createImm(insn.sibScale); 2080 } else { 2081 switch (insn.eaBase) { 2082 case EA_BASE_NONE: 2083 if (insn.eaDisplacement == EA_DISP_NONE) { 2084 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 2085 return true; 2086 } 2087 if (insn.mode == MODE_64BIT){ 2088 pcrel = insn.startLocation + 2089 insn.displacementOffset + insn.displacementSize; 2090 tryAddingPcLoadReferenceComment(insn.startLocation + 2091 insn.displacementOffset, 2092 insn.displacement + pcrel, Dis); 2093 // Section 2.2.1.6 2094 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : 2095 X86::RIP); 2096 } 2097 else 2098 baseReg = MCOperand::createReg(X86::NoRegister); 2099 2100 indexReg = MCOperand::createReg(X86::NoRegister); 2101 break; 2102 case EA_BASE_BX_SI: 2103 baseReg = MCOperand::createReg(X86::BX); 2104 indexReg = MCOperand::createReg(X86::SI); 2105 break; 2106 case EA_BASE_BX_DI: 2107 baseReg = MCOperand::createReg(X86::BX); 2108 indexReg = MCOperand::createReg(X86::DI); 2109 break; 2110 case EA_BASE_BP_SI: 2111 baseReg = MCOperand::createReg(X86::BP); 2112 indexReg = MCOperand::createReg(X86::SI); 2113 break; 2114 case EA_BASE_BP_DI: 2115 baseReg = MCOperand::createReg(X86::BP); 2116 indexReg = MCOperand::createReg(X86::DI); 2117 break; 2118 default: 2119 indexReg = MCOperand::createReg(X86::NoRegister); 2120 switch (insn.eaBase) { 2121 default: 2122 debug("Unexpected eaBase"); 2123 return true; 2124 // Here, we will use the fill-ins defined above. However, 2125 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 2126 // sib and sib64 were handled in the top-level if, so they're only 2127 // placeholders to keep the compiler happy. 2128 #define ENTRY(x) \ 2129 case EA_BASE_##x: \ 2130 baseReg = MCOperand::createReg(X86::x); break; 2131 ALL_EA_BASES 2132 #undef ENTRY 2133 #define ENTRY(x) case EA_REG_##x: 2134 ALL_REGS 2135 #undef ENTRY 2136 debug("A R/M memory operand may not be a register; " 2137 "the base field must be a base."); 2138 return true; 2139 } 2140 } 2141 2142 scaleAmount = MCOperand::createImm(1); 2143 } 2144 2145 displacement = MCOperand::createImm(insn.displacement); 2146 2147 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 2148 2149 mcInst.addOperand(baseReg); 2150 mcInst.addOperand(scaleAmount); 2151 mcInst.addOperand(indexReg); 2152 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, 2153 insn.startLocation, insn.displacementOffset, 2154 insn.displacementSize, mcInst, Dis)) 2155 mcInst.addOperand(displacement); 2156 mcInst.addOperand(segmentReg); 2157 return false; 2158 } 2159 2160 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 2161 /// byte of an instruction to LLVM form, and appends it to an MCInst. 2162 /// 2163 /// @param mcInst - The MCInst to append to. 2164 /// @param operand - The operand, as stored in the descriptor table. 2165 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 2166 /// from. 2167 /// @return - 0 on success; nonzero otherwise 2168 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 2169 InternalInstruction &insn, const MCDisassembler *Dis) { 2170 switch (operand.type) { 2171 default: 2172 debug("Unexpected type for a R/M operand"); 2173 return true; 2174 case TYPE_R8: 2175 case TYPE_R16: 2176 case TYPE_R32: 2177 case TYPE_R64: 2178 case TYPE_Rv: 2179 case TYPE_MM64: 2180 case TYPE_XMM: 2181 case TYPE_YMM: 2182 case TYPE_ZMM: 2183 case TYPE_VK_PAIR: 2184 case TYPE_VK: 2185 case TYPE_DEBUGREG: 2186 case TYPE_CONTROLREG: 2187 case TYPE_BNDR: 2188 return translateRMRegister(mcInst, insn); 2189 case TYPE_M: 2190 case TYPE_MVSIBX: 2191 case TYPE_MVSIBY: 2192 case TYPE_MVSIBZ: 2193 return translateRMMemory(mcInst, insn, Dis); 2194 } 2195 } 2196 2197 /// translateFPRegister - Translates a stack position on the FPU stack to its 2198 /// LLVM form, and appends it to an MCInst. 2199 /// 2200 /// @param mcInst - The MCInst to append to. 2201 /// @param stackPos - The stack position to translate. 2202 static void translateFPRegister(MCInst &mcInst, 2203 uint8_t stackPos) { 2204 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); 2205 } 2206 2207 /// translateMaskRegister - Translates a 3-bit mask register number to 2208 /// LLVM form, and appends it to an MCInst. 2209 /// 2210 /// @param mcInst - The MCInst to append to. 2211 /// @param maskRegNum - Number of mask register from 0 to 7. 2212 /// @return - false on success; true otherwise. 2213 static bool translateMaskRegister(MCInst &mcInst, 2214 uint8_t maskRegNum) { 2215 if (maskRegNum >= 8) { 2216 debug("Invalid mask register number"); 2217 return true; 2218 } 2219 2220 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); 2221 return false; 2222 } 2223 2224 /// translateOperand - Translates an operand stored in an internal instruction 2225 /// to LLVM's format and appends it to an MCInst. 2226 /// 2227 /// @param mcInst - The MCInst to append to. 2228 /// @param operand - The operand, as stored in the descriptor table. 2229 /// @param insn - The internal instruction. 2230 /// @return - false on success; true otherwise. 2231 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 2232 InternalInstruction &insn, 2233 const MCDisassembler *Dis) { 2234 switch (operand.encoding) { 2235 default: 2236 debug("Unhandled operand encoding during translation"); 2237 return true; 2238 case ENCODING_REG: 2239 translateRegister(mcInst, insn.reg); 2240 return false; 2241 case ENCODING_WRITEMASK: 2242 return translateMaskRegister(mcInst, insn.writemask); 2243 CASE_ENCODING_RM: 2244 CASE_ENCODING_VSIB: 2245 return translateRM(mcInst, operand, insn, Dis); 2246 case ENCODING_IB: 2247 case ENCODING_IW: 2248 case ENCODING_ID: 2249 case ENCODING_IO: 2250 case ENCODING_Iv: 2251 case ENCODING_Ia: 2252 translateImmediate(mcInst, 2253 insn.immediates[insn.numImmediatesTranslated++], 2254 operand, 2255 insn, 2256 Dis); 2257 return false; 2258 case ENCODING_IRC: 2259 mcInst.addOperand(MCOperand::createImm(insn.RC)); 2260 return false; 2261 case ENCODING_SI: 2262 return translateSrcIndex(mcInst, insn); 2263 case ENCODING_DI: 2264 return translateDstIndex(mcInst, insn); 2265 case ENCODING_RB: 2266 case ENCODING_RW: 2267 case ENCODING_RD: 2268 case ENCODING_RO: 2269 case ENCODING_Rv: 2270 translateRegister(mcInst, insn.opcodeRegister); 2271 return false; 2272 case ENCODING_CC: 2273 mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); 2274 return false; 2275 case ENCODING_FP: 2276 translateFPRegister(mcInst, insn.modRM & 7); 2277 return false; 2278 case ENCODING_VVVV: 2279 translateRegister(mcInst, insn.vvvv); 2280 return false; 2281 case ENCODING_DUP: 2282 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 2283 insn, Dis); 2284 } 2285 } 2286 2287 /// translateInstruction - Translates an internal instruction and all its 2288 /// operands to an MCInst. 2289 /// 2290 /// @param mcInst - The MCInst to populate with the instruction's data. 2291 /// @param insn - The internal instruction. 2292 /// @return - false on success; true otherwise. 2293 static bool translateInstruction(MCInst &mcInst, 2294 InternalInstruction &insn, 2295 const MCDisassembler *Dis) { 2296 if (!insn.spec) { 2297 debug("Instruction has no specification"); 2298 return true; 2299 } 2300 2301 mcInst.clear(); 2302 mcInst.setOpcode(insn.instructionID); 2303 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 2304 // prefix bytes should be disassembled as xrelease and xacquire then set the 2305 // opcode to those instead of the rep and repne opcodes. 2306 if (insn.xAcquireRelease) { 2307 if(mcInst.getOpcode() == X86::REP_PREFIX) 2308 mcInst.setOpcode(X86::XRELEASE_PREFIX); 2309 else if(mcInst.getOpcode() == X86::REPNE_PREFIX) 2310 mcInst.setOpcode(X86::XACQUIRE_PREFIX); 2311 } 2312 2313 insn.numImmediatesTranslated = 0; 2314 2315 for (const auto &Op : insn.operands) { 2316 if (Op.encoding != ENCODING_NONE) { 2317 if (translateOperand(mcInst, Op, insn, Dis)) { 2318 return true; 2319 } 2320 } 2321 } 2322 2323 return false; 2324 } 2325 2326 static MCDisassembler *createX86Disassembler(const Target &T, 2327 const MCSubtargetInfo &STI, 2328 MCContext &Ctx) { 2329 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); 2330 return new X86GenericDisassembler(STI, Ctx, std::move(MII)); 2331 } 2332 2333 extern "C" void LLVMInitializeX86Disassembler() { 2334 // Register the disassembler. 2335 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), 2336 createX86Disassembler); 2337 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), 2338 createX86Disassembler); 2339 } 2340