1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is part of the X86 Disassembler. 11 // It contains code to translate the data produced by the decoder into 12 // MCInsts. 13 // Documentation for the disassembler can be found in X86Disassembler.h. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "X86Disassembler.h" 18 #include "X86DisassemblerDecoder.h" 19 20 #include "llvm/MC/EDInstInfo.h" 21 #include "llvm/MC/MCExpr.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler.h" 24 #include "llvm/MC/MCInst.h" 25 #include "llvm/MC/MCInstrInfo.h" 26 #include "llvm/MC/MCSubtargetInfo.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/MemoryObject.h" 29 #include "llvm/Support/TargetRegistry.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 #define GET_REGINFO_ENUM 33 #include "X86GenRegisterInfo.inc" 34 #define GET_INSTRINFO_ENUM 35 #include "X86GenInstrInfo.inc" 36 #include "X86GenEDInfo.inc" 37 38 using namespace llvm; 39 using namespace llvm::X86Disassembler; 40 41 void x86DisassemblerDebug(const char *file, 42 unsigned line, 43 const char *s) { 44 dbgs() << file << ":" << line << ": " << s; 45 } 46 47 const char *x86DisassemblerGetInstrName(unsigned Opcode, void *mii) { 48 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii); 49 return MII->getName(Opcode); 50 } 51 52 #define debug(s) DEBUG(x86DisassemblerDebug(__FILE__, __LINE__, s)); 53 54 namespace llvm { 55 56 // Fill-ins to make the compiler happy. These constants are never actually 57 // assigned; they are just filler to make an automatically-generated switch 58 // statement work. 59 namespace X86 { 60 enum { 61 BX_SI = 500, 62 BX_DI = 501, 63 BP_SI = 502, 64 BP_DI = 503, 65 sib = 504, 66 sib64 = 505 67 }; 68 } 69 70 extern Target TheX86_32Target, TheX86_64Target; 71 72 } 73 74 static bool translateInstruction(MCInst &target, 75 InternalInstruction &source, 76 const MCDisassembler *Dis); 77 78 X86GenericDisassembler::X86GenericDisassembler(const MCSubtargetInfo &STI, 79 DisassemblerMode mode, 80 const MCInstrInfo *MII) 81 : MCDisassembler(STI), MII(MII), fMode(mode) {} 82 83 X86GenericDisassembler::~X86GenericDisassembler() { 84 delete MII; 85 } 86 87 const EDInstInfo *X86GenericDisassembler::getEDInfo() const { 88 return instInfoX86; 89 } 90 91 /// regionReader - a callback function that wraps the readByte method from 92 /// MemoryObject. 93 /// 94 /// @param arg - The generic callback parameter. In this case, this should 95 /// be a pointer to a MemoryObject. 96 /// @param byte - A pointer to the byte to be read. 97 /// @param address - The address to be read. 98 static int regionReader(void* arg, uint8_t* byte, uint64_t address) { 99 MemoryObject* region = static_cast<MemoryObject*>(arg); 100 return region->readByte(address, byte); 101 } 102 103 /// logger - a callback function that wraps the operator<< method from 104 /// raw_ostream. 105 /// 106 /// @param arg - The generic callback parameter. This should be a pointe 107 /// to a raw_ostream. 108 /// @param log - A string to be logged. logger() adds a newline. 109 static void logger(void* arg, const char* log) { 110 if (!arg) 111 return; 112 113 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg)); 114 vStream << log << "\n"; 115 } 116 117 // 118 // Public interface for the disassembler 119 // 120 121 MCDisassembler::DecodeStatus 122 X86GenericDisassembler::getInstruction(MCInst &instr, 123 uint64_t &size, 124 const MemoryObject ®ion, 125 uint64_t address, 126 raw_ostream &vStream, 127 raw_ostream &cStream) const { 128 CommentStream = &cStream; 129 130 InternalInstruction internalInstr; 131 132 dlog_t loggerFn = logger; 133 if (&vStream == &nulls()) 134 loggerFn = 0; // Disable logging completely if it's going to nulls(). 135 136 int ret = decodeInstruction(&internalInstr, 137 regionReader, 138 (void*)®ion, 139 loggerFn, 140 (void*)&vStream, 141 (void*)MII, 142 address, 143 fMode); 144 145 if (ret) { 146 size = internalInstr.readerCursor - address; 147 return Fail; 148 } 149 else { 150 size = internalInstr.length; 151 return (!translateInstruction(instr, internalInstr, this)) ? 152 Success : Fail; 153 } 154 } 155 156 // 157 // Private code that translates from struct InternalInstructions to MCInsts. 158 // 159 160 /// translateRegister - Translates an internal register to the appropriate LLVM 161 /// register, and appends it as an operand to an MCInst. 162 /// 163 /// @param mcInst - The MCInst to append to. 164 /// @param reg - The Reg to append. 165 static void translateRegister(MCInst &mcInst, Reg reg) { 166 #define ENTRY(x) X86::x, 167 uint8_t llvmRegnums[] = { 168 ALL_REGS 169 0 170 }; 171 #undef ENTRY 172 173 uint8_t llvmRegnum = llvmRegnums[reg]; 174 mcInst.addOperand(MCOperand::CreateReg(llvmRegnum)); 175 } 176 177 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the 178 /// immediate Value in the MCInst. 179 /// 180 /// @param Value - The immediate Value, has had any PC adjustment made by 181 /// the caller. 182 /// @param isBranch - If the instruction is a branch instruction 183 /// @param Address - The starting address of the instruction 184 /// @param Offset - The byte offset to this immediate in the instruction 185 /// @param Width - The byte width of this immediate in the instruction 186 /// 187 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was 188 /// called then that function is called to get any symbolic information for the 189 /// immediate in the instruction using the Address, Offset and Width. If that 190 /// returns non-zero then the symbolic information it returns is used to create 191 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() 192 /// returns zero and isBranch is true then a symbol look up for immediate Value 193 /// is done and if a symbol is found an MCExpr is created with that, else 194 /// an MCExpr with the immediate Value is created. This function returns true 195 /// if it adds an operand to the MCInst and false otherwise. 196 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, 197 uint64_t Address, uint64_t Offset, 198 uint64_t Width, MCInst &MI, 199 const MCDisassembler *Dis) { 200 LLVMOpInfoCallback getOpInfo = Dis->getLLVMOpInfoCallback(); 201 struct LLVMOpInfo1 SymbolicOp; 202 memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1)); 203 SymbolicOp.Value = Value; 204 void *DisInfo = Dis->getDisInfoBlock(); 205 206 if (!getOpInfo || 207 !getOpInfo(DisInfo, Address, Offset, Width, 1, &SymbolicOp)) { 208 // Clear SymbolicOp.Value from above and also all other fields. 209 memset(&SymbolicOp, '\0', sizeof(struct LLVMOpInfo1)); 210 LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback(); 211 if (!SymbolLookUp) 212 return false; 213 uint64_t ReferenceType; 214 if (isBranch) 215 ReferenceType = LLVMDisassembler_ReferenceType_In_Branch; 216 else 217 ReferenceType = LLVMDisassembler_ReferenceType_InOut_None; 218 const char *ReferenceName; 219 const char *Name = SymbolLookUp(DisInfo, Value, &ReferenceType, Address, 220 &ReferenceName); 221 if (Name) { 222 SymbolicOp.AddSymbol.Name = Name; 223 SymbolicOp.AddSymbol.Present = true; 224 } 225 // For branches always create an MCExpr so it gets printed as hex address. 226 else if (isBranch) { 227 SymbolicOp.Value = Value; 228 } 229 if(ReferenceType == LLVMDisassembler_ReferenceType_Out_SymbolStub) 230 (*Dis->CommentStream) << "symbol stub for: " << ReferenceName; 231 if (!Name && !isBranch) 232 return false; 233 } 234 235 MCContext *Ctx = Dis->getMCContext(); 236 const MCExpr *Add = NULL; 237 if (SymbolicOp.AddSymbol.Present) { 238 if (SymbolicOp.AddSymbol.Name) { 239 StringRef Name(SymbolicOp.AddSymbol.Name); 240 MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name); 241 Add = MCSymbolRefExpr::Create(Sym, *Ctx); 242 } else { 243 Add = MCConstantExpr::Create((int)SymbolicOp.AddSymbol.Value, *Ctx); 244 } 245 } 246 247 const MCExpr *Sub = NULL; 248 if (SymbolicOp.SubtractSymbol.Present) { 249 if (SymbolicOp.SubtractSymbol.Name) { 250 StringRef Name(SymbolicOp.SubtractSymbol.Name); 251 MCSymbol *Sym = Ctx->GetOrCreateSymbol(Name); 252 Sub = MCSymbolRefExpr::Create(Sym, *Ctx); 253 } else { 254 Sub = MCConstantExpr::Create((int)SymbolicOp.SubtractSymbol.Value, *Ctx); 255 } 256 } 257 258 const MCExpr *Off = NULL; 259 if (SymbolicOp.Value != 0) 260 Off = MCConstantExpr::Create(SymbolicOp.Value, *Ctx); 261 262 const MCExpr *Expr; 263 if (Sub) { 264 const MCExpr *LHS; 265 if (Add) 266 LHS = MCBinaryExpr::CreateSub(Add, Sub, *Ctx); 267 else 268 LHS = MCUnaryExpr::CreateMinus(Sub, *Ctx); 269 if (Off != 0) 270 Expr = MCBinaryExpr::CreateAdd(LHS, Off, *Ctx); 271 else 272 Expr = LHS; 273 } else if (Add) { 274 if (Off != 0) 275 Expr = MCBinaryExpr::CreateAdd(Add, Off, *Ctx); 276 else 277 Expr = Add; 278 } else { 279 if (Off != 0) 280 Expr = Off; 281 else 282 Expr = MCConstantExpr::Create(0, *Ctx); 283 } 284 285 MI.addOperand(MCOperand::CreateExpr(Expr)); 286 287 return true; 288 } 289 290 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being 291 /// referenced by a load instruction with the base register that is the rip. 292 /// These can often be addresses in a literal pool. The Address of the 293 /// instruction and its immediate Value are used to determine the address 294 /// being referenced in the literal pool entry. The SymbolLookUp call back will 295 /// return a pointer to a literal 'C' string if the referenced address is an 296 /// address into a section with 'C' string literals. 297 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, 298 const void *Decoder) { 299 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); 300 LLVMSymbolLookupCallback SymbolLookUp = Dis->getLLVMSymbolLookupCallback(); 301 if (SymbolLookUp) { 302 void *DisInfo = Dis->getDisInfoBlock(); 303 uint64_t ReferenceType = LLVMDisassembler_ReferenceType_In_PCrel_Load; 304 const char *ReferenceName; 305 (void)SymbolLookUp(DisInfo, Value, &ReferenceType, Address, &ReferenceName); 306 if(ReferenceType == LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr) 307 (*Dis->CommentStream) << "literal pool for: " << ReferenceName; 308 } 309 } 310 311 /// translateImmediate - Appends an immediate operand to an MCInst. 312 /// 313 /// @param mcInst - The MCInst to append to. 314 /// @param immediate - The immediate value to append. 315 /// @param operand - The operand, as stored in the descriptor table. 316 /// @param insn - The internal instruction. 317 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 318 const OperandSpecifier &operand, 319 InternalInstruction &insn, 320 const MCDisassembler *Dis) { 321 // Sign-extend the immediate if necessary. 322 323 OperandType type = (OperandType)operand.type; 324 325 bool isBranch = false; 326 uint64_t pcrel = 0; 327 if (type == TYPE_RELv) { 328 isBranch = true; 329 pcrel = insn.startLocation + 330 insn.immediateOffset + insn.immediateSize; 331 switch (insn.displacementSize) { 332 default: 333 break; 334 case 1: 335 type = TYPE_MOFFS8; 336 break; 337 case 2: 338 type = TYPE_MOFFS16; 339 break; 340 case 4: 341 type = TYPE_MOFFS32; 342 break; 343 case 8: 344 type = TYPE_MOFFS64; 345 break; 346 } 347 } 348 // By default sign-extend all X86 immediates based on their encoding. 349 else if (type == TYPE_IMM8 || type == TYPE_IMM16 || type == TYPE_IMM32 || 350 type == TYPE_IMM64) { 351 uint32_t Opcode = mcInst.getOpcode(); 352 switch (operand.encoding) { 353 default: 354 break; 355 case ENCODING_IB: 356 // Special case those X86 instructions that use the imm8 as a set of 357 // bits, bit count, etc. and are not sign-extend. 358 if (Opcode != X86::BLENDPSrri && Opcode != X86::BLENDPDrri && 359 Opcode != X86::PBLENDWrri && Opcode != X86::MPSADBWrri && 360 Opcode != X86::DPPSrri && Opcode != X86::DPPDrri && 361 Opcode != X86::INSERTPSrr && Opcode != X86::VBLENDPSYrri && 362 Opcode != X86::VBLENDPSYrmi && Opcode != X86::VBLENDPDYrri && 363 Opcode != X86::VBLENDPDYrmi && Opcode != X86::VPBLENDWrri && 364 Opcode != X86::VMPSADBWrri && Opcode != X86::VDPPSYrri && 365 Opcode != X86::VDPPSYrmi && Opcode != X86::VDPPDrri && 366 Opcode != X86::VINSERTPSrr) 367 type = TYPE_MOFFS8; 368 break; 369 case ENCODING_IW: 370 type = TYPE_MOFFS16; 371 break; 372 case ENCODING_ID: 373 type = TYPE_MOFFS32; 374 break; 375 case ENCODING_IO: 376 type = TYPE_MOFFS64; 377 break; 378 } 379 } 380 381 switch (type) { 382 case TYPE_XMM128: 383 mcInst.addOperand(MCOperand::CreateReg(X86::XMM0 + (immediate >> 4))); 384 return; 385 case TYPE_XMM256: 386 mcInst.addOperand(MCOperand::CreateReg(X86::YMM0 + (immediate >> 4))); 387 return; 388 case TYPE_REL8: 389 isBranch = true; 390 pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; 391 // fall through to sign extend the immediate if needed. 392 case TYPE_MOFFS8: 393 if(immediate & 0x80) 394 immediate |= ~(0xffull); 395 break; 396 case TYPE_MOFFS16: 397 if(immediate & 0x8000) 398 immediate |= ~(0xffffull); 399 break; 400 case TYPE_REL32: 401 case TYPE_REL64: 402 isBranch = true; 403 pcrel = insn.startLocation + insn.immediateOffset + insn.immediateSize; 404 // fall through to sign extend the immediate if needed. 405 case TYPE_MOFFS32: 406 if(immediate & 0x80000000) 407 immediate |= ~(0xffffffffull); 408 break; 409 case TYPE_MOFFS64: 410 default: 411 // operand is 64 bits wide. Do nothing. 412 break; 413 } 414 415 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, 416 insn.immediateOffset, insn.immediateSize, 417 mcInst, Dis)) 418 mcInst.addOperand(MCOperand::CreateImm(immediate)); 419 } 420 421 /// translateRMRegister - Translates a register stored in the R/M field of the 422 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 423 /// @param mcInst - The MCInst to append to. 424 /// @param insn - The internal instruction to extract the R/M field 425 /// from. 426 /// @return - 0 on success; -1 otherwise 427 static bool translateRMRegister(MCInst &mcInst, 428 InternalInstruction &insn) { 429 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 430 debug("A R/M register operand may not have a SIB byte"); 431 return true; 432 } 433 434 switch (insn.eaBase) { 435 default: 436 debug("Unexpected EA base register"); 437 return true; 438 case EA_BASE_NONE: 439 debug("EA_BASE_NONE for ModR/M base"); 440 return true; 441 #define ENTRY(x) case EA_BASE_##x: 442 ALL_EA_BASES 443 #undef ENTRY 444 debug("A R/M register operand may not have a base; " 445 "the operand must be a register."); 446 return true; 447 #define ENTRY(x) \ 448 case EA_REG_##x: \ 449 mcInst.addOperand(MCOperand::CreateReg(X86::x)); break; 450 ALL_REGS 451 #undef ENTRY 452 } 453 454 return false; 455 } 456 457 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 458 /// fields of an internal instruction (and possibly its SIB byte) to a memory 459 /// operand in LLVM's format, and appends it to an MCInst. 460 /// 461 /// @param mcInst - The MCInst to append to. 462 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 463 /// from. 464 /// @return - 0 on success; nonzero otherwise 465 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 466 const MCDisassembler *Dis) { 467 // Addresses in an MCInst are represented as five operands: 468 // 1. basereg (register) The R/M base, or (if there is a SIB) the 469 // SIB base 470 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 471 // scale amount 472 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 473 // the index (which is multiplied by the 474 // scale amount) 475 // 4. displacement (immediate) 0, or the displacement if there is one 476 // 5. segmentreg (register) x86_registerNONE for now, but could be set 477 // if we have segment overrides 478 479 MCOperand baseReg; 480 MCOperand scaleAmount; 481 MCOperand indexReg; 482 MCOperand displacement; 483 MCOperand segmentReg; 484 uint64_t pcrel = 0; 485 486 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 487 if (insn.sibBase != SIB_BASE_NONE) { 488 switch (insn.sibBase) { 489 default: 490 debug("Unexpected sibBase"); 491 return true; 492 #define ENTRY(x) \ 493 case SIB_BASE_##x: \ 494 baseReg = MCOperand::CreateReg(X86::x); break; 495 ALL_SIB_BASES 496 #undef ENTRY 497 } 498 } else { 499 baseReg = MCOperand::CreateReg(0); 500 } 501 502 // Check whether we are handling VSIB addressing mode for GATHER. 503 // If sibIndex was set to SIB_INDEX_NONE, index offset is 4 and 504 // we should use SIB_INDEX_XMM4|YMM4 for VSIB. 505 // I don't see a way to get the correct IndexReg in readSIB: 506 // We can tell whether it is VSIB or SIB after instruction ID is decoded, 507 // but instruction ID may not be decoded yet when calling readSIB. 508 uint32_t Opcode = mcInst.getOpcode(); 509 bool IndexIs128 = (Opcode == X86::VGATHERDPDrm || 510 Opcode == X86::VGATHERDPDYrm || 511 Opcode == X86::VGATHERQPDrm || 512 Opcode == X86::VGATHERDPSrm || 513 Opcode == X86::VGATHERQPSrm || 514 Opcode == X86::VPGATHERDQrm || 515 Opcode == X86::VPGATHERDQYrm || 516 Opcode == X86::VPGATHERQQrm || 517 Opcode == X86::VPGATHERDDrm || 518 Opcode == X86::VPGATHERQDrm); 519 bool IndexIs256 = (Opcode == X86::VGATHERQPDYrm || 520 Opcode == X86::VGATHERDPSYrm || 521 Opcode == X86::VGATHERQPSYrm || 522 Opcode == X86::VPGATHERQQYrm || 523 Opcode == X86::VPGATHERDDYrm || 524 Opcode == X86::VPGATHERQDYrm); 525 if (IndexIs128 || IndexIs256) { 526 unsigned IndexOffset = insn.sibIndex - 527 (insn.addressSize == 8 ? SIB_INDEX_RAX:SIB_INDEX_EAX); 528 SIBIndex IndexBase = IndexIs256 ? SIB_INDEX_YMM0 : SIB_INDEX_XMM0; 529 insn.sibIndex = (SIBIndex)(IndexBase + 530 (insn.sibIndex == SIB_INDEX_NONE ? 4 : IndexOffset)); 531 } 532 533 if (insn.sibIndex != SIB_INDEX_NONE) { 534 switch (insn.sibIndex) { 535 default: 536 debug("Unexpected sibIndex"); 537 return true; 538 #define ENTRY(x) \ 539 case SIB_INDEX_##x: \ 540 indexReg = MCOperand::CreateReg(X86::x); break; 541 EA_BASES_32BIT 542 EA_BASES_64BIT 543 REGS_XMM 544 REGS_YMM 545 #undef ENTRY 546 } 547 } else { 548 indexReg = MCOperand::CreateReg(0); 549 } 550 551 scaleAmount = MCOperand::CreateImm(insn.sibScale); 552 } else { 553 switch (insn.eaBase) { 554 case EA_BASE_NONE: 555 if (insn.eaDisplacement == EA_DISP_NONE) { 556 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 557 return true; 558 } 559 if (insn.mode == MODE_64BIT){ 560 pcrel = insn.startLocation + 561 insn.displacementOffset + insn.displacementSize; 562 tryAddingPcLoadReferenceComment(insn.startLocation + 563 insn.displacementOffset, 564 insn.displacement + pcrel, Dis); 565 baseReg = MCOperand::CreateReg(X86::RIP); // Section 2.2.1.6 566 } 567 else 568 baseReg = MCOperand::CreateReg(0); 569 570 indexReg = MCOperand::CreateReg(0); 571 break; 572 case EA_BASE_BX_SI: 573 baseReg = MCOperand::CreateReg(X86::BX); 574 indexReg = MCOperand::CreateReg(X86::SI); 575 break; 576 case EA_BASE_BX_DI: 577 baseReg = MCOperand::CreateReg(X86::BX); 578 indexReg = MCOperand::CreateReg(X86::DI); 579 break; 580 case EA_BASE_BP_SI: 581 baseReg = MCOperand::CreateReg(X86::BP); 582 indexReg = MCOperand::CreateReg(X86::SI); 583 break; 584 case EA_BASE_BP_DI: 585 baseReg = MCOperand::CreateReg(X86::BP); 586 indexReg = MCOperand::CreateReg(X86::DI); 587 break; 588 default: 589 indexReg = MCOperand::CreateReg(0); 590 switch (insn.eaBase) { 591 default: 592 debug("Unexpected eaBase"); 593 return true; 594 // Here, we will use the fill-ins defined above. However, 595 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 596 // sib and sib64 were handled in the top-level if, so they're only 597 // placeholders to keep the compiler happy. 598 #define ENTRY(x) \ 599 case EA_BASE_##x: \ 600 baseReg = MCOperand::CreateReg(X86::x); break; 601 ALL_EA_BASES 602 #undef ENTRY 603 #define ENTRY(x) case EA_REG_##x: 604 ALL_REGS 605 #undef ENTRY 606 debug("A R/M memory operand may not be a register; " 607 "the base field must be a base."); 608 return true; 609 } 610 } 611 612 scaleAmount = MCOperand::CreateImm(1); 613 } 614 615 displacement = MCOperand::CreateImm(insn.displacement); 616 617 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 618 0, // SEG_OVERRIDE_NONE 619 X86::CS, 620 X86::SS, 621 X86::DS, 622 X86::ES, 623 X86::FS, 624 X86::GS 625 }; 626 627 segmentReg = MCOperand::CreateReg(segmentRegnums[insn.segmentOverride]); 628 629 mcInst.addOperand(baseReg); 630 mcInst.addOperand(scaleAmount); 631 mcInst.addOperand(indexReg); 632 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, 633 insn.startLocation, insn.displacementOffset, 634 insn.displacementSize, mcInst, Dis)) 635 mcInst.addOperand(displacement); 636 mcInst.addOperand(segmentReg); 637 return false; 638 } 639 640 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 641 /// byte of an instruction to LLVM form, and appends it to an MCInst. 642 /// 643 /// @param mcInst - The MCInst to append to. 644 /// @param operand - The operand, as stored in the descriptor table. 645 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 646 /// from. 647 /// @return - 0 on success; nonzero otherwise 648 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 649 InternalInstruction &insn, const MCDisassembler *Dis) { 650 switch (operand.type) { 651 default: 652 debug("Unexpected type for a R/M operand"); 653 return true; 654 case TYPE_R8: 655 case TYPE_R16: 656 case TYPE_R32: 657 case TYPE_R64: 658 case TYPE_Rv: 659 case TYPE_MM: 660 case TYPE_MM32: 661 case TYPE_MM64: 662 case TYPE_XMM: 663 case TYPE_XMM32: 664 case TYPE_XMM64: 665 case TYPE_XMM128: 666 case TYPE_XMM256: 667 case TYPE_DEBUGREG: 668 case TYPE_CONTROLREG: 669 return translateRMRegister(mcInst, insn); 670 case TYPE_M: 671 case TYPE_M8: 672 case TYPE_M16: 673 case TYPE_M32: 674 case TYPE_M64: 675 case TYPE_M128: 676 case TYPE_M256: 677 case TYPE_M512: 678 case TYPE_Mv: 679 case TYPE_M32FP: 680 case TYPE_M64FP: 681 case TYPE_M80FP: 682 case TYPE_M16INT: 683 case TYPE_M32INT: 684 case TYPE_M64INT: 685 case TYPE_M1616: 686 case TYPE_M1632: 687 case TYPE_M1664: 688 case TYPE_LEA: 689 return translateRMMemory(mcInst, insn, Dis); 690 } 691 } 692 693 /// translateFPRegister - Translates a stack position on the FPU stack to its 694 /// LLVM form, and appends it to an MCInst. 695 /// 696 /// @param mcInst - The MCInst to append to. 697 /// @param stackPos - The stack position to translate. 698 /// @return - 0 on success; nonzero otherwise. 699 static bool translateFPRegister(MCInst &mcInst, 700 uint8_t stackPos) { 701 if (stackPos >= 8) { 702 debug("Invalid FP stack position"); 703 return true; 704 } 705 706 mcInst.addOperand(MCOperand::CreateReg(X86::ST0 + stackPos)); 707 708 return false; 709 } 710 711 /// translateOperand - Translates an operand stored in an internal instruction 712 /// to LLVM's format and appends it to an MCInst. 713 /// 714 /// @param mcInst - The MCInst to append to. 715 /// @param operand - The operand, as stored in the descriptor table. 716 /// @param insn - The internal instruction. 717 /// @return - false on success; true otherwise. 718 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 719 InternalInstruction &insn, 720 const MCDisassembler *Dis) { 721 switch (operand.encoding) { 722 default: 723 debug("Unhandled operand encoding during translation"); 724 return true; 725 case ENCODING_REG: 726 translateRegister(mcInst, insn.reg); 727 return false; 728 case ENCODING_RM: 729 return translateRM(mcInst, operand, insn, Dis); 730 case ENCODING_CB: 731 case ENCODING_CW: 732 case ENCODING_CD: 733 case ENCODING_CP: 734 case ENCODING_CO: 735 case ENCODING_CT: 736 debug("Translation of code offsets isn't supported."); 737 return true; 738 case ENCODING_IB: 739 case ENCODING_IW: 740 case ENCODING_ID: 741 case ENCODING_IO: 742 case ENCODING_Iv: 743 case ENCODING_Ia: 744 translateImmediate(mcInst, 745 insn.immediates[insn.numImmediatesTranslated++], 746 operand, 747 insn, 748 Dis); 749 return false; 750 case ENCODING_RB: 751 case ENCODING_RW: 752 case ENCODING_RD: 753 case ENCODING_RO: 754 translateRegister(mcInst, insn.opcodeRegister); 755 return false; 756 case ENCODING_I: 757 return translateFPRegister(mcInst, insn.opcodeModifier); 758 case ENCODING_Rv: 759 translateRegister(mcInst, insn.opcodeRegister); 760 return false; 761 case ENCODING_VVVV: 762 translateRegister(mcInst, insn.vvvv); 763 return false; 764 case ENCODING_DUP: 765 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 766 insn, Dis); 767 } 768 } 769 770 /// translateInstruction - Translates an internal instruction and all its 771 /// operands to an MCInst. 772 /// 773 /// @param mcInst - The MCInst to populate with the instruction's data. 774 /// @param insn - The internal instruction. 775 /// @return - false on success; true otherwise. 776 static bool translateInstruction(MCInst &mcInst, 777 InternalInstruction &insn, 778 const MCDisassembler *Dis) { 779 if (!insn.spec) { 780 debug("Instruction has no specification"); 781 return true; 782 } 783 784 mcInst.setOpcode(insn.instructionID); 785 786 int index; 787 788 insn.numImmediatesTranslated = 0; 789 790 for (index = 0; index < X86_MAX_OPERANDS; ++index) { 791 if (insn.operands[index].encoding != ENCODING_NONE) { 792 if (translateOperand(mcInst, insn.operands[index], insn, Dis)) { 793 return true; 794 } 795 } 796 } 797 798 return false; 799 } 800 801 static MCDisassembler *createX86_32Disassembler(const Target &T, 802 const MCSubtargetInfo &STI) { 803 return new X86Disassembler::X86GenericDisassembler(STI, MODE_32BIT, 804 T.createMCInstrInfo()); 805 } 806 807 static MCDisassembler *createX86_64Disassembler(const Target &T, 808 const MCSubtargetInfo &STI) { 809 return new X86Disassembler::X86GenericDisassembler(STI, MODE_64BIT, 810 T.createMCInstrInfo()); 811 } 812 813 extern "C" void LLVMInitializeX86Disassembler() { 814 // Register the disassembler. 815 TargetRegistry::RegisterMCDisassembler(TheX86_32Target, 816 createX86_32Disassembler); 817 TargetRegistry::RegisterMCDisassembler(TheX86_64Target, 818 createX86_64Disassembler); 819 } 820