1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "X86DisassemblerDecoder.h"
79 #include "llvm/MC/MCContext.h"
80 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
81 #include "llvm/MC/MCExpr.h"
82 #include "llvm/MC/MCInst.h"
83 #include "llvm/MC/MCInstrInfo.h"
84 #include "llvm/MC/MCSubtargetInfo.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/TargetRegistry.h"
87 #include "llvm/Support/raw_ostream.h"
88 
89 using namespace llvm;
90 using namespace llvm::X86Disassembler;
91 
92 #define DEBUG_TYPE "x86-disassembler"
93 
94 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
95                                   const char *s) {
96   dbgs() << file << ":" << line << ": " << s;
97 }
98 
99 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
100                                                 const void *mii) {
101   const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
102   return MII->getName(Opcode);
103 }
104 
105 #define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s));
106 
107 namespace llvm {
108 
109 // Fill-ins to make the compiler happy.  These constants are never actually
110 //   assigned; they are just filler to make an automatically-generated switch
111 //   statement work.
112 namespace X86 {
113   enum {
114     BX_SI = 500,
115     BX_DI = 501,
116     BP_SI = 502,
117     BP_DI = 503,
118     sib   = 504,
119     sib64 = 505
120   };
121 }
122 
123 }
124 
125 static bool translateInstruction(MCInst &target,
126                                 InternalInstruction &source,
127                                 const MCDisassembler *Dis);
128 
129 namespace {
130 
131 /// Generic disassembler for all X86 platforms. All each platform class should
132 /// have to do is subclass the constructor, and provide a different
133 /// disassemblerMode value.
134 class X86GenericDisassembler : public MCDisassembler {
135   std::unique_ptr<const MCInstrInfo> MII;
136 public:
137   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
138                          std::unique_ptr<const MCInstrInfo> MII);
139 public:
140   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
141                               ArrayRef<uint8_t> Bytes, uint64_t Address,
142                               raw_ostream &vStream,
143                               raw_ostream &cStream) const override;
144 
145 private:
146   DisassemblerMode              fMode;
147 };
148 
149 }
150 
151 X86GenericDisassembler::X86GenericDisassembler(
152                                          const MCSubtargetInfo &STI,
153                                          MCContext &Ctx,
154                                          std::unique_ptr<const MCInstrInfo> MII)
155   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
156   const FeatureBitset &FB = STI.getFeatureBits();
157   if (FB[X86::Mode16Bit]) {
158     fMode = MODE_16BIT;
159     return;
160   } else if (FB[X86::Mode32Bit]) {
161     fMode = MODE_32BIT;
162     return;
163   } else if (FB[X86::Mode64Bit]) {
164     fMode = MODE_64BIT;
165     return;
166   }
167 
168   llvm_unreachable("Invalid CPU mode");
169 }
170 
171 namespace {
172 struct Region {
173   ArrayRef<uint8_t> Bytes;
174   uint64_t Base;
175   Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
176 };
177 } // end anonymous namespace
178 
179 /// A callback function that wraps the readByte method from Region.
180 ///
181 /// @param Arg      - The generic callback parameter.  In this case, this should
182 ///                   be a pointer to a Region.
183 /// @param Byte     - A pointer to the byte to be read.
184 /// @param Address  - The address to be read.
185 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
186   auto *R = static_cast<const Region *>(Arg);
187   ArrayRef<uint8_t> Bytes = R->Bytes;
188   unsigned Index = Address - R->Base;
189   if (Bytes.size() <= Index)
190     return -1;
191   *Byte = Bytes[Index];
192   return 0;
193 }
194 
195 /// logger - a callback function that wraps the operator<< method from
196 ///   raw_ostream.
197 ///
198 /// @param arg      - The generic callback parameter.  This should be a pointe
199 ///                   to a raw_ostream.
200 /// @param log      - A string to be logged.  logger() adds a newline.
201 static void logger(void* arg, const char* log) {
202   if (!arg)
203     return;
204 
205   raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
206   vStream << log << "\n";
207 }
208 
209 //
210 // Public interface for the disassembler
211 //
212 
213 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
214     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
215     raw_ostream &VStream, raw_ostream &CStream) const {
216   CommentStream = &CStream;
217 
218   InternalInstruction InternalInstr;
219 
220   dlog_t LoggerFn = logger;
221   if (&VStream == &nulls())
222     LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
223 
224   Region R(Bytes, Address);
225 
226   int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
227                               LoggerFn, (void *)&VStream,
228                               (const void *)MII.get(), Address, fMode);
229 
230   if (Ret) {
231     Size = InternalInstr.readerCursor - Address;
232     return Fail;
233   } else {
234     Size = InternalInstr.length;
235     bool Ret = translateInstruction(Instr, InternalInstr, this);
236     if (!Ret) {
237       unsigned Flags = X86::IP_NO_PREFIX;
238       if (InternalInstr.hasAdSize)
239         Flags |= X86::IP_HAS_AD_SIZE;
240       if (!InternalInstr.mandatoryPrefix) {
241         if (InternalInstr.hasOpSize)
242           Flags |= X86::IP_HAS_OP_SIZE;
243         if (InternalInstr.repeatPrefix == 0xf2)
244           Flags |= X86::IP_HAS_REPEAT_NE;
245         else if (InternalInstr.repeatPrefix == 0xf3 &&
246                  // It should not be 'pause' f3 90
247                  InternalInstr.opcode != 0x90)
248           Flags |= X86::IP_HAS_REPEAT;
249         if (InternalInstr.hasLockPrefix)
250           Flags |= X86::IP_HAS_LOCK;
251       }
252       Instr.setFlags(Flags);
253     }
254     return (!Ret) ? Success : Fail;
255   }
256 }
257 
258 //
259 // Private code that translates from struct InternalInstructions to MCInsts.
260 //
261 
262 /// translateRegister - Translates an internal register to the appropriate LLVM
263 ///   register, and appends it as an operand to an MCInst.
264 ///
265 /// @param mcInst     - The MCInst to append to.
266 /// @param reg        - The Reg to append.
267 static void translateRegister(MCInst &mcInst, Reg reg) {
268 #define ENTRY(x) X86::x,
269   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
270 #undef ENTRY
271 
272   MCPhysReg llvmRegnum = llvmRegnums[reg];
273   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
274 }
275 
276 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
277 /// immediate Value in the MCInst.
278 ///
279 /// @param Value      - The immediate Value, has had any PC adjustment made by
280 ///                     the caller.
281 /// @param isBranch   - If the instruction is a branch instruction
282 /// @param Address    - The starting address of the instruction
283 /// @param Offset     - The byte offset to this immediate in the instruction
284 /// @param Width      - The byte width of this immediate in the instruction
285 ///
286 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
287 /// called then that function is called to get any symbolic information for the
288 /// immediate in the instruction using the Address, Offset and Width.  If that
289 /// returns non-zero then the symbolic information it returns is used to create
290 /// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
291 /// returns zero and isBranch is true then a symbol look up for immediate Value
292 /// is done and if a symbol is found an MCExpr is created with that, else
293 /// an MCExpr with the immediate Value is created.  This function returns true
294 /// if it adds an operand to the MCInst and false otherwise.
295 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
296                                      uint64_t Address, uint64_t Offset,
297                                      uint64_t Width, MCInst &MI,
298                                      const MCDisassembler *Dis) {
299   return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
300                                        Offset, Width);
301 }
302 
303 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
304 /// referenced by a load instruction with the base register that is the rip.
305 /// These can often be addresses in a literal pool.  The Address of the
306 /// instruction and its immediate Value are used to determine the address
307 /// being referenced in the literal pool entry.  The SymbolLookUp call back will
308 /// return a pointer to a literal 'C' string if the referenced address is an
309 /// address into a section with 'C' string literals.
310 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
311                                             const void *Decoder) {
312   const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
313   Dis->tryAddingPcLoadReferenceComment(Value, Address);
314 }
315 
316 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
317   0,        // SEG_OVERRIDE_NONE
318   X86::CS,
319   X86::SS,
320   X86::DS,
321   X86::ES,
322   X86::FS,
323   X86::GS
324 };
325 
326 /// translateSrcIndex   - Appends a source index operand to an MCInst.
327 ///
328 /// @param mcInst       - The MCInst to append to.
329 /// @param insn         - The internal instruction.
330 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
331   unsigned baseRegNo;
332 
333   if (insn.mode == MODE_64BIT)
334     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
335   else if (insn.mode == MODE_32BIT)
336     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
337   else {
338     assert(insn.mode == MODE_16BIT);
339     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
340   }
341   MCOperand baseReg = MCOperand::createReg(baseRegNo);
342   mcInst.addOperand(baseReg);
343 
344   MCOperand segmentReg;
345   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
346   mcInst.addOperand(segmentReg);
347   return false;
348 }
349 
350 /// translateDstIndex   - Appends a destination index operand to an MCInst.
351 ///
352 /// @param mcInst       - The MCInst to append to.
353 /// @param insn         - The internal instruction.
354 
355 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
356   unsigned baseRegNo;
357 
358   if (insn.mode == MODE_64BIT)
359     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
360   else if (insn.mode == MODE_32BIT)
361     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
362   else {
363     assert(insn.mode == MODE_16BIT);
364     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
365   }
366   MCOperand baseReg = MCOperand::createReg(baseRegNo);
367   mcInst.addOperand(baseReg);
368   return false;
369 }
370 
371 /// translateImmediate  - Appends an immediate operand to an MCInst.
372 ///
373 /// @param mcInst       - The MCInst to append to.
374 /// @param immediate    - The immediate value to append.
375 /// @param operand      - The operand, as stored in the descriptor table.
376 /// @param insn         - The internal instruction.
377 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
378                                const OperandSpecifier &operand,
379                                InternalInstruction &insn,
380                                const MCDisassembler *Dis) {
381   // Sign-extend the immediate if necessary.
382 
383   OperandType type = (OperandType)operand.type;
384 
385   bool isBranch = false;
386   uint64_t pcrel = 0;
387   if (type == TYPE_REL) {
388     isBranch = true;
389     pcrel = insn.startLocation +
390             insn.immediateOffset + insn.immediateSize;
391     switch (operand.encoding) {
392     default:
393       break;
394     case ENCODING_Iv:
395       switch (insn.displacementSize) {
396       default:
397         break;
398       case 1:
399         if(immediate & 0x80)
400           immediate |= ~(0xffull);
401         break;
402       case 2:
403         if(immediate & 0x8000)
404           immediate |= ~(0xffffull);
405         break;
406       case 4:
407         if(immediate & 0x80000000)
408           immediate |= ~(0xffffffffull);
409         break;
410       case 8:
411         break;
412       }
413       break;
414     case ENCODING_IB:
415       if(immediate & 0x80)
416         immediate |= ~(0xffull);
417       break;
418     case ENCODING_IW:
419       if(immediate & 0x8000)
420         immediate |= ~(0xffffull);
421       break;
422     case ENCODING_ID:
423       if(immediate & 0x80000000)
424         immediate |= ~(0xffffffffull);
425       break;
426     }
427   }
428   // By default sign-extend all X86 immediates based on their encoding.
429   else if (type == TYPE_IMM) {
430     switch (operand.encoding) {
431     default:
432       break;
433     case ENCODING_IB:
434       if(immediate & 0x80)
435         immediate |= ~(0xffull);
436       break;
437     case ENCODING_IW:
438       if(immediate & 0x8000)
439         immediate |= ~(0xffffull);
440       break;
441     case ENCODING_ID:
442       if(immediate & 0x80000000)
443         immediate |= ~(0xffffffffull);
444       break;
445     case ENCODING_IO:
446       break;
447     }
448   }
449 
450   switch (type) {
451   case TYPE_XMM:
452     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
453     return;
454   case TYPE_YMM:
455     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
456     return;
457   case TYPE_ZMM:
458     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
459     return;
460   default:
461     // operand is 64 bits wide.  Do nothing.
462     break;
463   }
464 
465   if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
466                                insn.immediateOffset, insn.immediateSize,
467                                mcInst, Dis))
468     mcInst.addOperand(MCOperand::createImm(immediate));
469 
470   if (type == TYPE_MOFFS) {
471     MCOperand segmentReg;
472     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
473     mcInst.addOperand(segmentReg);
474   }
475 }
476 
477 /// translateRMRegister - Translates a register stored in the R/M field of the
478 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
479 /// @param mcInst       - The MCInst to append to.
480 /// @param insn         - The internal instruction to extract the R/M field
481 ///                       from.
482 /// @return             - 0 on success; -1 otherwise
483 static bool translateRMRegister(MCInst &mcInst,
484                                 InternalInstruction &insn) {
485   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
486     debug("A R/M register operand may not have a SIB byte");
487     return true;
488   }
489 
490   switch (insn.eaBase) {
491   default:
492     debug("Unexpected EA base register");
493     return true;
494   case EA_BASE_NONE:
495     debug("EA_BASE_NONE for ModR/M base");
496     return true;
497 #define ENTRY(x) case EA_BASE_##x:
498   ALL_EA_BASES
499 #undef ENTRY
500     debug("A R/M register operand may not have a base; "
501           "the operand must be a register.");
502     return true;
503 #define ENTRY(x)                                                      \
504   case EA_REG_##x:                                                    \
505     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
506   ALL_REGS
507 #undef ENTRY
508   }
509 
510   return false;
511 }
512 
513 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
514 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
515 ///   operand in LLVM's format, and appends it to an MCInst.
516 ///
517 /// @param mcInst       - The MCInst to append to.
518 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
519 ///                       from.
520 /// @return             - 0 on success; nonzero otherwise
521 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
522                               const MCDisassembler *Dis) {
523   // Addresses in an MCInst are represented as five operands:
524   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
525   //                                SIB base
526   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
527   //                                scale amount
528   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
529   //                                the index (which is multiplied by the
530   //                                scale amount)
531   //   4. displacement  (immediate) 0, or the displacement if there is one
532   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
533   //                                if we have segment overrides
534 
535   MCOperand baseReg;
536   MCOperand scaleAmount;
537   MCOperand indexReg;
538   MCOperand displacement;
539   MCOperand segmentReg;
540   uint64_t pcrel = 0;
541 
542   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
543     if (insn.sibBase != SIB_BASE_NONE) {
544       switch (insn.sibBase) {
545       default:
546         debug("Unexpected sibBase");
547         return true;
548 #define ENTRY(x)                                          \
549       case SIB_BASE_##x:                                  \
550         baseReg = MCOperand::createReg(X86::x); break;
551       ALL_SIB_BASES
552 #undef ENTRY
553       }
554     } else {
555       baseReg = MCOperand::createReg(X86::NoRegister);
556     }
557 
558     if (insn.sibIndex != SIB_INDEX_NONE) {
559       switch (insn.sibIndex) {
560       default:
561         debug("Unexpected sibIndex");
562         return true;
563 #define ENTRY(x)                                          \
564       case SIB_INDEX_##x:                                 \
565         indexReg = MCOperand::createReg(X86::x); break;
566       EA_BASES_32BIT
567       EA_BASES_64BIT
568       REGS_XMM
569       REGS_YMM
570       REGS_ZMM
571 #undef ENTRY
572       }
573     } else {
574       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
575       // but no index is used and modrm alone should have been enough.
576       // -No base register in 32-bit mode. In 64-bit mode this is used to
577       //  avoid rip-relative addressing.
578       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
579       //  base always requires a SIB byte.
580       // -A scale other than 1 is used.
581       if (insn.sibScale != 1 ||
582           (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
583           (insn.sibBase != SIB_BASE_NONE &&
584            insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
585            insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) {
586         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
587                                                                 X86::RIZ);
588       } else
589         indexReg = MCOperand::createReg(X86::NoRegister);
590     }
591 
592     scaleAmount = MCOperand::createImm(insn.sibScale);
593   } else {
594     switch (insn.eaBase) {
595     case EA_BASE_NONE:
596       if (insn.eaDisplacement == EA_DISP_NONE) {
597         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
598         return true;
599       }
600       if (insn.mode == MODE_64BIT){
601         pcrel = insn.startLocation +
602                 insn.displacementOffset + insn.displacementSize;
603         tryAddingPcLoadReferenceComment(insn.startLocation +
604                                         insn.displacementOffset,
605                                         insn.displacement + pcrel, Dis);
606         // Section 2.2.1.6
607         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
608                                                                X86::RIP);
609       }
610       else
611         baseReg = MCOperand::createReg(X86::NoRegister);
612 
613       indexReg = MCOperand::createReg(X86::NoRegister);
614       break;
615     case EA_BASE_BX_SI:
616       baseReg = MCOperand::createReg(X86::BX);
617       indexReg = MCOperand::createReg(X86::SI);
618       break;
619     case EA_BASE_BX_DI:
620       baseReg = MCOperand::createReg(X86::BX);
621       indexReg = MCOperand::createReg(X86::DI);
622       break;
623     case EA_BASE_BP_SI:
624       baseReg = MCOperand::createReg(X86::BP);
625       indexReg = MCOperand::createReg(X86::SI);
626       break;
627     case EA_BASE_BP_DI:
628       baseReg = MCOperand::createReg(X86::BP);
629       indexReg = MCOperand::createReg(X86::DI);
630       break;
631     default:
632       indexReg = MCOperand::createReg(X86::NoRegister);
633       switch (insn.eaBase) {
634       default:
635         debug("Unexpected eaBase");
636         return true;
637         // Here, we will use the fill-ins defined above.  However,
638         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
639         //   sib and sib64 were handled in the top-level if, so they're only
640         //   placeholders to keep the compiler happy.
641 #define ENTRY(x)                                        \
642       case EA_BASE_##x:                                 \
643         baseReg = MCOperand::createReg(X86::x); break;
644       ALL_EA_BASES
645 #undef ENTRY
646 #define ENTRY(x) case EA_REG_##x:
647       ALL_REGS
648 #undef ENTRY
649         debug("A R/M memory operand may not be a register; "
650               "the base field must be a base.");
651         return true;
652       }
653     }
654 
655     scaleAmount = MCOperand::createImm(1);
656   }
657 
658   displacement = MCOperand::createImm(insn.displacement);
659 
660   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
661 
662   mcInst.addOperand(baseReg);
663   mcInst.addOperand(scaleAmount);
664   mcInst.addOperand(indexReg);
665   if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
666                                insn.startLocation, insn.displacementOffset,
667                                insn.displacementSize, mcInst, Dis))
668     mcInst.addOperand(displacement);
669   mcInst.addOperand(segmentReg);
670   return false;
671 }
672 
673 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
674 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
675 ///
676 /// @param mcInst       - The MCInst to append to.
677 /// @param operand      - The operand, as stored in the descriptor table.
678 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
679 ///                       from.
680 /// @return             - 0 on success; nonzero otherwise
681 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
682                         InternalInstruction &insn, const MCDisassembler *Dis) {
683   switch (operand.type) {
684   default:
685     debug("Unexpected type for a R/M operand");
686     return true;
687   case TYPE_R8:
688   case TYPE_R16:
689   case TYPE_R32:
690   case TYPE_R64:
691   case TYPE_Rv:
692   case TYPE_MM64:
693   case TYPE_XMM:
694   case TYPE_YMM:
695   case TYPE_ZMM:
696   case TYPE_VK:
697   case TYPE_DEBUGREG:
698   case TYPE_CONTROLREG:
699   case TYPE_BNDR:
700     return translateRMRegister(mcInst, insn);
701   case TYPE_M:
702   case TYPE_MVSIBX:
703   case TYPE_MVSIBY:
704   case TYPE_MVSIBZ:
705     return translateRMMemory(mcInst, insn, Dis);
706   }
707 }
708 
709 /// translateFPRegister - Translates a stack position on the FPU stack to its
710 ///   LLVM form, and appends it to an MCInst.
711 ///
712 /// @param mcInst       - The MCInst to append to.
713 /// @param stackPos     - The stack position to translate.
714 static void translateFPRegister(MCInst &mcInst,
715                                 uint8_t stackPos) {
716   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
717 }
718 
719 /// translateMaskRegister - Translates a 3-bit mask register number to
720 ///   LLVM form, and appends it to an MCInst.
721 ///
722 /// @param mcInst       - The MCInst to append to.
723 /// @param maskRegNum   - Number of mask register from 0 to 7.
724 /// @return             - false on success; true otherwise.
725 static bool translateMaskRegister(MCInst &mcInst,
726                                 uint8_t maskRegNum) {
727   if (maskRegNum >= 8) {
728     debug("Invalid mask register number");
729     return true;
730   }
731 
732   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
733   return false;
734 }
735 
736 /// translateOperand - Translates an operand stored in an internal instruction
737 ///   to LLVM's format and appends it to an MCInst.
738 ///
739 /// @param mcInst       - The MCInst to append to.
740 /// @param operand      - The operand, as stored in the descriptor table.
741 /// @param insn         - The internal instruction.
742 /// @return             - false on success; true otherwise.
743 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
744                              InternalInstruction &insn,
745                              const MCDisassembler *Dis) {
746   switch (operand.encoding) {
747   default:
748     debug("Unhandled operand encoding during translation");
749     return true;
750   case ENCODING_REG:
751     translateRegister(mcInst, insn.reg);
752     return false;
753   case ENCODING_WRITEMASK:
754     return translateMaskRegister(mcInst, insn.writemask);
755   CASE_ENCODING_RM:
756   CASE_ENCODING_VSIB:
757     return translateRM(mcInst, operand, insn, Dis);
758   case ENCODING_IB:
759   case ENCODING_IW:
760   case ENCODING_ID:
761   case ENCODING_IO:
762   case ENCODING_Iv:
763   case ENCODING_Ia:
764     translateImmediate(mcInst,
765                        insn.immediates[insn.numImmediatesTranslated++],
766                        operand,
767                        insn,
768                        Dis);
769     return false;
770   case ENCODING_IRC:
771     mcInst.addOperand(MCOperand::createImm(insn.RC));
772     return false;
773   case ENCODING_SI:
774     return translateSrcIndex(mcInst, insn);
775   case ENCODING_DI:
776     return translateDstIndex(mcInst, insn);
777   case ENCODING_RB:
778   case ENCODING_RW:
779   case ENCODING_RD:
780   case ENCODING_RO:
781   case ENCODING_Rv:
782     translateRegister(mcInst, insn.opcodeRegister);
783     return false;
784   case ENCODING_CC:
785     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
786     return false;
787   case ENCODING_FP:
788     translateFPRegister(mcInst, insn.modRM & 7);
789     return false;
790   case ENCODING_VVVV:
791     translateRegister(mcInst, insn.vvvv);
792     return false;
793   case ENCODING_DUP:
794     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
795                             insn, Dis);
796   }
797 }
798 
799 /// translateInstruction - Translates an internal instruction and all its
800 ///   operands to an MCInst.
801 ///
802 /// @param mcInst       - The MCInst to populate with the instruction's data.
803 /// @param insn         - The internal instruction.
804 /// @return             - false on success; true otherwise.
805 static bool translateInstruction(MCInst &mcInst,
806                                 InternalInstruction &insn,
807                                 const MCDisassembler *Dis) {
808   if (!insn.spec) {
809     debug("Instruction has no specification");
810     return true;
811   }
812 
813   mcInst.clear();
814   mcInst.setOpcode(insn.instructionID);
815   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
816   // prefix bytes should be disassembled as xrelease and xacquire then set the
817   // opcode to those instead of the rep and repne opcodes.
818   if (insn.xAcquireRelease) {
819     if(mcInst.getOpcode() == X86::REP_PREFIX)
820       mcInst.setOpcode(X86::XRELEASE_PREFIX);
821     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
822       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
823   }
824 
825   insn.numImmediatesTranslated = 0;
826 
827   for (const auto &Op : insn.operands) {
828     if (Op.encoding != ENCODING_NONE) {
829       if (translateOperand(mcInst, Op, insn, Dis)) {
830         return true;
831       }
832     }
833   }
834 
835   return false;
836 }
837 
838 static MCDisassembler *createX86Disassembler(const Target &T,
839                                              const MCSubtargetInfo &STI,
840                                              MCContext &Ctx) {
841   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
842   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
843 }
844 
845 extern "C" void LLVMInitializeX86Disassembler() {
846   // Register the disassembler.
847   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
848                                          createX86Disassembler);
849   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
850                                          createX86Disassembler);
851 }
852