1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file is part of the X86 Disassembler. 10 // It contains code to translate the data produced by the decoder into 11 // MCInsts. 12 // 13 // 14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and 15 // 64-bit X86 instruction sets. The main decode sequence for an assembly 16 // instruction in this disassembler is: 17 // 18 // 1. Read the prefix bytes and determine the attributes of the instruction. 19 // These attributes, recorded in enum attributeBits 20 // (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM 21 // provides a mapping from bitmasks to contexts, which are represented by 22 // enum InstructionContext (ibid.). 23 // 24 // 2. Read the opcode, and determine what kind of opcode it is. The 25 // disassembler distinguishes four kinds of opcodes, which are enumerated in 26 // OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte 27 // (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a 28 // (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. 29 // 30 // 3. Depending on the opcode type, look in one of four ClassDecision structures 31 // (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which 32 // OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get 33 // a ModRMDecision (ibid.). 34 // 35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even 36 // instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the 37 // ModR/M byte to complete decode. The ModRMDecision's type is an entry from 38 // ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the 39 // ModR/M byte is required and how to interpret it. 40 // 41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID 42 // of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in 43 // INSTRUCTIONS_SYM yields the name of the instruction and the encodings and 44 // meanings of its operands. 45 // 46 // 6. For each operand, its encoding is an entry from OperandEncoding 47 // (X86DisassemblerDecoderCommon.h) and its type is an entry from 48 // OperandType (ibid.). The encoding indicates how to read it from the 49 // instruction; the type indicates how to interpret the value once it has 50 // been read. For example, a register operand could be stored in the R/M 51 // field of the ModR/M byte, the REG field of the ModR/M byte, or added to 52 // the main opcode. This is orthogonal from its meaning (an GPR or an XMM 53 // register, for instance). Given this information, the operands can be 54 // extracted and interpreted. 55 // 56 // 7. As the last step, the disassembler translates the instruction information 57 // and operands into a format understandable by the client - in this case, an 58 // MCInst for use by the MC infrastructure. 59 // 60 // The disassembler is broken broadly into two parts: the table emitter that 61 // emits the instruction decode tables discussed above during compilation, and 62 // the disassembler itself. The table emitter is documented in more detail in 63 // utils/TableGen/X86DisassemblerEmitter.h. 64 // 65 // X86Disassembler.cpp contains the code responsible for step 7, and for 66 // invoking the decoder to execute steps 1-6. 67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the 68 // table emitter and the disassembler. 69 // X86DisassemblerDecoder.h contains the public interface of the decoder, 70 // factored out into C for possible use by other projects. 71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is 72 // responsible for steps 1-6. 73 // 74 //===----------------------------------------------------------------------===// 75 76 #include "MCTargetDesc/X86BaseInfo.h" 77 #include "MCTargetDesc/X86MCTargetDesc.h" 78 #include "X86DisassemblerDecoder.h" 79 #include "llvm/MC/MCContext.h" 80 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 81 #include "llvm/MC/MCExpr.h" 82 #include "llvm/MC/MCInst.h" 83 #include "llvm/MC/MCInstrInfo.h" 84 #include "llvm/MC/MCSubtargetInfo.h" 85 #include "llvm/Support/Debug.h" 86 #include "llvm/Support/TargetRegistry.h" 87 #include "llvm/Support/raw_ostream.h" 88 89 using namespace llvm; 90 using namespace llvm::X86Disassembler; 91 92 #define DEBUG_TYPE "x86-disassembler" 93 94 void llvm::X86Disassembler::Debug(const char *file, unsigned line, 95 const char *s) { 96 dbgs() << file << ":" << line << ": " << s; 97 } 98 99 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode, 100 const void *mii) { 101 const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii); 102 return MII->getName(Opcode); 103 } 104 105 #define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s)); 106 107 namespace llvm { 108 109 // Fill-ins to make the compiler happy. These constants are never actually 110 // assigned; they are just filler to make an automatically-generated switch 111 // statement work. 112 namespace X86 { 113 enum { 114 BX_SI = 500, 115 BX_DI = 501, 116 BP_SI = 502, 117 BP_DI = 503, 118 sib = 504, 119 sib64 = 505 120 }; 121 } 122 123 } 124 125 static bool translateInstruction(MCInst &target, 126 InternalInstruction &source, 127 const MCDisassembler *Dis); 128 129 namespace { 130 131 /// Generic disassembler for all X86 platforms. All each platform class should 132 /// have to do is subclass the constructor, and provide a different 133 /// disassemblerMode value. 134 class X86GenericDisassembler : public MCDisassembler { 135 std::unique_ptr<const MCInstrInfo> MII; 136 public: 137 X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, 138 std::unique_ptr<const MCInstrInfo> MII); 139 public: 140 DecodeStatus getInstruction(MCInst &instr, uint64_t &size, 141 ArrayRef<uint8_t> Bytes, uint64_t Address, 142 raw_ostream &vStream, 143 raw_ostream &cStream) const override; 144 145 private: 146 DisassemblerMode fMode; 147 }; 148 149 } 150 151 X86GenericDisassembler::X86GenericDisassembler( 152 const MCSubtargetInfo &STI, 153 MCContext &Ctx, 154 std::unique_ptr<const MCInstrInfo> MII) 155 : MCDisassembler(STI, Ctx), MII(std::move(MII)) { 156 const FeatureBitset &FB = STI.getFeatureBits(); 157 if (FB[X86::Mode16Bit]) { 158 fMode = MODE_16BIT; 159 return; 160 } else if (FB[X86::Mode32Bit]) { 161 fMode = MODE_32BIT; 162 return; 163 } else if (FB[X86::Mode64Bit]) { 164 fMode = MODE_64BIT; 165 return; 166 } 167 168 llvm_unreachable("Invalid CPU mode"); 169 } 170 171 namespace { 172 struct Region { 173 ArrayRef<uint8_t> Bytes; 174 uint64_t Base; 175 Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {} 176 }; 177 } // end anonymous namespace 178 179 /// A callback function that wraps the readByte method from Region. 180 /// 181 /// @param Arg - The generic callback parameter. In this case, this should 182 /// be a pointer to a Region. 183 /// @param Byte - A pointer to the byte to be read. 184 /// @param Address - The address to be read. 185 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) { 186 auto *R = static_cast<const Region *>(Arg); 187 ArrayRef<uint8_t> Bytes = R->Bytes; 188 unsigned Index = Address - R->Base; 189 if (Bytes.size() <= Index) 190 return -1; 191 *Byte = Bytes[Index]; 192 return 0; 193 } 194 195 /// logger - a callback function that wraps the operator<< method from 196 /// raw_ostream. 197 /// 198 /// @param arg - The generic callback parameter. This should be a pointe 199 /// to a raw_ostream. 200 /// @param log - A string to be logged. logger() adds a newline. 201 static void logger(void* arg, const char* log) { 202 if (!arg) 203 return; 204 205 raw_ostream &vStream = *(static_cast<raw_ostream*>(arg)); 206 vStream << log << "\n"; 207 } 208 209 // 210 // Public interface for the disassembler 211 // 212 213 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( 214 MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, 215 raw_ostream &VStream, raw_ostream &CStream) const { 216 CommentStream = &CStream; 217 218 InternalInstruction InternalInstr; 219 220 dlog_t LoggerFn = logger; 221 if (&VStream == &nulls()) 222 LoggerFn = nullptr; // Disable logging completely if it's going to nulls(). 223 224 Region R(Bytes, Address); 225 226 int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R, 227 LoggerFn, (void *)&VStream, 228 (const void *)MII.get(), Address, fMode); 229 230 if (Ret) { 231 Size = InternalInstr.readerCursor - Address; 232 return Fail; 233 } else { 234 Size = InternalInstr.length; 235 bool Ret = translateInstruction(Instr, InternalInstr, this); 236 if (!Ret) { 237 unsigned Flags = X86::IP_NO_PREFIX; 238 if (InternalInstr.hasAdSize) 239 Flags |= X86::IP_HAS_AD_SIZE; 240 if (!InternalInstr.mandatoryPrefix) { 241 if (InternalInstr.hasOpSize) 242 Flags |= X86::IP_HAS_OP_SIZE; 243 if (InternalInstr.repeatPrefix == 0xf2) 244 Flags |= X86::IP_HAS_REPEAT_NE; 245 else if (InternalInstr.repeatPrefix == 0xf3 && 246 // It should not be 'pause' f3 90 247 InternalInstr.opcode != 0x90) 248 Flags |= X86::IP_HAS_REPEAT; 249 if (InternalInstr.hasLockPrefix) 250 Flags |= X86::IP_HAS_LOCK; 251 } 252 Instr.setFlags(Flags); 253 } 254 return (!Ret) ? Success : Fail; 255 } 256 } 257 258 // 259 // Private code that translates from struct InternalInstructions to MCInsts. 260 // 261 262 /// translateRegister - Translates an internal register to the appropriate LLVM 263 /// register, and appends it as an operand to an MCInst. 264 /// 265 /// @param mcInst - The MCInst to append to. 266 /// @param reg - The Reg to append. 267 static void translateRegister(MCInst &mcInst, Reg reg) { 268 #define ENTRY(x) X86::x, 269 static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; 270 #undef ENTRY 271 272 MCPhysReg llvmRegnum = llvmRegnums[reg]; 273 mcInst.addOperand(MCOperand::createReg(llvmRegnum)); 274 } 275 276 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the 277 /// immediate Value in the MCInst. 278 /// 279 /// @param Value - The immediate Value, has had any PC adjustment made by 280 /// the caller. 281 /// @param isBranch - If the instruction is a branch instruction 282 /// @param Address - The starting address of the instruction 283 /// @param Offset - The byte offset to this immediate in the instruction 284 /// @param Width - The byte width of this immediate in the instruction 285 /// 286 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was 287 /// called then that function is called to get any symbolic information for the 288 /// immediate in the instruction using the Address, Offset and Width. If that 289 /// returns non-zero then the symbolic information it returns is used to create 290 /// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() 291 /// returns zero and isBranch is true then a symbol look up for immediate Value 292 /// is done and if a symbol is found an MCExpr is created with that, else 293 /// an MCExpr with the immediate Value is created. This function returns true 294 /// if it adds an operand to the MCInst and false otherwise. 295 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, 296 uint64_t Address, uint64_t Offset, 297 uint64_t Width, MCInst &MI, 298 const MCDisassembler *Dis) { 299 return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, 300 Offset, Width); 301 } 302 303 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being 304 /// referenced by a load instruction with the base register that is the rip. 305 /// These can often be addresses in a literal pool. The Address of the 306 /// instruction and its immediate Value are used to determine the address 307 /// being referenced in the literal pool entry. The SymbolLookUp call back will 308 /// return a pointer to a literal 'C' string if the referenced address is an 309 /// address into a section with 'C' string literals. 310 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, 311 const void *Decoder) { 312 const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); 313 Dis->tryAddingPcLoadReferenceComment(Value, Address); 314 } 315 316 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { 317 0, // SEG_OVERRIDE_NONE 318 X86::CS, 319 X86::SS, 320 X86::DS, 321 X86::ES, 322 X86::FS, 323 X86::GS 324 }; 325 326 /// translateSrcIndex - Appends a source index operand to an MCInst. 327 /// 328 /// @param mcInst - The MCInst to append to. 329 /// @param insn - The internal instruction. 330 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { 331 unsigned baseRegNo; 332 333 if (insn.mode == MODE_64BIT) 334 baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; 335 else if (insn.mode == MODE_32BIT) 336 baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; 337 else { 338 assert(insn.mode == MODE_16BIT); 339 baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; 340 } 341 MCOperand baseReg = MCOperand::createReg(baseRegNo); 342 mcInst.addOperand(baseReg); 343 344 MCOperand segmentReg; 345 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 346 mcInst.addOperand(segmentReg); 347 return false; 348 } 349 350 /// translateDstIndex - Appends a destination index operand to an MCInst. 351 /// 352 /// @param mcInst - The MCInst to append to. 353 /// @param insn - The internal instruction. 354 355 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { 356 unsigned baseRegNo; 357 358 if (insn.mode == MODE_64BIT) 359 baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; 360 else if (insn.mode == MODE_32BIT) 361 baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; 362 else { 363 assert(insn.mode == MODE_16BIT); 364 baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; 365 } 366 MCOperand baseReg = MCOperand::createReg(baseRegNo); 367 mcInst.addOperand(baseReg); 368 return false; 369 } 370 371 /// translateImmediate - Appends an immediate operand to an MCInst. 372 /// 373 /// @param mcInst - The MCInst to append to. 374 /// @param immediate - The immediate value to append. 375 /// @param operand - The operand, as stored in the descriptor table. 376 /// @param insn - The internal instruction. 377 static void translateImmediate(MCInst &mcInst, uint64_t immediate, 378 const OperandSpecifier &operand, 379 InternalInstruction &insn, 380 const MCDisassembler *Dis) { 381 // Sign-extend the immediate if necessary. 382 383 OperandType type = (OperandType)operand.type; 384 385 bool isBranch = false; 386 uint64_t pcrel = 0; 387 if (type == TYPE_REL) { 388 isBranch = true; 389 pcrel = insn.startLocation + 390 insn.immediateOffset + insn.immediateSize; 391 switch (operand.encoding) { 392 default: 393 break; 394 case ENCODING_Iv: 395 switch (insn.displacementSize) { 396 default: 397 break; 398 case 1: 399 if(immediate & 0x80) 400 immediate |= ~(0xffull); 401 break; 402 case 2: 403 if(immediate & 0x8000) 404 immediate |= ~(0xffffull); 405 break; 406 case 4: 407 if(immediate & 0x80000000) 408 immediate |= ~(0xffffffffull); 409 break; 410 case 8: 411 break; 412 } 413 break; 414 case ENCODING_IB: 415 if(immediate & 0x80) 416 immediate |= ~(0xffull); 417 break; 418 case ENCODING_IW: 419 if(immediate & 0x8000) 420 immediate |= ~(0xffffull); 421 break; 422 case ENCODING_ID: 423 if(immediate & 0x80000000) 424 immediate |= ~(0xffffffffull); 425 break; 426 } 427 } 428 // By default sign-extend all X86 immediates based on their encoding. 429 else if (type == TYPE_IMM) { 430 switch (operand.encoding) { 431 default: 432 break; 433 case ENCODING_IB: 434 if(immediate & 0x80) 435 immediate |= ~(0xffull); 436 break; 437 case ENCODING_IW: 438 if(immediate & 0x8000) 439 immediate |= ~(0xffffull); 440 break; 441 case ENCODING_ID: 442 if(immediate & 0x80000000) 443 immediate |= ~(0xffffffffull); 444 break; 445 case ENCODING_IO: 446 break; 447 } 448 } 449 450 switch (type) { 451 case TYPE_XMM: 452 mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); 453 return; 454 case TYPE_YMM: 455 mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); 456 return; 457 case TYPE_ZMM: 458 mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); 459 return; 460 default: 461 // operand is 64 bits wide. Do nothing. 462 break; 463 } 464 465 if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, 466 insn.immediateOffset, insn.immediateSize, 467 mcInst, Dis)) 468 mcInst.addOperand(MCOperand::createImm(immediate)); 469 470 if (type == TYPE_MOFFS) { 471 MCOperand segmentReg; 472 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 473 mcInst.addOperand(segmentReg); 474 } 475 } 476 477 /// translateRMRegister - Translates a register stored in the R/M field of the 478 /// ModR/M byte to its LLVM equivalent and appends it to an MCInst. 479 /// @param mcInst - The MCInst to append to. 480 /// @param insn - The internal instruction to extract the R/M field 481 /// from. 482 /// @return - 0 on success; -1 otherwise 483 static bool translateRMRegister(MCInst &mcInst, 484 InternalInstruction &insn) { 485 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 486 debug("A R/M register operand may not have a SIB byte"); 487 return true; 488 } 489 490 switch (insn.eaBase) { 491 default: 492 debug("Unexpected EA base register"); 493 return true; 494 case EA_BASE_NONE: 495 debug("EA_BASE_NONE for ModR/M base"); 496 return true; 497 #define ENTRY(x) case EA_BASE_##x: 498 ALL_EA_BASES 499 #undef ENTRY 500 debug("A R/M register operand may not have a base; " 501 "the operand must be a register."); 502 return true; 503 #define ENTRY(x) \ 504 case EA_REG_##x: \ 505 mcInst.addOperand(MCOperand::createReg(X86::x)); break; 506 ALL_REGS 507 #undef ENTRY 508 } 509 510 return false; 511 } 512 513 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M 514 /// fields of an internal instruction (and possibly its SIB byte) to a memory 515 /// operand in LLVM's format, and appends it to an MCInst. 516 /// 517 /// @param mcInst - The MCInst to append to. 518 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 519 /// from. 520 /// @return - 0 on success; nonzero otherwise 521 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, 522 const MCDisassembler *Dis) { 523 // Addresses in an MCInst are represented as five operands: 524 // 1. basereg (register) The R/M base, or (if there is a SIB) the 525 // SIB base 526 // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified 527 // scale amount 528 // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) 529 // the index (which is multiplied by the 530 // scale amount) 531 // 4. displacement (immediate) 0, or the displacement if there is one 532 // 5. segmentreg (register) x86_registerNONE for now, but could be set 533 // if we have segment overrides 534 535 MCOperand baseReg; 536 MCOperand scaleAmount; 537 MCOperand indexReg; 538 MCOperand displacement; 539 MCOperand segmentReg; 540 uint64_t pcrel = 0; 541 542 if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { 543 if (insn.sibBase != SIB_BASE_NONE) { 544 switch (insn.sibBase) { 545 default: 546 debug("Unexpected sibBase"); 547 return true; 548 #define ENTRY(x) \ 549 case SIB_BASE_##x: \ 550 baseReg = MCOperand::createReg(X86::x); break; 551 ALL_SIB_BASES 552 #undef ENTRY 553 } 554 } else { 555 baseReg = MCOperand::createReg(X86::NoRegister); 556 } 557 558 if (insn.sibIndex != SIB_INDEX_NONE) { 559 switch (insn.sibIndex) { 560 default: 561 debug("Unexpected sibIndex"); 562 return true; 563 #define ENTRY(x) \ 564 case SIB_INDEX_##x: \ 565 indexReg = MCOperand::createReg(X86::x); break; 566 EA_BASES_32BIT 567 EA_BASES_64BIT 568 REGS_XMM 569 REGS_YMM 570 REGS_ZMM 571 #undef ENTRY 572 } 573 } else { 574 // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, 575 // but no index is used and modrm alone should have been enough. 576 // -No base register in 32-bit mode. In 64-bit mode this is used to 577 // avoid rip-relative addressing. 578 // -Any base register used other than ESP/RSP/R12D/R12. Using these as a 579 // base always requires a SIB byte. 580 // -A scale other than 1 is used. 581 if (insn.sibScale != 1 || 582 (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || 583 (insn.sibBase != SIB_BASE_NONE && 584 insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && 585 insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) { 586 indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : 587 X86::RIZ); 588 } else 589 indexReg = MCOperand::createReg(X86::NoRegister); 590 } 591 592 scaleAmount = MCOperand::createImm(insn.sibScale); 593 } else { 594 switch (insn.eaBase) { 595 case EA_BASE_NONE: 596 if (insn.eaDisplacement == EA_DISP_NONE) { 597 debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); 598 return true; 599 } 600 if (insn.mode == MODE_64BIT){ 601 pcrel = insn.startLocation + 602 insn.displacementOffset + insn.displacementSize; 603 tryAddingPcLoadReferenceComment(insn.startLocation + 604 insn.displacementOffset, 605 insn.displacement + pcrel, Dis); 606 // Section 2.2.1.6 607 baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : 608 X86::RIP); 609 } 610 else 611 baseReg = MCOperand::createReg(X86::NoRegister); 612 613 indexReg = MCOperand::createReg(X86::NoRegister); 614 break; 615 case EA_BASE_BX_SI: 616 baseReg = MCOperand::createReg(X86::BX); 617 indexReg = MCOperand::createReg(X86::SI); 618 break; 619 case EA_BASE_BX_DI: 620 baseReg = MCOperand::createReg(X86::BX); 621 indexReg = MCOperand::createReg(X86::DI); 622 break; 623 case EA_BASE_BP_SI: 624 baseReg = MCOperand::createReg(X86::BP); 625 indexReg = MCOperand::createReg(X86::SI); 626 break; 627 case EA_BASE_BP_DI: 628 baseReg = MCOperand::createReg(X86::BP); 629 indexReg = MCOperand::createReg(X86::DI); 630 break; 631 default: 632 indexReg = MCOperand::createReg(X86::NoRegister); 633 switch (insn.eaBase) { 634 default: 635 debug("Unexpected eaBase"); 636 return true; 637 // Here, we will use the fill-ins defined above. However, 638 // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and 639 // sib and sib64 were handled in the top-level if, so they're only 640 // placeholders to keep the compiler happy. 641 #define ENTRY(x) \ 642 case EA_BASE_##x: \ 643 baseReg = MCOperand::createReg(X86::x); break; 644 ALL_EA_BASES 645 #undef ENTRY 646 #define ENTRY(x) case EA_REG_##x: 647 ALL_REGS 648 #undef ENTRY 649 debug("A R/M memory operand may not be a register; " 650 "the base field must be a base."); 651 return true; 652 } 653 } 654 655 scaleAmount = MCOperand::createImm(1); 656 } 657 658 displacement = MCOperand::createImm(insn.displacement); 659 660 segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); 661 662 mcInst.addOperand(baseReg); 663 mcInst.addOperand(scaleAmount); 664 mcInst.addOperand(indexReg); 665 if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, 666 insn.startLocation, insn.displacementOffset, 667 insn.displacementSize, mcInst, Dis)) 668 mcInst.addOperand(displacement); 669 mcInst.addOperand(segmentReg); 670 return false; 671 } 672 673 /// translateRM - Translates an operand stored in the R/M (and possibly SIB) 674 /// byte of an instruction to LLVM form, and appends it to an MCInst. 675 /// 676 /// @param mcInst - The MCInst to append to. 677 /// @param operand - The operand, as stored in the descriptor table. 678 /// @param insn - The instruction to extract Mod, R/M, and SIB fields 679 /// from. 680 /// @return - 0 on success; nonzero otherwise 681 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, 682 InternalInstruction &insn, const MCDisassembler *Dis) { 683 switch (operand.type) { 684 default: 685 debug("Unexpected type for a R/M operand"); 686 return true; 687 case TYPE_R8: 688 case TYPE_R16: 689 case TYPE_R32: 690 case TYPE_R64: 691 case TYPE_Rv: 692 case TYPE_MM64: 693 case TYPE_XMM: 694 case TYPE_YMM: 695 case TYPE_ZMM: 696 case TYPE_VK: 697 case TYPE_DEBUGREG: 698 case TYPE_CONTROLREG: 699 case TYPE_BNDR: 700 return translateRMRegister(mcInst, insn); 701 case TYPE_M: 702 case TYPE_MVSIBX: 703 case TYPE_MVSIBY: 704 case TYPE_MVSIBZ: 705 return translateRMMemory(mcInst, insn, Dis); 706 } 707 } 708 709 /// translateFPRegister - Translates a stack position on the FPU stack to its 710 /// LLVM form, and appends it to an MCInst. 711 /// 712 /// @param mcInst - The MCInst to append to. 713 /// @param stackPos - The stack position to translate. 714 static void translateFPRegister(MCInst &mcInst, 715 uint8_t stackPos) { 716 mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); 717 } 718 719 /// translateMaskRegister - Translates a 3-bit mask register number to 720 /// LLVM form, and appends it to an MCInst. 721 /// 722 /// @param mcInst - The MCInst to append to. 723 /// @param maskRegNum - Number of mask register from 0 to 7. 724 /// @return - false on success; true otherwise. 725 static bool translateMaskRegister(MCInst &mcInst, 726 uint8_t maskRegNum) { 727 if (maskRegNum >= 8) { 728 debug("Invalid mask register number"); 729 return true; 730 } 731 732 mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); 733 return false; 734 } 735 736 /// translateOperand - Translates an operand stored in an internal instruction 737 /// to LLVM's format and appends it to an MCInst. 738 /// 739 /// @param mcInst - The MCInst to append to. 740 /// @param operand - The operand, as stored in the descriptor table. 741 /// @param insn - The internal instruction. 742 /// @return - false on success; true otherwise. 743 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, 744 InternalInstruction &insn, 745 const MCDisassembler *Dis) { 746 switch (operand.encoding) { 747 default: 748 debug("Unhandled operand encoding during translation"); 749 return true; 750 case ENCODING_REG: 751 translateRegister(mcInst, insn.reg); 752 return false; 753 case ENCODING_WRITEMASK: 754 return translateMaskRegister(mcInst, insn.writemask); 755 CASE_ENCODING_RM: 756 CASE_ENCODING_VSIB: 757 return translateRM(mcInst, operand, insn, Dis); 758 case ENCODING_IB: 759 case ENCODING_IW: 760 case ENCODING_ID: 761 case ENCODING_IO: 762 case ENCODING_Iv: 763 case ENCODING_Ia: 764 translateImmediate(mcInst, 765 insn.immediates[insn.numImmediatesTranslated++], 766 operand, 767 insn, 768 Dis); 769 return false; 770 case ENCODING_IRC: 771 mcInst.addOperand(MCOperand::createImm(insn.RC)); 772 return false; 773 case ENCODING_SI: 774 return translateSrcIndex(mcInst, insn); 775 case ENCODING_DI: 776 return translateDstIndex(mcInst, insn); 777 case ENCODING_RB: 778 case ENCODING_RW: 779 case ENCODING_RD: 780 case ENCODING_RO: 781 case ENCODING_Rv: 782 translateRegister(mcInst, insn.opcodeRegister); 783 return false; 784 case ENCODING_CC: 785 mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); 786 return false; 787 case ENCODING_FP: 788 translateFPRegister(mcInst, insn.modRM & 7); 789 return false; 790 case ENCODING_VVVV: 791 translateRegister(mcInst, insn.vvvv); 792 return false; 793 case ENCODING_DUP: 794 return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], 795 insn, Dis); 796 } 797 } 798 799 /// translateInstruction - Translates an internal instruction and all its 800 /// operands to an MCInst. 801 /// 802 /// @param mcInst - The MCInst to populate with the instruction's data. 803 /// @param insn - The internal instruction. 804 /// @return - false on success; true otherwise. 805 static bool translateInstruction(MCInst &mcInst, 806 InternalInstruction &insn, 807 const MCDisassembler *Dis) { 808 if (!insn.spec) { 809 debug("Instruction has no specification"); 810 return true; 811 } 812 813 mcInst.clear(); 814 mcInst.setOpcode(insn.instructionID); 815 // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 816 // prefix bytes should be disassembled as xrelease and xacquire then set the 817 // opcode to those instead of the rep and repne opcodes. 818 if (insn.xAcquireRelease) { 819 if(mcInst.getOpcode() == X86::REP_PREFIX) 820 mcInst.setOpcode(X86::XRELEASE_PREFIX); 821 else if(mcInst.getOpcode() == X86::REPNE_PREFIX) 822 mcInst.setOpcode(X86::XACQUIRE_PREFIX); 823 } 824 825 insn.numImmediatesTranslated = 0; 826 827 for (const auto &Op : insn.operands) { 828 if (Op.encoding != ENCODING_NONE) { 829 if (translateOperand(mcInst, Op, insn, Dis)) { 830 return true; 831 } 832 } 833 } 834 835 return false; 836 } 837 838 static MCDisassembler *createX86Disassembler(const Target &T, 839 const MCSubtargetInfo &STI, 840 MCContext &Ctx) { 841 std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); 842 return new X86GenericDisassembler(STI, Ctx, std::move(MII)); 843 } 844 845 extern "C" void LLVMInitializeX86Disassembler() { 846 // Register the disassembler. 847 TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), 848 createX86Disassembler); 849 TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), 850 createX86Disassembler); 851 } 852