1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains code to translate the data produced by the decoder into
12 //  MCInsts.
13 //
14 //
15 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
16 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
17 // instruction in this disassembler is:
18 //
19 // 1. Read the prefix bytes and determine the attributes of the instruction.
20 //    These attributes, recorded in enum attributeBits
21 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
22 //    provides a mapping from bitmasks to contexts, which are represented by
23 //    enum InstructionContext (ibid.).
24 //
25 // 2. Read the opcode, and determine what kind of opcode it is.  The
26 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
27 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
28 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
29 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
30 //
31 // 3. Depending on the opcode type, look in one of four ClassDecision structures
32 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
33 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
34 //    a ModRMDecision (ibid.).
35 //
36 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
37 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
38 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
39 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
40 //    ModR/M byte is required and how to interpret it.
41 //
42 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
43 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
44 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
45 //    meanings of its operands.
46 //
47 // 6. For each operand, its encoding is an entry from OperandEncoding
48 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
49 //    OperandType (ibid.).  The encoding indicates how to read it from the
50 //    instruction; the type indicates how to interpret the value once it has
51 //    been read.  For example, a register operand could be stored in the R/M
52 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
53 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
54 //    register, for instance).  Given this information, the operands can be
55 //    extracted and interpreted.
56 //
57 // 7. As the last step, the disassembler translates the instruction information
58 //    and operands into a format understandable by the client - in this case, an
59 //    MCInst for use by the MC infrastructure.
60 //
61 // The disassembler is broken broadly into two parts: the table emitter that
62 // emits the instruction decode tables discussed above during compilation, and
63 // the disassembler itself.  The table emitter is documented in more detail in
64 // utils/TableGen/X86DisassemblerEmitter.h.
65 //
66 // X86Disassembler.cpp contains the code responsible for step 7, and for
67 //   invoking the decoder to execute steps 1-6.
68 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
69 //   table emitter and the disassembler.
70 // X86DisassemblerDecoder.h contains the public interface of the decoder,
71 //   factored out into C for possible use by other projects.
72 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
73 //   responsible for steps 1-6.
74 //
75 //===----------------------------------------------------------------------===//
76 
77 #include "MCTargetDesc/X86BaseInfo.h"
78 #include "MCTargetDesc/X86MCTargetDesc.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/TargetRegistry.h"
88 #include "llvm/Support/raw_ostream.h"
89 
90 using namespace llvm;
91 using namespace llvm::X86Disassembler;
92 
93 #define DEBUG_TYPE "x86-disassembler"
94 
95 void llvm::X86Disassembler::Debug(const char *file, unsigned line,
96                                   const char *s) {
97   dbgs() << file << ":" << line << ": " << s;
98 }
99 
100 StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode,
101                                                 const void *mii) {
102   const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii);
103   return MII->getName(Opcode);
104 }
105 
106 #define debug(s) DEBUG(Debug(__FILE__, __LINE__, s));
107 
108 namespace llvm {
109 
110 // Fill-ins to make the compiler happy.  These constants are never actually
111 //   assigned; they are just filler to make an automatically-generated switch
112 //   statement work.
113 namespace X86 {
114   enum {
115     BX_SI = 500,
116     BX_DI = 501,
117     BP_SI = 502,
118     BP_DI = 503,
119     sib   = 504,
120     sib64 = 505
121   };
122 }
123 
124 }
125 
126 static bool translateInstruction(MCInst &target,
127                                 InternalInstruction &source,
128                                 const MCDisassembler *Dis);
129 
130 namespace {
131 
132 /// Generic disassembler for all X86 platforms. All each platform class should
133 /// have to do is subclass the constructor, and provide a different
134 /// disassemblerMode value.
135 class X86GenericDisassembler : public MCDisassembler {
136   std::unique_ptr<const MCInstrInfo> MII;
137 public:
138   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
139                          std::unique_ptr<const MCInstrInfo> MII);
140 public:
141   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
142                               ArrayRef<uint8_t> Bytes, uint64_t Address,
143                               raw_ostream &vStream,
144                               raw_ostream &cStream) const override;
145 
146 private:
147   DisassemblerMode              fMode;
148 };
149 
150 }
151 
152 X86GenericDisassembler::X86GenericDisassembler(
153                                          const MCSubtargetInfo &STI,
154                                          MCContext &Ctx,
155                                          std::unique_ptr<const MCInstrInfo> MII)
156   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
157   const FeatureBitset &FB = STI.getFeatureBits();
158   if (FB[X86::Mode16Bit]) {
159     fMode = MODE_16BIT;
160     return;
161   } else if (FB[X86::Mode32Bit]) {
162     fMode = MODE_32BIT;
163     return;
164   } else if (FB[X86::Mode64Bit]) {
165     fMode = MODE_64BIT;
166     return;
167   }
168 
169   llvm_unreachable("Invalid CPU mode");
170 }
171 
172 namespace {
173 struct Region {
174   ArrayRef<uint8_t> Bytes;
175   uint64_t Base;
176   Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {}
177 };
178 } // end anonymous namespace
179 
180 /// A callback function that wraps the readByte method from Region.
181 ///
182 /// @param Arg      - The generic callback parameter.  In this case, this should
183 ///                   be a pointer to a Region.
184 /// @param Byte     - A pointer to the byte to be read.
185 /// @param Address  - The address to be read.
186 static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) {
187   auto *R = static_cast<const Region *>(Arg);
188   ArrayRef<uint8_t> Bytes = R->Bytes;
189   unsigned Index = Address - R->Base;
190   if (Bytes.size() <= Index)
191     return -1;
192   *Byte = Bytes[Index];
193   return 0;
194 }
195 
196 /// logger - a callback function that wraps the operator<< method from
197 ///   raw_ostream.
198 ///
199 /// @param arg      - The generic callback parameter.  This should be a pointe
200 ///                   to a raw_ostream.
201 /// @param log      - A string to be logged.  logger() adds a newline.
202 static void logger(void* arg, const char* log) {
203   if (!arg)
204     return;
205 
206   raw_ostream &vStream = *(static_cast<raw_ostream*>(arg));
207   vStream << log << "\n";
208 }
209 
210 //
211 // Public interface for the disassembler
212 //
213 
214 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
215     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
216     raw_ostream &VStream, raw_ostream &CStream) const {
217   CommentStream = &CStream;
218 
219   InternalInstruction InternalInstr;
220 
221   dlog_t LoggerFn = logger;
222   if (&VStream == &nulls())
223     LoggerFn = nullptr; // Disable logging completely if it's going to nulls().
224 
225   Region R(Bytes, Address);
226 
227   int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R,
228                               LoggerFn, (void *)&VStream,
229                               (const void *)MII.get(), Address, fMode);
230 
231   if (Ret) {
232     Size = InternalInstr.readerCursor - Address;
233     return Fail;
234   } else {
235     Size = InternalInstr.length;
236     bool Ret = translateInstruction(Instr, InternalInstr, this);
237     if (!Ret) {
238       unsigned Flags = X86::IP_NO_PREFIX;
239       if (InternalInstr.hasAdSize)
240         Flags |= X86::IP_HAS_AD_SIZE;
241       if (!InternalInstr.mandatoryPrefix) {
242         if (InternalInstr.hasOpSize)
243           Flags |= X86::IP_HAS_OP_SIZE;
244         if (InternalInstr.repeatPrefix == 0xf2)
245           Flags |= X86::IP_HAS_REPEAT_NE;
246         else if (InternalInstr.repeatPrefix == 0xf3 &&
247                  // It should not be 'pause' f3 90
248                  InternalInstr.opcode != 0x90)
249           Flags |= X86::IP_HAS_REPEAT;
250       }
251       Instr.setFlags(Flags);
252     }
253     return (!Ret) ? Success : Fail;
254   }
255 }
256 
257 //
258 // Private code that translates from struct InternalInstructions to MCInsts.
259 //
260 
261 /// translateRegister - Translates an internal register to the appropriate LLVM
262 ///   register, and appends it as an operand to an MCInst.
263 ///
264 /// @param mcInst     - The MCInst to append to.
265 /// @param reg        - The Reg to append.
266 static void translateRegister(MCInst &mcInst, Reg reg) {
267 #define ENTRY(x) X86::x,
268   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
269 #undef ENTRY
270 
271   MCPhysReg llvmRegnum = llvmRegnums[reg];
272   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
273 }
274 
275 /// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the
276 /// immediate Value in the MCInst.
277 ///
278 /// @param Value      - The immediate Value, has had any PC adjustment made by
279 ///                     the caller.
280 /// @param isBranch   - If the instruction is a branch instruction
281 /// @param Address    - The starting address of the instruction
282 /// @param Offset     - The byte offset to this immediate in the instruction
283 /// @param Width      - The byte width of this immediate in the instruction
284 ///
285 /// If the getOpInfo() function was set when setupForSymbolicDisassembly() was
286 /// called then that function is called to get any symbolic information for the
287 /// immediate in the instruction using the Address, Offset and Width.  If that
288 /// returns non-zero then the symbolic information it returns is used to create
289 /// an MCExpr and that is added as an operand to the MCInst.  If getOpInfo()
290 /// returns zero and isBranch is true then a symbol look up for immediate Value
291 /// is done and if a symbol is found an MCExpr is created with that, else
292 /// an MCExpr with the immediate Value is created.  This function returns true
293 /// if it adds an operand to the MCInst and false otherwise.
294 static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch,
295                                      uint64_t Address, uint64_t Offset,
296                                      uint64_t Width, MCInst &MI,
297                                      const MCDisassembler *Dis) {
298   return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch,
299                                        Offset, Width);
300 }
301 
302 /// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being
303 /// referenced by a load instruction with the base register that is the rip.
304 /// These can often be addresses in a literal pool.  The Address of the
305 /// instruction and its immediate Value are used to determine the address
306 /// being referenced in the literal pool entry.  The SymbolLookUp call back will
307 /// return a pointer to a literal 'C' string if the referenced address is an
308 /// address into a section with 'C' string literals.
309 static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value,
310                                             const void *Decoder) {
311   const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder);
312   Dis->tryAddingPcLoadReferenceComment(Value, Address);
313 }
314 
315 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
316   0,        // SEG_OVERRIDE_NONE
317   X86::CS,
318   X86::SS,
319   X86::DS,
320   X86::ES,
321   X86::FS,
322   X86::GS
323 };
324 
325 /// translateSrcIndex   - Appends a source index operand to an MCInst.
326 ///
327 /// @param mcInst       - The MCInst to append to.
328 /// @param insn         - The internal instruction.
329 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
330   unsigned baseRegNo;
331 
332   if (insn.mode == MODE_64BIT)
333     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
334   else if (insn.mode == MODE_32BIT)
335     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
336   else {
337     assert(insn.mode == MODE_16BIT);
338     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
339   }
340   MCOperand baseReg = MCOperand::createReg(baseRegNo);
341   mcInst.addOperand(baseReg);
342 
343   MCOperand segmentReg;
344   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
345   mcInst.addOperand(segmentReg);
346   return false;
347 }
348 
349 /// translateDstIndex   - Appends a destination index operand to an MCInst.
350 ///
351 /// @param mcInst       - The MCInst to append to.
352 /// @param insn         - The internal instruction.
353 
354 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
355   unsigned baseRegNo;
356 
357   if (insn.mode == MODE_64BIT)
358     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
359   else if (insn.mode == MODE_32BIT)
360     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
361   else {
362     assert(insn.mode == MODE_16BIT);
363     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
364   }
365   MCOperand baseReg = MCOperand::createReg(baseRegNo);
366   mcInst.addOperand(baseReg);
367   return false;
368 }
369 
370 /// translateImmediate  - Appends an immediate operand to an MCInst.
371 ///
372 /// @param mcInst       - The MCInst to append to.
373 /// @param immediate    - The immediate value to append.
374 /// @param operand      - The operand, as stored in the descriptor table.
375 /// @param insn         - The internal instruction.
376 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
377                                const OperandSpecifier &operand,
378                                InternalInstruction &insn,
379                                const MCDisassembler *Dis) {
380   // Sign-extend the immediate if necessary.
381 
382   OperandType type = (OperandType)operand.type;
383 
384   bool isBranch = false;
385   uint64_t pcrel = 0;
386   if (type == TYPE_REL) {
387     isBranch = true;
388     pcrel = insn.startLocation +
389             insn.immediateOffset + insn.immediateSize;
390     switch (operand.encoding) {
391     default:
392       break;
393     case ENCODING_Iv:
394       switch (insn.displacementSize) {
395       default:
396         break;
397       case 1:
398         if(immediate & 0x80)
399           immediate |= ~(0xffull);
400         break;
401       case 2:
402         if(immediate & 0x8000)
403           immediate |= ~(0xffffull);
404         break;
405       case 4:
406         if(immediate & 0x80000000)
407           immediate |= ~(0xffffffffull);
408         break;
409       case 8:
410         break;
411       }
412       break;
413     case ENCODING_IB:
414       if(immediate & 0x80)
415         immediate |= ~(0xffull);
416       break;
417     case ENCODING_IW:
418       if(immediate & 0x8000)
419         immediate |= ~(0xffffull);
420       break;
421     case ENCODING_ID:
422       if(immediate & 0x80000000)
423         immediate |= ~(0xffffffffull);
424       break;
425     }
426   }
427   // By default sign-extend all X86 immediates based on their encoding.
428   else if (type == TYPE_IMM) {
429     switch (operand.encoding) {
430     default:
431       break;
432     case ENCODING_IB:
433       if(immediate & 0x80)
434         immediate |= ~(0xffull);
435       break;
436     case ENCODING_IW:
437       if(immediate & 0x8000)
438         immediate |= ~(0xffffull);
439       break;
440     case ENCODING_ID:
441       if(immediate & 0x80000000)
442         immediate |= ~(0xffffffffull);
443       break;
444     case ENCODING_IO:
445       break;
446     }
447   } else if (type == TYPE_IMM3) {
448     // Check for immediates that printSSECC can't handle.
449     if (immediate >= 8) {
450       unsigned NewOpc;
451       switch (mcInst.getOpcode()) {
452       default: llvm_unreachable("unexpected opcode");
453       case X86::CMPPDrmi:  NewOpc = X86::CMPPDrmi_alt;  break;
454       case X86::CMPPDrri:  NewOpc = X86::CMPPDrri_alt;  break;
455       case X86::CMPPSrmi:  NewOpc = X86::CMPPSrmi_alt;  break;
456       case X86::CMPPSrri:  NewOpc = X86::CMPPSrri_alt;  break;
457       case X86::CMPSDrm:   NewOpc = X86::CMPSDrm_alt;   break;
458       case X86::CMPSDrr:   NewOpc = X86::CMPSDrr_alt;   break;
459       case X86::CMPSSrm:   NewOpc = X86::CMPSSrm_alt;   break;
460       case X86::CMPSSrr:   NewOpc = X86::CMPSSrr_alt;   break;
461       case X86::VPCOMBri:  NewOpc = X86::VPCOMBri_alt;  break;
462       case X86::VPCOMBmi:  NewOpc = X86::VPCOMBmi_alt;  break;
463       case X86::VPCOMWri:  NewOpc = X86::VPCOMWri_alt;  break;
464       case X86::VPCOMWmi:  NewOpc = X86::VPCOMWmi_alt;  break;
465       case X86::VPCOMDri:  NewOpc = X86::VPCOMDri_alt;  break;
466       case X86::VPCOMDmi:  NewOpc = X86::VPCOMDmi_alt;  break;
467       case X86::VPCOMQri:  NewOpc = X86::VPCOMQri_alt;  break;
468       case X86::VPCOMQmi:  NewOpc = X86::VPCOMQmi_alt;  break;
469       case X86::VPCOMUBri: NewOpc = X86::VPCOMUBri_alt; break;
470       case X86::VPCOMUBmi: NewOpc = X86::VPCOMUBmi_alt; break;
471       case X86::VPCOMUWri: NewOpc = X86::VPCOMUWri_alt; break;
472       case X86::VPCOMUWmi: NewOpc = X86::VPCOMUWmi_alt; break;
473       case X86::VPCOMUDri: NewOpc = X86::VPCOMUDri_alt; break;
474       case X86::VPCOMUDmi: NewOpc = X86::VPCOMUDmi_alt; break;
475       case X86::VPCOMUQri: NewOpc = X86::VPCOMUQri_alt; break;
476       case X86::VPCOMUQmi: NewOpc = X86::VPCOMUQmi_alt; break;
477       }
478       // Switch opcode to the one that doesn't get special printing.
479       mcInst.setOpcode(NewOpc);
480     }
481   } else if (type == TYPE_IMM5) {
482     // Check for immediates that printAVXCC can't handle.
483     if (immediate >= 32) {
484       unsigned NewOpc;
485       switch (mcInst.getOpcode()) {
486       default: llvm_unreachable("unexpected opcode");
487       case X86::VCMPPDrmi:   NewOpc = X86::VCMPPDrmi_alt;   break;
488       case X86::VCMPPDrri:   NewOpc = X86::VCMPPDrri_alt;   break;
489       case X86::VCMPPSrmi:   NewOpc = X86::VCMPPSrmi_alt;   break;
490       case X86::VCMPPSrri:   NewOpc = X86::VCMPPSrri_alt;   break;
491       case X86::VCMPSDrm:    NewOpc = X86::VCMPSDrm_alt;    break;
492       case X86::VCMPSDrr:    NewOpc = X86::VCMPSDrr_alt;    break;
493       case X86::VCMPSSrm:    NewOpc = X86::VCMPSSrm_alt;    break;
494       case X86::VCMPSSrr:    NewOpc = X86::VCMPSSrr_alt;    break;
495       case X86::VCMPPDYrmi:  NewOpc = X86::VCMPPDYrmi_alt;  break;
496       case X86::VCMPPDYrri:  NewOpc = X86::VCMPPDYrri_alt;  break;
497       case X86::VCMPPSYrmi:  NewOpc = X86::VCMPPSYrmi_alt;  break;
498       case X86::VCMPPSYrri:  NewOpc = X86::VCMPPSYrri_alt;  break;
499       case X86::VCMPPDZrmi:  NewOpc = X86::VCMPPDZrmi_alt;  break;
500       case X86::VCMPPDZrri:  NewOpc = X86::VCMPPDZrri_alt;  break;
501       case X86::VCMPPDZrrib: NewOpc = X86::VCMPPDZrrib_alt; break;
502       case X86::VCMPPSZrmi:  NewOpc = X86::VCMPPSZrmi_alt;  break;
503       case X86::VCMPPSZrri:  NewOpc = X86::VCMPPSZrri_alt;  break;
504       case X86::VCMPPSZrrib: NewOpc = X86::VCMPPSZrrib_alt; break;
505       case X86::VCMPPDZ128rmi:  NewOpc = X86::VCMPPDZ128rmi_alt;  break;
506       case X86::VCMPPDZ128rri:  NewOpc = X86::VCMPPDZ128rri_alt;  break;
507       case X86::VCMPPSZ128rmi:  NewOpc = X86::VCMPPSZ128rmi_alt;  break;
508       case X86::VCMPPSZ128rri:  NewOpc = X86::VCMPPSZ128rri_alt;  break;
509       case X86::VCMPPDZ256rmi:  NewOpc = X86::VCMPPDZ256rmi_alt;  break;
510       case X86::VCMPPDZ256rri:  NewOpc = X86::VCMPPDZ256rri_alt;  break;
511       case X86::VCMPPSZ256rmi:  NewOpc = X86::VCMPPSZ256rmi_alt;  break;
512       case X86::VCMPPSZ256rri:  NewOpc = X86::VCMPPSZ256rri_alt;  break;
513       case X86::VCMPSDZrm_Int:  NewOpc = X86::VCMPSDZrmi_alt;  break;
514       case X86::VCMPSDZrr_Int:  NewOpc = X86::VCMPSDZrri_alt;  break;
515       case X86::VCMPSDZrrb_Int: NewOpc = X86::VCMPSDZrrb_alt;  break;
516       case X86::VCMPSSZrm_Int:  NewOpc = X86::VCMPSSZrmi_alt;  break;
517       case X86::VCMPSSZrr_Int:  NewOpc = X86::VCMPSSZrri_alt;  break;
518       case X86::VCMPSSZrrb_Int: NewOpc = X86::VCMPSSZrrb_alt;  break;
519       }
520       // Switch opcode to the one that doesn't get special printing.
521       mcInst.setOpcode(NewOpc);
522     }
523   } else if (type == TYPE_AVX512ICC) {
524     if (immediate >= 8 || ((immediate & 0x3) == 3)) {
525       unsigned NewOpc;
526       switch (mcInst.getOpcode()) {
527       default: llvm_unreachable("unexpected opcode");
528       case X86::VPCMPBZ128rmi:    NewOpc = X86::VPCMPBZ128rmi_alt;    break;
529       case X86::VPCMPBZ128rmik:   NewOpc = X86::VPCMPBZ128rmik_alt;   break;
530       case X86::VPCMPBZ128rri:    NewOpc = X86::VPCMPBZ128rri_alt;    break;
531       case X86::VPCMPBZ128rrik:   NewOpc = X86::VPCMPBZ128rrik_alt;   break;
532       case X86::VPCMPBZ256rmi:    NewOpc = X86::VPCMPBZ256rmi_alt;    break;
533       case X86::VPCMPBZ256rmik:   NewOpc = X86::VPCMPBZ256rmik_alt;   break;
534       case X86::VPCMPBZ256rri:    NewOpc = X86::VPCMPBZ256rri_alt;    break;
535       case X86::VPCMPBZ256rrik:   NewOpc = X86::VPCMPBZ256rrik_alt;   break;
536       case X86::VPCMPBZrmi:       NewOpc = X86::VPCMPBZrmi_alt;       break;
537       case X86::VPCMPBZrmik:      NewOpc = X86::VPCMPBZrmik_alt;      break;
538       case X86::VPCMPBZrri:       NewOpc = X86::VPCMPBZrri_alt;       break;
539       case X86::VPCMPBZrrik:      NewOpc = X86::VPCMPBZrrik_alt;      break;
540       case X86::VPCMPDZ128rmi:    NewOpc = X86::VPCMPDZ128rmi_alt;    break;
541       case X86::VPCMPDZ128rmib:   NewOpc = X86::VPCMPDZ128rmib_alt;   break;
542       case X86::VPCMPDZ128rmibk:  NewOpc = X86::VPCMPDZ128rmibk_alt;  break;
543       case X86::VPCMPDZ128rmik:   NewOpc = X86::VPCMPDZ128rmik_alt;   break;
544       case X86::VPCMPDZ128rri:    NewOpc = X86::VPCMPDZ128rri_alt;    break;
545       case X86::VPCMPDZ128rrik:   NewOpc = X86::VPCMPDZ128rrik_alt;   break;
546       case X86::VPCMPDZ256rmi:    NewOpc = X86::VPCMPDZ256rmi_alt;    break;
547       case X86::VPCMPDZ256rmib:   NewOpc = X86::VPCMPDZ256rmib_alt;   break;
548       case X86::VPCMPDZ256rmibk:  NewOpc = X86::VPCMPDZ256rmibk_alt;  break;
549       case X86::VPCMPDZ256rmik:   NewOpc = X86::VPCMPDZ256rmik_alt;   break;
550       case X86::VPCMPDZ256rri:    NewOpc = X86::VPCMPDZ256rri_alt;    break;
551       case X86::VPCMPDZ256rrik:   NewOpc = X86::VPCMPDZ256rrik_alt;   break;
552       case X86::VPCMPDZrmi:       NewOpc = X86::VPCMPDZrmi_alt;       break;
553       case X86::VPCMPDZrmib:      NewOpc = X86::VPCMPDZrmib_alt;      break;
554       case X86::VPCMPDZrmibk:     NewOpc = X86::VPCMPDZrmibk_alt;     break;
555       case X86::VPCMPDZrmik:      NewOpc = X86::VPCMPDZrmik_alt;      break;
556       case X86::VPCMPDZrri:       NewOpc = X86::VPCMPDZrri_alt;       break;
557       case X86::VPCMPDZrrik:      NewOpc = X86::VPCMPDZrrik_alt;      break;
558       case X86::VPCMPQZ128rmi:    NewOpc = X86::VPCMPQZ128rmi_alt;    break;
559       case X86::VPCMPQZ128rmib:   NewOpc = X86::VPCMPQZ128rmib_alt;   break;
560       case X86::VPCMPQZ128rmibk:  NewOpc = X86::VPCMPQZ128rmibk_alt;  break;
561       case X86::VPCMPQZ128rmik:   NewOpc = X86::VPCMPQZ128rmik_alt;   break;
562       case X86::VPCMPQZ128rri:    NewOpc = X86::VPCMPQZ128rri_alt;    break;
563       case X86::VPCMPQZ128rrik:   NewOpc = X86::VPCMPQZ128rrik_alt;   break;
564       case X86::VPCMPQZ256rmi:    NewOpc = X86::VPCMPQZ256rmi_alt;    break;
565       case X86::VPCMPQZ256rmib:   NewOpc = X86::VPCMPQZ256rmib_alt;   break;
566       case X86::VPCMPQZ256rmibk:  NewOpc = X86::VPCMPQZ256rmibk_alt;  break;
567       case X86::VPCMPQZ256rmik:   NewOpc = X86::VPCMPQZ256rmik_alt;   break;
568       case X86::VPCMPQZ256rri:    NewOpc = X86::VPCMPQZ256rri_alt;    break;
569       case X86::VPCMPQZ256rrik:   NewOpc = X86::VPCMPQZ256rrik_alt;   break;
570       case X86::VPCMPQZrmi:       NewOpc = X86::VPCMPQZrmi_alt;       break;
571       case X86::VPCMPQZrmib:      NewOpc = X86::VPCMPQZrmib_alt;      break;
572       case X86::VPCMPQZrmibk:     NewOpc = X86::VPCMPQZrmibk_alt;     break;
573       case X86::VPCMPQZrmik:      NewOpc = X86::VPCMPQZrmik_alt;      break;
574       case X86::VPCMPQZrri:       NewOpc = X86::VPCMPQZrri_alt;       break;
575       case X86::VPCMPQZrrik:      NewOpc = X86::VPCMPQZrrik_alt;      break;
576       case X86::VPCMPUBZ128rmi:   NewOpc = X86::VPCMPUBZ128rmi_alt;   break;
577       case X86::VPCMPUBZ128rmik:  NewOpc = X86::VPCMPUBZ128rmik_alt;  break;
578       case X86::VPCMPUBZ128rri:   NewOpc = X86::VPCMPUBZ128rri_alt;   break;
579       case X86::VPCMPUBZ128rrik:  NewOpc = X86::VPCMPUBZ128rrik_alt;  break;
580       case X86::VPCMPUBZ256rmi:   NewOpc = X86::VPCMPUBZ256rmi_alt;   break;
581       case X86::VPCMPUBZ256rmik:  NewOpc = X86::VPCMPUBZ256rmik_alt;  break;
582       case X86::VPCMPUBZ256rri:   NewOpc = X86::VPCMPUBZ256rri_alt;   break;
583       case X86::VPCMPUBZ256rrik:  NewOpc = X86::VPCMPUBZ256rrik_alt;  break;
584       case X86::VPCMPUBZrmi:      NewOpc = X86::VPCMPUBZrmi_alt;      break;
585       case X86::VPCMPUBZrmik:     NewOpc = X86::VPCMPUBZrmik_alt;     break;
586       case X86::VPCMPUBZrri:      NewOpc = X86::VPCMPUBZrri_alt;      break;
587       case X86::VPCMPUBZrrik:     NewOpc = X86::VPCMPUBZrrik_alt;     break;
588       case X86::VPCMPUDZ128rmi:   NewOpc = X86::VPCMPUDZ128rmi_alt;   break;
589       case X86::VPCMPUDZ128rmib:  NewOpc = X86::VPCMPUDZ128rmib_alt;  break;
590       case X86::VPCMPUDZ128rmibk: NewOpc = X86::VPCMPUDZ128rmibk_alt; break;
591       case X86::VPCMPUDZ128rmik:  NewOpc = X86::VPCMPUDZ128rmik_alt;  break;
592       case X86::VPCMPUDZ128rri:   NewOpc = X86::VPCMPUDZ128rri_alt;   break;
593       case X86::VPCMPUDZ128rrik:  NewOpc = X86::VPCMPUDZ128rrik_alt;  break;
594       case X86::VPCMPUDZ256rmi:   NewOpc = X86::VPCMPUDZ256rmi_alt;   break;
595       case X86::VPCMPUDZ256rmib:  NewOpc = X86::VPCMPUDZ256rmib_alt;  break;
596       case X86::VPCMPUDZ256rmibk: NewOpc = X86::VPCMPUDZ256rmibk_alt; break;
597       case X86::VPCMPUDZ256rmik:  NewOpc = X86::VPCMPUDZ256rmik_alt;  break;
598       case X86::VPCMPUDZ256rri:   NewOpc = X86::VPCMPUDZ256rri_alt;   break;
599       case X86::VPCMPUDZ256rrik:  NewOpc = X86::VPCMPUDZ256rrik_alt;  break;
600       case X86::VPCMPUDZrmi:      NewOpc = X86::VPCMPUDZrmi_alt;      break;
601       case X86::VPCMPUDZrmib:     NewOpc = X86::VPCMPUDZrmib_alt;     break;
602       case X86::VPCMPUDZrmibk:    NewOpc = X86::VPCMPUDZrmibk_alt;    break;
603       case X86::VPCMPUDZrmik:     NewOpc = X86::VPCMPUDZrmik_alt;     break;
604       case X86::VPCMPUDZrri:      NewOpc = X86::VPCMPUDZrri_alt;      break;
605       case X86::VPCMPUDZrrik:     NewOpc = X86::VPCMPUDZrrik_alt;     break;
606       case X86::VPCMPUQZ128rmi:   NewOpc = X86::VPCMPUQZ128rmi_alt;   break;
607       case X86::VPCMPUQZ128rmib:  NewOpc = X86::VPCMPUQZ128rmib_alt;  break;
608       case X86::VPCMPUQZ128rmibk: NewOpc = X86::VPCMPUQZ128rmibk_alt; break;
609       case X86::VPCMPUQZ128rmik:  NewOpc = X86::VPCMPUQZ128rmik_alt;  break;
610       case X86::VPCMPUQZ128rri:   NewOpc = X86::VPCMPUQZ128rri_alt;   break;
611       case X86::VPCMPUQZ128rrik:  NewOpc = X86::VPCMPUQZ128rrik_alt;  break;
612       case X86::VPCMPUQZ256rmi:   NewOpc = X86::VPCMPUQZ256rmi_alt;   break;
613       case X86::VPCMPUQZ256rmib:  NewOpc = X86::VPCMPUQZ256rmib_alt;  break;
614       case X86::VPCMPUQZ256rmibk: NewOpc = X86::VPCMPUQZ256rmibk_alt; break;
615       case X86::VPCMPUQZ256rmik:  NewOpc = X86::VPCMPUQZ256rmik_alt;  break;
616       case X86::VPCMPUQZ256rri:   NewOpc = X86::VPCMPUQZ256rri_alt;   break;
617       case X86::VPCMPUQZ256rrik:  NewOpc = X86::VPCMPUQZ256rrik_alt;  break;
618       case X86::VPCMPUQZrmi:      NewOpc = X86::VPCMPUQZrmi_alt;      break;
619       case X86::VPCMPUQZrmib:     NewOpc = X86::VPCMPUQZrmib_alt;     break;
620       case X86::VPCMPUQZrmibk:    NewOpc = X86::VPCMPUQZrmibk_alt;    break;
621       case X86::VPCMPUQZrmik:     NewOpc = X86::VPCMPUQZrmik_alt;     break;
622       case X86::VPCMPUQZrri:      NewOpc = X86::VPCMPUQZrri_alt;      break;
623       case X86::VPCMPUQZrrik:     NewOpc = X86::VPCMPUQZrrik_alt;     break;
624       case X86::VPCMPUWZ128rmi:   NewOpc = X86::VPCMPUWZ128rmi_alt;   break;
625       case X86::VPCMPUWZ128rmik:  NewOpc = X86::VPCMPUWZ128rmik_alt;  break;
626       case X86::VPCMPUWZ128rri:   NewOpc = X86::VPCMPUWZ128rri_alt;   break;
627       case X86::VPCMPUWZ128rrik:  NewOpc = X86::VPCMPUWZ128rrik_alt;  break;
628       case X86::VPCMPUWZ256rmi:   NewOpc = X86::VPCMPUWZ256rmi_alt;   break;
629       case X86::VPCMPUWZ256rmik:  NewOpc = X86::VPCMPUWZ256rmik_alt;  break;
630       case X86::VPCMPUWZ256rri:   NewOpc = X86::VPCMPUWZ256rri_alt;   break;
631       case X86::VPCMPUWZ256rrik:  NewOpc = X86::VPCMPUWZ256rrik_alt;  break;
632       case X86::VPCMPUWZrmi:      NewOpc = X86::VPCMPUWZrmi_alt;      break;
633       case X86::VPCMPUWZrmik:     NewOpc = X86::VPCMPUWZrmik_alt;     break;
634       case X86::VPCMPUWZrri:      NewOpc = X86::VPCMPUWZrri_alt;      break;
635       case X86::VPCMPUWZrrik:     NewOpc = X86::VPCMPUWZrrik_alt;     break;
636       case X86::VPCMPWZ128rmi:    NewOpc = X86::VPCMPWZ128rmi_alt;    break;
637       case X86::VPCMPWZ128rmik:   NewOpc = X86::VPCMPWZ128rmik_alt;   break;
638       case X86::VPCMPWZ128rri:    NewOpc = X86::VPCMPWZ128rri_alt;    break;
639       case X86::VPCMPWZ128rrik:   NewOpc = X86::VPCMPWZ128rrik_alt;   break;
640       case X86::VPCMPWZ256rmi:    NewOpc = X86::VPCMPWZ256rmi_alt;    break;
641       case X86::VPCMPWZ256rmik:   NewOpc = X86::VPCMPWZ256rmik_alt;   break;
642       case X86::VPCMPWZ256rri:    NewOpc = X86::VPCMPWZ256rri_alt;    break;
643       case X86::VPCMPWZ256rrik:   NewOpc = X86::VPCMPWZ256rrik_alt;   break;
644       case X86::VPCMPWZrmi:       NewOpc = X86::VPCMPWZrmi_alt;       break;
645       case X86::VPCMPWZrmik:      NewOpc = X86::VPCMPWZrmik_alt;      break;
646       case X86::VPCMPWZrri:       NewOpc = X86::VPCMPWZrri_alt;       break;
647       case X86::VPCMPWZrrik:      NewOpc = X86::VPCMPWZrrik_alt;      break;
648       }
649       // Switch opcode to the one that doesn't get special printing.
650       mcInst.setOpcode(NewOpc);
651     }
652   }
653 
654   switch (type) {
655   case TYPE_XMM:
656     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
657     return;
658   case TYPE_YMM:
659     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
660     return;
661   case TYPE_ZMM:
662     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
663     return;
664   case TYPE_BNDR:
665     mcInst.addOperand(MCOperand::createReg(X86::BND0 + (immediate >> 4)));
666   default:
667     // operand is 64 bits wide.  Do nothing.
668     break;
669   }
670 
671   if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation,
672                                insn.immediateOffset, insn.immediateSize,
673                                mcInst, Dis))
674     mcInst.addOperand(MCOperand::createImm(immediate));
675 
676   if (type == TYPE_MOFFS) {
677     MCOperand segmentReg;
678     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
679     mcInst.addOperand(segmentReg);
680   }
681 }
682 
683 /// translateRMRegister - Translates a register stored in the R/M field of the
684 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
685 /// @param mcInst       - The MCInst to append to.
686 /// @param insn         - The internal instruction to extract the R/M field
687 ///                       from.
688 /// @return             - 0 on success; -1 otherwise
689 static bool translateRMRegister(MCInst &mcInst,
690                                 InternalInstruction &insn) {
691   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
692     debug("A R/M register operand may not have a SIB byte");
693     return true;
694   }
695 
696   switch (insn.eaBase) {
697   default:
698     debug("Unexpected EA base register");
699     return true;
700   case EA_BASE_NONE:
701     debug("EA_BASE_NONE for ModR/M base");
702     return true;
703 #define ENTRY(x) case EA_BASE_##x:
704   ALL_EA_BASES
705 #undef ENTRY
706     debug("A R/M register operand may not have a base; "
707           "the operand must be a register.");
708     return true;
709 #define ENTRY(x)                                                      \
710   case EA_REG_##x:                                                    \
711     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
712   ALL_REGS
713 #undef ENTRY
714   }
715 
716   return false;
717 }
718 
719 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
720 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
721 ///   operand in LLVM's format, and appends it to an MCInst.
722 ///
723 /// @param mcInst       - The MCInst to append to.
724 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
725 ///                       from.
726 /// @return             - 0 on success; nonzero otherwise
727 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
728                               const MCDisassembler *Dis) {
729   // Addresses in an MCInst are represented as five operands:
730   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
731   //                                SIB base
732   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
733   //                                scale amount
734   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
735   //                                the index (which is multiplied by the
736   //                                scale amount)
737   //   4. displacement  (immediate) 0, or the displacement if there is one
738   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
739   //                                if we have segment overrides
740 
741   MCOperand baseReg;
742   MCOperand scaleAmount;
743   MCOperand indexReg;
744   MCOperand displacement;
745   MCOperand segmentReg;
746   uint64_t pcrel = 0;
747 
748   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
749     if (insn.sibBase != SIB_BASE_NONE) {
750       switch (insn.sibBase) {
751       default:
752         debug("Unexpected sibBase");
753         return true;
754 #define ENTRY(x)                                          \
755       case SIB_BASE_##x:                                  \
756         baseReg = MCOperand::createReg(X86::x); break;
757       ALL_SIB_BASES
758 #undef ENTRY
759       }
760     } else {
761       baseReg = MCOperand::createReg(0);
762     }
763 
764     if (insn.sibIndex != SIB_INDEX_NONE) {
765       switch (insn.sibIndex) {
766       default:
767         debug("Unexpected sibIndex");
768         return true;
769 #define ENTRY(x)                                          \
770       case SIB_INDEX_##x:                                 \
771         indexReg = MCOperand::createReg(X86::x); break;
772       EA_BASES_32BIT
773       EA_BASES_64BIT
774       REGS_XMM
775       REGS_YMM
776       REGS_ZMM
777 #undef ENTRY
778       }
779     } else {
780       indexReg = MCOperand::createReg(0);
781     }
782 
783     scaleAmount = MCOperand::createImm(insn.sibScale);
784   } else {
785     switch (insn.eaBase) {
786     case EA_BASE_NONE:
787       if (insn.eaDisplacement == EA_DISP_NONE) {
788         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
789         return true;
790       }
791       if (insn.mode == MODE_64BIT){
792         pcrel = insn.startLocation +
793                 insn.displacementOffset + insn.displacementSize;
794         tryAddingPcLoadReferenceComment(insn.startLocation +
795                                         insn.displacementOffset,
796                                         insn.displacement + pcrel, Dis);
797         baseReg = MCOperand::createReg(X86::RIP); // Section 2.2.1.6
798       }
799       else
800         baseReg = MCOperand::createReg(0);
801 
802       indexReg = MCOperand::createReg(0);
803       break;
804     case EA_BASE_BX_SI:
805       baseReg = MCOperand::createReg(X86::BX);
806       indexReg = MCOperand::createReg(X86::SI);
807       break;
808     case EA_BASE_BX_DI:
809       baseReg = MCOperand::createReg(X86::BX);
810       indexReg = MCOperand::createReg(X86::DI);
811       break;
812     case EA_BASE_BP_SI:
813       baseReg = MCOperand::createReg(X86::BP);
814       indexReg = MCOperand::createReg(X86::SI);
815       break;
816     case EA_BASE_BP_DI:
817       baseReg = MCOperand::createReg(X86::BP);
818       indexReg = MCOperand::createReg(X86::DI);
819       break;
820     default:
821       indexReg = MCOperand::createReg(0);
822       switch (insn.eaBase) {
823       default:
824         debug("Unexpected eaBase");
825         return true;
826         // Here, we will use the fill-ins defined above.  However,
827         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
828         //   sib and sib64 were handled in the top-level if, so they're only
829         //   placeholders to keep the compiler happy.
830 #define ENTRY(x)                                        \
831       case EA_BASE_##x:                                 \
832         baseReg = MCOperand::createReg(X86::x); break;
833       ALL_EA_BASES
834 #undef ENTRY
835 #define ENTRY(x) case EA_REG_##x:
836       ALL_REGS
837 #undef ENTRY
838         debug("A R/M memory operand may not be a register; "
839               "the base field must be a base.");
840         return true;
841       }
842     }
843 
844     scaleAmount = MCOperand::createImm(1);
845   }
846 
847   displacement = MCOperand::createImm(insn.displacement);
848 
849   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
850 
851   mcInst.addOperand(baseReg);
852   mcInst.addOperand(scaleAmount);
853   mcInst.addOperand(indexReg);
854   if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false,
855                                insn.startLocation, insn.displacementOffset,
856                                insn.displacementSize, mcInst, Dis))
857     mcInst.addOperand(displacement);
858   mcInst.addOperand(segmentReg);
859   return false;
860 }
861 
862 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
863 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
864 ///
865 /// @param mcInst       - The MCInst to append to.
866 /// @param operand      - The operand, as stored in the descriptor table.
867 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
868 ///                       from.
869 /// @return             - 0 on success; nonzero otherwise
870 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
871                         InternalInstruction &insn, const MCDisassembler *Dis) {
872   switch (operand.type) {
873   default:
874     debug("Unexpected type for a R/M operand");
875     return true;
876   case TYPE_R8:
877   case TYPE_R16:
878   case TYPE_R32:
879   case TYPE_R64:
880   case TYPE_Rv:
881   case TYPE_MM64:
882   case TYPE_XMM:
883   case TYPE_YMM:
884   case TYPE_ZMM:
885   case TYPE_VK:
886   case TYPE_DEBUGREG:
887   case TYPE_CONTROLREG:
888   case TYPE_BNDR:
889     return translateRMRegister(mcInst, insn);
890   case TYPE_M:
891   case TYPE_MVSIBX:
892   case TYPE_MVSIBY:
893   case TYPE_MVSIBZ:
894     return translateRMMemory(mcInst, insn, Dis);
895   }
896 }
897 
898 /// translateFPRegister - Translates a stack position on the FPU stack to its
899 ///   LLVM form, and appends it to an MCInst.
900 ///
901 /// @param mcInst       - The MCInst to append to.
902 /// @param stackPos     - The stack position to translate.
903 static void translateFPRegister(MCInst &mcInst,
904                                 uint8_t stackPos) {
905   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
906 }
907 
908 /// translateMaskRegister - Translates a 3-bit mask register number to
909 ///   LLVM form, and appends it to an MCInst.
910 ///
911 /// @param mcInst       - The MCInst to append to.
912 /// @param maskRegNum   - Number of mask register from 0 to 7.
913 /// @return             - false on success; true otherwise.
914 static bool translateMaskRegister(MCInst &mcInst,
915                                 uint8_t maskRegNum) {
916   if (maskRegNum >= 8) {
917     debug("Invalid mask register number");
918     return true;
919   }
920 
921   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
922   return false;
923 }
924 
925 /// translateOperand - Translates an operand stored in an internal instruction
926 ///   to LLVM's format and appends it to an MCInst.
927 ///
928 /// @param mcInst       - The MCInst to append to.
929 /// @param operand      - The operand, as stored in the descriptor table.
930 /// @param insn         - The internal instruction.
931 /// @return             - false on success; true otherwise.
932 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
933                              InternalInstruction &insn,
934                              const MCDisassembler *Dis) {
935   switch (operand.encoding) {
936   default:
937     debug("Unhandled operand encoding during translation");
938     return true;
939   case ENCODING_REG:
940     translateRegister(mcInst, insn.reg);
941     return false;
942   case ENCODING_WRITEMASK:
943     return translateMaskRegister(mcInst, insn.writemask);
944   CASE_ENCODING_RM:
945   CASE_ENCODING_VSIB:
946     return translateRM(mcInst, operand, insn, Dis);
947   case ENCODING_IB:
948   case ENCODING_IW:
949   case ENCODING_ID:
950   case ENCODING_IO:
951   case ENCODING_Iv:
952   case ENCODING_Ia:
953     translateImmediate(mcInst,
954                        insn.immediates[insn.numImmediatesTranslated++],
955                        operand,
956                        insn,
957                        Dis);
958     return false;
959   case ENCODING_IRC:
960     mcInst.addOperand(MCOperand::createImm(insn.RC));
961     return false;
962   case ENCODING_SI:
963     return translateSrcIndex(mcInst, insn);
964   case ENCODING_DI:
965     return translateDstIndex(mcInst, insn);
966   case ENCODING_RB:
967   case ENCODING_RW:
968   case ENCODING_RD:
969   case ENCODING_RO:
970   case ENCODING_Rv:
971     translateRegister(mcInst, insn.opcodeRegister);
972     return false;
973   case ENCODING_FP:
974     translateFPRegister(mcInst, insn.modRM & 7);
975     return false;
976   case ENCODING_VVVV:
977     translateRegister(mcInst, insn.vvvv);
978     return false;
979   case ENCODING_DUP:
980     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
981                             insn, Dis);
982   }
983 }
984 
985 /// translateInstruction - Translates an internal instruction and all its
986 ///   operands to an MCInst.
987 ///
988 /// @param mcInst       - The MCInst to populate with the instruction's data.
989 /// @param insn         - The internal instruction.
990 /// @return             - false on success; true otherwise.
991 static bool translateInstruction(MCInst &mcInst,
992                                 InternalInstruction &insn,
993                                 const MCDisassembler *Dis) {
994   if (!insn.spec) {
995     debug("Instruction has no specification");
996     return true;
997   }
998 
999   mcInst.clear();
1000   mcInst.setOpcode(insn.instructionID);
1001   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
1002   // prefix bytes should be disassembled as xrelease and xacquire then set the
1003   // opcode to those instead of the rep and repne opcodes.
1004   if (insn.xAcquireRelease) {
1005     if(mcInst.getOpcode() == X86::REP_PREFIX)
1006       mcInst.setOpcode(X86::XRELEASE_PREFIX);
1007     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
1008       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
1009   }
1010 
1011   insn.numImmediatesTranslated = 0;
1012 
1013   for (const auto &Op : insn.operands) {
1014     if (Op.encoding != ENCODING_NONE) {
1015       if (translateOperand(mcInst, Op, insn, Dis)) {
1016         return true;
1017       }
1018     }
1019   }
1020 
1021   return false;
1022 }
1023 
1024 static MCDisassembler *createX86Disassembler(const Target &T,
1025                                              const MCSubtargetInfo &STI,
1026                                              MCContext &Ctx) {
1027   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
1028   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
1029 }
1030 
1031 extern "C" void LLVMInitializeX86Disassembler() {
1032   // Register the disassembler.
1033   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
1034                                          createX86Disassembler);
1035   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
1036                                          createX86Disassembler);
1037 }
1038