1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-reg-stackify"
42 
43 namespace {
44 class WebAssemblyRegStackify final : public MachineFunctionPass {
45   StringRef getPassName() const override {
46     return "WebAssembly Register Stackify";
47   }
48 
49   void getAnalysisUsage(AnalysisUsage &AU) const override {
50     AU.setPreservesCFG();
51     AU.addRequired<AAResultsWrapperPass>();
52     AU.addRequired<MachineDominatorTree>();
53     AU.addRequired<LiveIntervals>();
54     AU.addPreserved<MachineBlockFrequencyInfo>();
55     AU.addPreserved<SlotIndexes>();
56     AU.addPreserved<LiveIntervals>();
57     AU.addPreservedID(LiveVariablesID);
58     AU.addPreserved<MachineDominatorTree>();
59     MachineFunctionPass::getAnalysisUsage(AU);
60   }
61 
62   bool runOnMachineFunction(MachineFunction &MF) override;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
67 };
68 } // end anonymous namespace
69 
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72                 "Reorder instructions to use the WebAssembly value stack",
73                 false, false)
74 
75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76   return new WebAssemblyRegStackify();
77 }
78 
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
82 static void imposeStackOrdering(MachineInstr *MI) {
83   // Write the opaque VALUE_STACK register.
84   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
85     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86                                              /*isDef=*/true,
87                                              /*isImp=*/true));
88 
89   // Also read the opaque VALUE_STACK register.
90   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
91     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92                                              /*isDef=*/false,
93                                              /*isImp=*/true));
94 }
95 
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
98 static void convertImplicitDefToConstZero(MachineInstr *MI,
99                                           MachineRegisterInfo &MRI,
100                                           const TargetInstrInfo *TII,
101                                           MachineFunction &MF,
102                                           LiveIntervals &LIS) {
103   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
104 
105   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106   if (RegClass == &WebAssembly::I32RegClass) {
107     MI->setDesc(TII->get(WebAssembly::CONST_I32));
108     MI->addOperand(MachineOperand::CreateImm(0));
109   } else if (RegClass == &WebAssembly::I64RegClass) {
110     MI->setDesc(TII->get(WebAssembly::CONST_I64));
111     MI->addOperand(MachineOperand::CreateImm(0));
112   } else if (RegClass == &WebAssembly::F32RegClass) {
113     MI->setDesc(TII->get(WebAssembly::CONST_F32));
114     auto *Val = cast<ConstantFP>(Constant::getNullValue(
115         Type::getFloatTy(MF.getFunction().getContext())));
116     MI->addOperand(MachineOperand::CreateFPImm(Val));
117   } else if (RegClass == &WebAssembly::F64RegClass) {
118     MI->setDesc(TII->get(WebAssembly::CONST_F64));
119     auto *Val = cast<ConstantFP>(Constant::getNullValue(
120         Type::getDoubleTy(MF.getFunction().getContext())));
121     MI->addOperand(MachineOperand::CreateFPImm(Val));
122   } else if (RegClass == &WebAssembly::V128RegClass) {
123     Register TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
124     MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32));
125     MI->addOperand(MachineOperand::CreateReg(TempReg, false));
126     MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
127                                   TII->get(WebAssembly::CONST_I32), TempReg)
128                               .addImm(0);
129     LIS.InsertMachineInstrInMaps(*Const);
130   } else {
131     llvm_unreachable("Unexpected reg class");
132   }
133 }
134 
135 // Determine whether a call to the callee referenced by
136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
137 // effects.
138 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
139                         bool &Effects, bool &StackPointer) {
140   // All calls can use the stack pointer.
141   StackPointer = true;
142 
143   const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
144   if (MO.isGlobal()) {
145     const Constant *GV = MO.getGlobal();
146     if (const auto *GA = dyn_cast<GlobalAlias>(GV))
147       if (!GA->isInterposable())
148         GV = GA->getAliasee();
149 
150     if (const auto *F = dyn_cast<Function>(GV)) {
151       if (!F->doesNotThrow())
152         Effects = true;
153       if (F->doesNotAccessMemory())
154         return;
155       if (F->onlyReadsMemory()) {
156         Read = true;
157         return;
158       }
159     }
160   }
161 
162   // Assume the worst.
163   Write = true;
164   Read = true;
165   Effects = true;
166 }
167 
168 // Determine whether MI reads memory, writes memory, has side effects,
169 // and/or uses the stack pointer value.
170 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
171                   bool &Write, bool &Effects, bool &StackPointer) {
172   assert(!MI.isTerminator());
173 
174   if (MI.isDebugInstr() || MI.isPosition())
175     return;
176 
177   // Check for loads.
178   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
179     Read = true;
180 
181   // Check for stores.
182   if (MI.mayStore()) {
183     Write = true;
184   } else if (MI.hasOrderedMemoryRef()) {
185     switch (MI.getOpcode()) {
186     case WebAssembly::DIV_S_I32:
187     case WebAssembly::DIV_S_I64:
188     case WebAssembly::REM_S_I32:
189     case WebAssembly::REM_S_I64:
190     case WebAssembly::DIV_U_I32:
191     case WebAssembly::DIV_U_I64:
192     case WebAssembly::REM_U_I32:
193     case WebAssembly::REM_U_I64:
194     case WebAssembly::I32_TRUNC_S_F32:
195     case WebAssembly::I64_TRUNC_S_F32:
196     case WebAssembly::I32_TRUNC_S_F64:
197     case WebAssembly::I64_TRUNC_S_F64:
198     case WebAssembly::I32_TRUNC_U_F32:
199     case WebAssembly::I64_TRUNC_U_F32:
200     case WebAssembly::I32_TRUNC_U_F64:
201     case WebAssembly::I64_TRUNC_U_F64:
202       // These instruction have hasUnmodeledSideEffects() returning true
203       // because they trap on overflow and invalid so they can't be arbitrarily
204       // moved, however hasOrderedMemoryRef() interprets this plus their lack
205       // of memoperands as having a potential unknown memory reference.
206       break;
207     default:
208       // Record volatile accesses, unless it's a call, as calls are handled
209       // specially below.
210       if (!MI.isCall()) {
211         Write = true;
212         Effects = true;
213       }
214       break;
215     }
216   }
217 
218   // Check for side effects.
219   if (MI.hasUnmodeledSideEffects()) {
220     switch (MI.getOpcode()) {
221     case WebAssembly::DIV_S_I32:
222     case WebAssembly::DIV_S_I64:
223     case WebAssembly::REM_S_I32:
224     case WebAssembly::REM_S_I64:
225     case WebAssembly::DIV_U_I32:
226     case WebAssembly::DIV_U_I64:
227     case WebAssembly::REM_U_I32:
228     case WebAssembly::REM_U_I64:
229     case WebAssembly::I32_TRUNC_S_F32:
230     case WebAssembly::I64_TRUNC_S_F32:
231     case WebAssembly::I32_TRUNC_S_F64:
232     case WebAssembly::I64_TRUNC_S_F64:
233     case WebAssembly::I32_TRUNC_U_F32:
234     case WebAssembly::I64_TRUNC_U_F32:
235     case WebAssembly::I32_TRUNC_U_F64:
236     case WebAssembly::I64_TRUNC_U_F64:
237       // These instructions have hasUnmodeledSideEffects() returning true
238       // because they trap on overflow and invalid so they can't be arbitrarily
239       // moved, however in the specific case of register stackifying, it is safe
240       // to move them because overflow and invalid are Undefined Behavior.
241       break;
242     default:
243       Effects = true;
244       break;
245     }
246   }
247 
248   // Check for writes to __stack_pointer global.
249   if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 &&
250       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
251     StackPointer = true;
252 
253   // Analyze calls.
254   if (MI.isCall()) {
255     queryCallee(MI, Read, Write, Effects, StackPointer);
256   }
257 }
258 
259 // Test whether Def is safe and profitable to rematerialize.
260 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
261                                 const WebAssemblyInstrInfo *TII) {
262   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
263 }
264 
265 // Identify the definition for this register at this point. This is a
266 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
267 // LiveIntervals to handle complex cases.
268 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
269                                 const MachineRegisterInfo &MRI,
270                                 const LiveIntervals &LIS) {
271   // Most registers are in SSA form here so we try a quick MRI query first.
272   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
273     return Def;
274 
275   // MRI doesn't know what the Def is. Try asking LIS.
276   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
277           LIS.getInstructionIndex(*Insert)))
278     return LIS.getInstructionFromIndex(ValNo->def);
279 
280   return nullptr;
281 }
282 
283 // Test whether Reg, as defined at Def, has exactly one use. This is a
284 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
285 // to handle complex cases.
286 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
287                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
288   // Most registers are in SSA form here so we try a quick MRI query first.
289   if (MRI.hasOneUse(Reg))
290     return true;
291 
292   bool HasOne = false;
293   const LiveInterval &LI = LIS.getInterval(Reg);
294   const VNInfo *DefVNI =
295       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
296   assert(DefVNI);
297   for (auto &I : MRI.use_nodbg_operands(Reg)) {
298     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
299     if (Result.valueIn() == DefVNI) {
300       if (!Result.isKill())
301         return false;
302       if (HasOne)
303         return false;
304       HasOne = true;
305     }
306   }
307   return HasOne;
308 }
309 
310 // Test whether it's safe to move Def to just before Insert.
311 // TODO: Compute memory dependencies in a way that doesn't require always
312 // walking the block.
313 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
314 // more precise.
315 static bool isSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
316                          AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
317   assert(Def->getParent() == Insert->getParent());
318 
319   // 'catch' and 'extract_exception' should be the first instruction of a BB and
320   // cannot move.
321   if (Def->getOpcode() == WebAssembly::CATCH ||
322       Def->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32) {
323     const MachineBasicBlock *MBB = Def->getParent();
324     auto NextI = std::next(MachineBasicBlock::const_iterator(Def));
325     for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
326       ;
327     if (NextI != Insert)
328       return false;
329   }
330 
331   // Check for register dependencies.
332   SmallVector<unsigned, 4> MutableRegisters;
333   for (const MachineOperand &MO : Def->operands()) {
334     if (!MO.isReg() || MO.isUndef())
335       continue;
336     Register Reg = MO.getReg();
337 
338     // If the register is dead here and at Insert, ignore it.
339     if (MO.isDead() && Insert->definesRegister(Reg) &&
340         !Insert->readsRegister(Reg))
341       continue;
342 
343     if (Register::isPhysicalRegister(Reg)) {
344       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
345       // from moving down, and we've already checked for that.
346       if (Reg == WebAssembly::ARGUMENTS)
347         continue;
348       // If the physical register is never modified, ignore it.
349       if (!MRI.isPhysRegModified(Reg))
350         continue;
351       // Otherwise, it's a physical register with unknown liveness.
352       return false;
353     }
354 
355     // If one of the operands isn't in SSA form, it has different values at
356     // different times, and we need to make sure we don't move our use across
357     // a different def.
358     if (!MO.isDef() && !MRI.hasOneDef(Reg))
359       MutableRegisters.push_back(Reg);
360   }
361 
362   bool Read = false, Write = false, Effects = false, StackPointer = false;
363   query(*Def, AA, Read, Write, Effects, StackPointer);
364 
365   // If the instruction does not access memory and has no side effects, it has
366   // no additional dependencies.
367   bool HasMutableRegisters = !MutableRegisters.empty();
368   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
369     return true;
370 
371   // Scan through the intervening instructions between Def and Insert.
372   MachineBasicBlock::const_iterator D(Def), I(Insert);
373   for (--I; I != D; --I) {
374     bool InterveningRead = false;
375     bool InterveningWrite = false;
376     bool InterveningEffects = false;
377     bool InterveningStackPointer = false;
378     query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
379           InterveningStackPointer);
380     if (Effects && InterveningEffects)
381       return false;
382     if (Read && InterveningWrite)
383       return false;
384     if (Write && (InterveningRead || InterveningWrite))
385       return false;
386     if (StackPointer && InterveningStackPointer)
387       return false;
388 
389     for (unsigned Reg : MutableRegisters)
390       for (const MachineOperand &MO : I->operands())
391         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
392           return false;
393   }
394 
395   return true;
396 }
397 
398 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
399 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
400                                      const MachineBasicBlock &MBB,
401                                      const MachineRegisterInfo &MRI,
402                                      const MachineDominatorTree &MDT,
403                                      LiveIntervals &LIS,
404                                      WebAssemblyFunctionInfo &MFI) {
405   const LiveInterval &LI = LIS.getInterval(Reg);
406 
407   const MachineInstr *OneUseInst = OneUse.getParent();
408   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
409 
410   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
411     if (&Use == &OneUse)
412       continue;
413 
414     const MachineInstr *UseInst = Use.getParent();
415     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
416 
417     if (UseVNI != OneUseVNI)
418       continue;
419 
420     if (UseInst == OneUseInst) {
421       // Another use in the same instruction. We need to ensure that the one
422       // selected use happens "before" it.
423       if (&OneUse > &Use)
424         return false;
425     } else {
426       // Test that the use is dominated by the one selected use.
427       while (!MDT.dominates(OneUseInst, UseInst)) {
428         // Actually, dominating is over-conservative. Test that the use would
429         // happen after the one selected use in the stack evaluation order.
430         //
431         // This is needed as a consequence of using implicit local.gets for
432         // uses and implicit local.sets for defs.
433         if (UseInst->getDesc().getNumDefs() == 0)
434           return false;
435         const MachineOperand &MO = UseInst->getOperand(0);
436         if (!MO.isReg())
437           return false;
438         Register DefReg = MO.getReg();
439         if (!Register::isVirtualRegister(DefReg) ||
440             !MFI.isVRegStackified(DefReg))
441           return false;
442         assert(MRI.hasOneNonDBGUse(DefReg));
443         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
444         const MachineInstr *NewUseInst = NewUse.getParent();
445         if (NewUseInst == OneUseInst) {
446           if (&OneUse > &NewUse)
447             return false;
448           break;
449         }
450         UseInst = NewUseInst;
451       }
452     }
453   }
454   return true;
455 }
456 
457 /// Get the appropriate tee opcode for the given register class.
458 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
459   if (RC == &WebAssembly::I32RegClass)
460     return WebAssembly::TEE_I32;
461   if (RC == &WebAssembly::I64RegClass)
462     return WebAssembly::TEE_I64;
463   if (RC == &WebAssembly::F32RegClass)
464     return WebAssembly::TEE_F32;
465   if (RC == &WebAssembly::F64RegClass)
466     return WebAssembly::TEE_F64;
467   if (RC == &WebAssembly::V128RegClass)
468     return WebAssembly::TEE_V128;
469   llvm_unreachable("Unexpected register class");
470 }
471 
472 // Shrink LI to its uses, cleaning up LI.
473 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
474   if (LIS.shrinkToUses(&LI)) {
475     SmallVector<LiveInterval *, 4> SplitLIs;
476     LIS.splitSeparateComponents(LI, SplitLIs);
477   }
478 }
479 
480 /// A single-use def in the same block with no intervening memory or register
481 /// dependencies; move the def down and nest it with the current instruction.
482 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
483                                       MachineInstr *Def, MachineBasicBlock &MBB,
484                                       MachineInstr *Insert, LiveIntervals &LIS,
485                                       WebAssemblyFunctionInfo &MFI,
486                                       MachineRegisterInfo &MRI) {
487   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
488 
489   WebAssemblyDebugValueManager DefDIs(Def);
490   MBB.splice(Insert, &MBB, Def);
491   DefDIs.move(Insert);
492   LIS.handleMove(*Def);
493 
494   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
495     // No one else is using this register for anything so we can just stackify
496     // it in place.
497     MFI.stackifyVReg(Reg);
498   } else {
499     // The register may have unrelated uses or defs; create a new register for
500     // just our one def and use so that we can stackify it.
501     Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
502     Def->getOperand(0).setReg(NewReg);
503     Op.setReg(NewReg);
504 
505     // Tell LiveIntervals about the new register.
506     LIS.createAndComputeVirtRegInterval(NewReg);
507 
508     // Tell LiveIntervals about the changes to the old register.
509     LiveInterval &LI = LIS.getInterval(Reg);
510     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
511                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
512                      /*RemoveDeadValNo=*/true);
513 
514     MFI.stackifyVReg(NewReg);
515 
516     DefDIs.updateReg(NewReg);
517 
518     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
519   }
520 
521   imposeStackOrdering(Def);
522   return Def;
523 }
524 
525 /// A trivially cloneable instruction; clone it and nest the new copy with the
526 /// current instruction.
527 static MachineInstr *rematerializeCheapDef(
528     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
529     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
530     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
531     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
532   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
533   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
534 
535   WebAssemblyDebugValueManager DefDIs(&Def);
536 
537   Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
538   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
539   Op.setReg(NewReg);
540   MachineInstr *Clone = &*std::prev(Insert);
541   LIS.InsertMachineInstrInMaps(*Clone);
542   LIS.createAndComputeVirtRegInterval(NewReg);
543   MFI.stackifyVReg(NewReg);
544   imposeStackOrdering(Clone);
545 
546   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
547 
548   // Shrink the interval.
549   bool IsDead = MRI.use_empty(Reg);
550   if (!IsDead) {
551     LiveInterval &LI = LIS.getInterval(Reg);
552     shrinkToUses(LI, LIS);
553     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
554   }
555 
556   // If that was the last use of the original, delete the original.
557   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
558   if (IsDead) {
559     LLVM_DEBUG(dbgs() << " - Deleting original\n");
560     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
561     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
562     LIS.removeInterval(Reg);
563     LIS.RemoveMachineInstrFromMaps(Def);
564     Def.eraseFromParent();
565 
566     DefDIs.move(&*Insert);
567     DefDIs.updateReg(NewReg);
568   } else {
569     DefDIs.clone(&*Insert, NewReg);
570   }
571 
572   return Clone;
573 }
574 
575 /// A multiple-use def in the same block with no intervening memory or register
576 /// dependencies; move the def down, nest it with the current instruction, and
577 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
578 /// this:
579 ///
580 ///    Reg = INST ...        // Def
581 ///    INST ..., Reg, ...    // Insert
582 ///    INST ..., Reg, ...
583 ///    INST ..., Reg, ...
584 ///
585 /// to this:
586 ///
587 ///    DefReg = INST ...     // Def (to become the new Insert)
588 ///    TeeReg, Reg = TEE_... DefReg
589 ///    INST ..., TeeReg, ... // Insert
590 ///    INST ..., Reg, ...
591 ///    INST ..., Reg, ...
592 ///
593 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
594 /// resulting code.
595 static MachineInstr *moveAndTeeForMultiUse(
596     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
597     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
598     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
599   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
600 
601   WebAssemblyDebugValueManager DefDIs(Def);
602 
603   // Move Def into place.
604   MBB.splice(Insert, &MBB, Def);
605   LIS.handleMove(*Def);
606 
607   // Create the Tee and attach the registers.
608   const auto *RegClass = MRI.getRegClass(Reg);
609   Register TeeReg = MRI.createVirtualRegister(RegClass);
610   Register DefReg = MRI.createVirtualRegister(RegClass);
611   MachineOperand &DefMO = Def->getOperand(0);
612   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
613                               TII->get(getTeeOpcode(RegClass)), TeeReg)
614                           .addReg(Reg, RegState::Define)
615                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
616   Op.setReg(TeeReg);
617   DefMO.setReg(DefReg);
618   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
619   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
620 
621   DefDIs.move(Insert);
622 
623   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
624   LiveInterval &LI = LIS.getInterval(Reg);
625   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
626   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
627   I->start = TeeIdx;
628   ValNo->def = TeeIdx;
629   shrinkToUses(LI, LIS);
630 
631   // Finish stackifying the new regs.
632   LIS.createAndComputeVirtRegInterval(TeeReg);
633   LIS.createAndComputeVirtRegInterval(DefReg);
634   MFI.stackifyVReg(DefReg);
635   MFI.stackifyVReg(TeeReg);
636   imposeStackOrdering(Def);
637   imposeStackOrdering(Tee);
638 
639   DefDIs.clone(Tee, DefReg);
640   DefDIs.clone(Insert, TeeReg);
641 
642   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
643   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
644   return Def;
645 }
646 
647 namespace {
648 /// A stack for walking the tree of instructions being built, visiting the
649 /// MachineOperands in DFS order.
650 class TreeWalkerState {
651   using mop_iterator = MachineInstr::mop_iterator;
652   using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
653   using RangeTy = iterator_range<mop_reverse_iterator>;
654   SmallVector<RangeTy, 4> Worklist;
655 
656 public:
657   explicit TreeWalkerState(MachineInstr *Insert) {
658     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
659     if (Range.begin() != Range.end())
660       Worklist.push_back(reverse(Range));
661   }
662 
663   bool done() const { return Worklist.empty(); }
664 
665   MachineOperand &pop() {
666     RangeTy &Range = Worklist.back();
667     MachineOperand &Op = *Range.begin();
668     Range = drop_begin(Range, 1);
669     if (Range.begin() == Range.end())
670       Worklist.pop_back();
671     assert((Worklist.empty() ||
672             Worklist.back().begin() != Worklist.back().end()) &&
673            "Empty ranges shouldn't remain in the worklist");
674     return Op;
675   }
676 
677   /// Push Instr's operands onto the stack to be visited.
678   void pushOperands(MachineInstr *Instr) {
679     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
680     if (Range.begin() != Range.end())
681       Worklist.push_back(reverse(Range));
682   }
683 
684   /// Some of Instr's operands are on the top of the stack; remove them and
685   /// re-insert them starting from the beginning (because we've commuted them).
686   void resetTopOperands(MachineInstr *Instr) {
687     assert(hasRemainingOperands(Instr) &&
688            "Reseting operands should only be done when the instruction has "
689            "an operand still on the stack");
690     Worklist.back() = reverse(Instr->explicit_uses());
691   }
692 
693   /// Test whether Instr has operands remaining to be visited at the top of
694   /// the stack.
695   bool hasRemainingOperands(const MachineInstr *Instr) const {
696     if (Worklist.empty())
697       return false;
698     const RangeTy &Range = Worklist.back();
699     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
700   }
701 
702   /// Test whether the given register is present on the stack, indicating an
703   /// operand in the tree that we haven't visited yet. Moving a definition of
704   /// Reg to a point in the tree after that would change its value.
705   ///
706   /// This is needed as a consequence of using implicit local.gets for
707   /// uses and implicit local.sets for defs.
708   bool isOnStack(unsigned Reg) const {
709     for (const RangeTy &Range : Worklist)
710       for (const MachineOperand &MO : Range)
711         if (MO.isReg() && MO.getReg() == Reg)
712           return true;
713     return false;
714   }
715 };
716 
717 /// State to keep track of whether commuting is in flight or whether it's been
718 /// tried for the current instruction and didn't work.
719 class CommutingState {
720   /// There are effectively three states: the initial state where we haven't
721   /// started commuting anything and we don't know anything yet, the tentative
722   /// state where we've commuted the operands of the current instruction and are
723   /// revisiting it, and the declined state where we've reverted the operands
724   /// back to their original order and will no longer commute it further.
725   bool TentativelyCommuting = false;
726   bool Declined = false;
727 
728   /// During the tentative state, these hold the operand indices of the commuted
729   /// operands.
730   unsigned Operand0, Operand1;
731 
732 public:
733   /// Stackification for an operand was not successful due to ordering
734   /// constraints. If possible, and if we haven't already tried it and declined
735   /// it, commute Insert's operands and prepare to revisit it.
736   void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
737                     const WebAssemblyInstrInfo *TII) {
738     if (TentativelyCommuting) {
739       assert(!Declined &&
740              "Don't decline commuting until you've finished trying it");
741       // Commuting didn't help. Revert it.
742       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
743       TentativelyCommuting = false;
744       Declined = true;
745     } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
746       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
747       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
748       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
749         // Tentatively commute the operands and try again.
750         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
751         TreeWalker.resetTopOperands(Insert);
752         TentativelyCommuting = true;
753         Declined = false;
754       }
755     }
756   }
757 
758   /// Stackification for some operand was successful. Reset to the default
759   /// state.
760   void reset() {
761     TentativelyCommuting = false;
762     Declined = false;
763   }
764 };
765 } // end anonymous namespace
766 
767 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
768   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
769                        "********** Function: "
770                     << MF.getName() << '\n');
771 
772   bool Changed = false;
773   MachineRegisterInfo &MRI = MF.getRegInfo();
774   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
775   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
776   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
777   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
778   auto &MDT = getAnalysis<MachineDominatorTree>();
779   auto &LIS = getAnalysis<LiveIntervals>();
780 
781   // Walk the instructions from the bottom up. Currently we don't look past
782   // block boundaries, and the blocks aren't ordered so the block visitation
783   // order isn't significant, but we may want to change this in the future.
784   for (MachineBasicBlock &MBB : MF) {
785     // Don't use a range-based for loop, because we modify the list as we're
786     // iterating over it and the end iterator may change.
787     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
788       MachineInstr *Insert = &*MII;
789       // Don't nest anything inside an inline asm, because we don't have
790       // constraints for $push inputs.
791       if (Insert->isInlineAsm())
792         continue;
793 
794       // Ignore debugging intrinsics.
795       if (Insert->isDebugValue())
796         continue;
797 
798       // Iterate through the inputs in reverse order, since we'll be pulling
799       // operands off the stack in LIFO order.
800       CommutingState Commuting;
801       TreeWalkerState TreeWalker(Insert);
802       while (!TreeWalker.done()) {
803         MachineOperand &Op = TreeWalker.pop();
804 
805         // We're only interested in explicit virtual register operands.
806         if (!Op.isReg())
807           continue;
808 
809         Register Reg = Op.getReg();
810         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
811         assert(!Op.isImplicit() &&
812                "explicit_uses() should only iterate over explicit operands");
813         if (Register::isPhysicalRegister(Reg))
814           continue;
815 
816         // Identify the definition for this register at this point.
817         MachineInstr *Def = getVRegDef(Reg, Insert, MRI, LIS);
818         if (!Def)
819           continue;
820 
821         // Don't nest an INLINE_ASM def into anything, because we don't have
822         // constraints for $pop outputs.
823         if (Def->isInlineAsm())
824           continue;
825 
826         // Argument instructions represent live-in registers and not real
827         // instructions.
828         if (WebAssembly::isArgument(Def->getOpcode()))
829           continue;
830 
831         // Currently catch's return value register cannot be stackified, because
832         // the wasm LLVM backend currently does not support live-in values
833         // entering blocks, which is a part of multi-value proposal.
834         //
835         // Once we support live-in values of wasm blocks, this can be:
836         // catch                           ; push exnref value onto stack
837         // block exnref -> i32
838         // br_on_exn $__cpp_exception      ; pop the exnref value
839         // end_block
840         //
841         // But because we don't support it yet, the catch instruction's dst
842         // register should be assigned to a local to be propagated across
843         // 'block' boundary now.
844         //
845         // TODO Fix this once we support the multi-value proposal.
846         if (Def->getOpcode() == WebAssembly::CATCH)
847           continue;
848 
849         // Decide which strategy to take. Prefer to move a single-use value
850         // over cloning it, and prefer cloning over introducing a tee.
851         // For moving, we require the def to be in the same block as the use;
852         // this makes things simpler (LiveIntervals' handleMove function only
853         // supports intra-block moves) and it's MachineSink's job to catch all
854         // the sinking opportunities anyway.
855         bool SameBlock = Def->getParent() == &MBB;
856         bool CanMove = SameBlock && isSafeToMove(Def, Insert, AA, MRI) &&
857                        !TreeWalker.isOnStack(Reg);
858         if (CanMove && hasOneUse(Reg, Def, MRI, MDT, LIS)) {
859           Insert = moveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
860         } else if (shouldRematerialize(*Def, AA, TII)) {
861           Insert =
862               rematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
863                                     LIS, MFI, MRI, TII, TRI);
864         } else if (CanMove &&
865                    oneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
866           Insert = moveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
867                                          MRI, TII);
868         } else {
869           // We failed to stackify the operand. If the problem was ordering
870           // constraints, Commuting may be able to help.
871           if (!CanMove && SameBlock)
872             Commuting.maybeCommute(Insert, TreeWalker, TII);
873           // Proceed to the next operand.
874           continue;
875         }
876 
877         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
878         // to a constant 0 so that the def is explicit, and the push/pop
879         // correspondence is maintained.
880         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
881           convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
882 
883         // We stackified an operand. Add the defining instruction's operands to
884         // the worklist stack now to continue to build an ever deeper tree.
885         Commuting.reset();
886         TreeWalker.pushOperands(Insert);
887       }
888 
889       // If we stackified any operands, skip over the tree to start looking for
890       // the next instruction we can build a tree on.
891       if (Insert != &*MII) {
892         imposeStackOrdering(&*MII);
893         MII = MachineBasicBlock::iterator(Insert).getReverse();
894         Changed = true;
895       }
896     }
897   }
898 
899   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
900   // that it never looks like a use-before-def.
901   if (Changed) {
902     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
903     for (MachineBasicBlock &MBB : MF)
904       MBB.addLiveIn(WebAssembly::VALUE_STACK);
905   }
906 
907 #ifndef NDEBUG
908   // Verify that pushes and pops are performed in LIFO order.
909   SmallVector<unsigned, 0> Stack;
910   for (MachineBasicBlock &MBB : MF) {
911     for (MachineInstr &MI : MBB) {
912       if (MI.isDebugInstr())
913         continue;
914       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
915         if (!MO.isReg())
916           continue;
917         Register Reg = MO.getReg();
918 
919         if (MFI.isVRegStackified(Reg)) {
920           if (MO.isDef())
921             Stack.push_back(Reg);
922           else
923             assert(Stack.pop_back_val() == Reg &&
924                    "Register stack pop should be paired with a push");
925         }
926       }
927     }
928     // TODO: Generalize this code to support keeping values on the stack across
929     // basic block boundaries.
930     assert(Stack.empty() &&
931            "Register stack pushes and pops should be balanced");
932   }
933 #endif
934 
935   return Changed;
936 }
937