1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// expression don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-reg-stackify" 39 40 namespace { 41 class WebAssemblyRegStackify final : public MachineFunctionPass { 42 const char *getPassName() const override { 43 return "WebAssembly Register Stackify"; 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.setPreservesCFG(); 48 AU.addRequired<AAResultsWrapperPass>(); 49 AU.addRequired<MachineDominatorTree>(); 50 AU.addRequired<LiveIntervals>(); 51 AU.addPreserved<MachineBlockFrequencyInfo>(); 52 AU.addPreserved<SlotIndexes>(); 53 AU.addPreserved<LiveIntervals>(); 54 AU.addPreservedID(LiveVariablesID); 55 AU.addPreserved<MachineDominatorTree>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 64 }; 65 } // end anonymous namespace 66 67 char WebAssemblyRegStackify::ID = 0; 68 FunctionPass *llvm::createWebAssemblyRegStackify() { 69 return new WebAssemblyRegStackify(); 70 } 71 72 // Decorate the given instruction with implicit operands that enforce the 73 // expression stack ordering constraints for an instruction which is on 74 // the expression stack. 75 static void ImposeStackOrdering(MachineInstr *MI) { 76 // Write the opaque EXPR_STACK register. 77 if (!MI->definesRegister(WebAssembly::EXPR_STACK)) 78 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 79 /*isDef=*/true, 80 /*isImp=*/true)); 81 82 // Also read the opaque EXPR_STACK register. 83 if (!MI->readsRegister(WebAssembly::EXPR_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 85 /*isDef=*/false, 86 /*isImp=*/true)); 87 } 88 89 // Test whether it's safe to move Def to just before Insert. 90 // TODO: Compute memory dependencies in a way that doesn't require always 91 // walking the block. 92 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 93 // more precise. 94 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 95 AliasAnalysis &AA, const LiveIntervals &LIS, 96 const MachineRegisterInfo &MRI) { 97 assert(Def->getParent() == Insert->getParent()); 98 bool SawStore = false, SawSideEffects = false; 99 MachineBasicBlock::const_iterator D(Def), I(Insert); 100 101 // Check for register dependencies. 102 for (const MachineOperand &MO : Def->operands()) { 103 if (!MO.isReg() || MO.isUndef()) 104 continue; 105 unsigned Reg = MO.getReg(); 106 107 // If the register is dead here and at Insert, ignore it. 108 if (MO.isDead() && Insert->definesRegister(Reg) && 109 !Insert->readsRegister(Reg)) 110 continue; 111 112 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 113 // If the physical register is never modified, ignore it. 114 if (!MRI.isPhysRegModified(Reg)) 115 continue; 116 // Otherwise, it's a physical register with unknown liveness. 117 return false; 118 } 119 120 // Ask LiveIntervals whether moving this virtual register use or def to 121 // Insert will change value numbers are seen. 122 const LiveInterval &LI = LIS.getInterval(Reg); 123 VNInfo *DefVNI = 124 MO.isDef() ? LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) 125 : LI.getVNInfoBefore(LIS.getInstructionIndex(*Def)); 126 assert(DefVNI && "Instruction input missing value number"); 127 VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert)); 128 if (InsVNI && DefVNI != InsVNI) 129 return false; 130 } 131 132 SawStore = Def->isCall() || Def->mayStore(); 133 // Check for memory dependencies and side effects. 134 for (--I; I != D; --I) 135 SawSideEffects |= !I->isSafeToMove(&AA, SawStore); 136 return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) && 137 !(SawSideEffects && !Def->isSafeToMove(&AA, SawStore)); 138 } 139 140 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 141 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 142 const MachineBasicBlock &MBB, 143 const MachineRegisterInfo &MRI, 144 const MachineDominatorTree &MDT) { 145 for (const MachineOperand &Use : MRI.use_operands(Reg)) { 146 if (&Use == &OneUse) 147 continue; 148 const MachineInstr *UseInst = Use.getParent(); 149 const MachineInstr *OneUseInst = OneUse.getParent(); 150 if (UseInst->getOpcode() == TargetOpcode::PHI) { 151 // Test that the PHI use, which happens on the CFG edge rather than 152 // within the PHI's own block, is dominated by the one selected use. 153 const MachineBasicBlock *Pred = 154 UseInst->getOperand(&Use - &UseInst->getOperand(0) + 1).getMBB(); 155 if (!MDT.dominates(&MBB, Pred)) 156 return false; 157 } else if (UseInst == OneUseInst) { 158 // Another use in the same instruction. We need to ensure that the one 159 // selected use happens "before" it. 160 if (&OneUse > &Use) 161 return false; 162 } else { 163 // Test that the use is dominated by the one selected use. 164 if (!MDT.dominates(OneUseInst, UseInst)) 165 return false; 166 } 167 } 168 return true; 169 } 170 171 /// Get the appropriate tee_local opcode for the given register class. 172 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) { 173 if (RC == &WebAssembly::I32RegClass) 174 return WebAssembly::TEE_LOCAL_I32; 175 if (RC == &WebAssembly::I64RegClass) 176 return WebAssembly::TEE_LOCAL_I64; 177 if (RC == &WebAssembly::F32RegClass) 178 return WebAssembly::TEE_LOCAL_F32; 179 if (RC == &WebAssembly::F64RegClass) 180 return WebAssembly::TEE_LOCAL_F64; 181 llvm_unreachable("Unexpected register class"); 182 } 183 184 /// A single-use def in the same block with no intervening memory or register 185 /// dependencies; move the def down and nest it with the current instruction. 186 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineInstr *Def, 187 MachineBasicBlock &MBB, 188 MachineInstr *Insert, LiveIntervals &LIS, 189 WebAssemblyFunctionInfo &MFI) { 190 MBB.splice(Insert, &MBB, Def); 191 LIS.handleMove(*Def); 192 MFI.stackifyVReg(Reg); 193 ImposeStackOrdering(Def); 194 return Def; 195 } 196 197 /// A trivially cloneable instruction; clone it and nest the new copy with the 198 /// current instruction. 199 static MachineInstr * 200 RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def, 201 MachineBasicBlock &MBB, MachineInstr *Insert, 202 LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 203 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII, 204 const WebAssemblyRegisterInfo *TRI) { 205 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 206 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 207 Op.setReg(NewReg); 208 MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert)); 209 LIS.InsertMachineInstrInMaps(*Clone); 210 LIS.createAndComputeVirtRegInterval(NewReg); 211 MFI.stackifyVReg(NewReg); 212 ImposeStackOrdering(Clone); 213 214 // If that was the last use of the original, delete the original. 215 // Otherwise shrink the LiveInterval. 216 if (MRI.use_empty(Reg)) { 217 SlotIndex Idx = LIS.getInstructionIndex(*Def).getRegSlot(); 218 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 219 LIS.removeVRegDefAt(LIS.getInterval(Reg), Idx); 220 LIS.removeInterval(Reg); 221 LIS.RemoveMachineInstrFromMaps(*Def); 222 Def->eraseFromParent(); 223 } else { 224 LIS.shrinkToUses(&LIS.getInterval(Reg)); 225 } 226 return Clone; 227 } 228 229 /// A multiple-use def in the same block with no intervening memory or register 230 /// dependencies; move the def down, nest it with the current instruction, and 231 /// insert a tee_local to satisfy the rest of the uses. As an illustration, 232 /// rewrite this: 233 /// 234 /// Reg = INST ... // Def 235 /// INST ..., Reg, ... // Insert 236 /// INST ..., Reg, ... 237 /// INST ..., Reg, ... 238 /// 239 /// to this: 240 /// 241 /// DefReg = INST ... // Def (to become the new Insert) 242 /// TeeReg, NewReg = TEE_LOCAL_... DefReg 243 /// INST ..., TeeReg, ... // Insert 244 /// INST ..., NewReg, ... 245 /// INST ..., NewReg, ... 246 /// 247 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 248 /// resulting code. 249 static MachineInstr *MoveAndTeeForMultiUse( 250 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 251 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 252 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 253 MBB.splice(Insert, &MBB, Def); 254 LIS.handleMove(*Def); 255 const auto *RegClass = MRI.getRegClass(Reg); 256 unsigned NewReg = MRI.createVirtualRegister(RegClass); 257 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 258 unsigned DefReg = MRI.createVirtualRegister(RegClass); 259 MRI.replaceRegWith(Reg, NewReg); 260 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 261 TII->get(GetTeeLocalOpcode(RegClass)), TeeReg) 262 .addReg(NewReg, RegState::Define) 263 .addReg(DefReg); 264 Op.setReg(TeeReg); 265 Def->getOperand(0).setReg(DefReg); 266 LIS.InsertMachineInstrInMaps(*Tee); 267 LIS.removeInterval(Reg); 268 LIS.createAndComputeVirtRegInterval(NewReg); 269 LIS.createAndComputeVirtRegInterval(TeeReg); 270 LIS.createAndComputeVirtRegInterval(DefReg); 271 MFI.stackifyVReg(DefReg); 272 MFI.stackifyVReg(TeeReg); 273 ImposeStackOrdering(Def); 274 ImposeStackOrdering(Tee); 275 return Def; 276 } 277 278 namespace { 279 /// A stack for walking the tree of instructions being built, visiting the 280 /// MachineOperands in DFS order. 281 class TreeWalkerState { 282 typedef MachineInstr::mop_iterator mop_iterator; 283 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 284 typedef iterator_range<mop_reverse_iterator> RangeTy; 285 SmallVector<RangeTy, 4> Worklist; 286 287 public: 288 explicit TreeWalkerState(MachineInstr *Insert) { 289 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 290 if (Range.begin() != Range.end()) 291 Worklist.push_back(reverse(Range)); 292 } 293 294 bool Done() const { return Worklist.empty(); } 295 296 MachineOperand &Pop() { 297 RangeTy &Range = Worklist.back(); 298 MachineOperand &Op = *Range.begin(); 299 Range = drop_begin(Range, 1); 300 if (Range.begin() == Range.end()) 301 Worklist.pop_back(); 302 assert((Worklist.empty() || 303 Worklist.back().begin() != Worklist.back().end()) && 304 "Empty ranges shouldn't remain in the worklist"); 305 return Op; 306 } 307 308 /// Push Instr's operands onto the stack to be visited. 309 void PushOperands(MachineInstr *Instr) { 310 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 311 if (Range.begin() != Range.end()) 312 Worklist.push_back(reverse(Range)); 313 } 314 315 /// Some of Instr's operands are on the top of the stack; remove them and 316 /// re-insert them starting from the beginning (because we've commuted them). 317 void ResetTopOperands(MachineInstr *Instr) { 318 assert(HasRemainingOperands(Instr) && 319 "Reseting operands should only be done when the instruction has " 320 "an operand still on the stack"); 321 Worklist.back() = reverse(Instr->explicit_uses()); 322 } 323 324 /// Test whether Instr has operands remaining to be visited at the top of 325 /// the stack. 326 bool HasRemainingOperands(const MachineInstr *Instr) const { 327 if (Worklist.empty()) 328 return false; 329 const RangeTy &Range = Worklist.back(); 330 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 331 } 332 333 /// Test whether the given register is present on the stack, indicating an 334 /// operand in the tree that we haven't visited yet. Moving a definition of 335 /// Reg to a point in the tree after that would change its value. 336 bool IsOnStack(unsigned Reg) const { 337 for (const RangeTy &Range : Worklist) 338 for (const MachineOperand &MO : Range) 339 if (MO.isReg() && MO.getReg() == Reg) 340 return true; 341 return false; 342 } 343 }; 344 345 /// State to keep track of whether commuting is in flight or whether it's been 346 /// tried for the current instruction and didn't work. 347 class CommutingState { 348 /// There are effectively three states: the initial state where we haven't 349 /// started commuting anything and we don't know anything yet, the tenative 350 /// state where we've commuted the operands of the current instruction and are 351 /// revisting it, and the declined state where we've reverted the operands 352 /// back to their original order and will no longer commute it further. 353 bool TentativelyCommuting; 354 bool Declined; 355 356 /// During the tentative state, these hold the operand indices of the commuted 357 /// operands. 358 unsigned Operand0, Operand1; 359 360 public: 361 CommutingState() : TentativelyCommuting(false), Declined(false) {} 362 363 /// Stackification for an operand was not successful due to ordering 364 /// constraints. If possible, and if we haven't already tried it and declined 365 /// it, commute Insert's operands and prepare to revisit it. 366 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 367 const WebAssemblyInstrInfo *TII) { 368 if (TentativelyCommuting) { 369 assert(!Declined && 370 "Don't decline commuting until you've finished trying it"); 371 // Commuting didn't help. Revert it. 372 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 373 TentativelyCommuting = false; 374 Declined = true; 375 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 376 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 377 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 378 if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) { 379 // Tentatively commute the operands and try again. 380 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 381 TreeWalker.ResetTopOperands(Insert); 382 TentativelyCommuting = true; 383 Declined = false; 384 } 385 } 386 } 387 388 /// Stackification for some operand was successful. Reset to the default 389 /// state. 390 void Reset() { 391 TentativelyCommuting = false; 392 Declined = false; 393 } 394 }; 395 } // end anonymous namespace 396 397 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 398 DEBUG(dbgs() << "********** Register Stackifying **********\n" 399 "********** Function: " 400 << MF.getName() << '\n'); 401 402 bool Changed = false; 403 MachineRegisterInfo &MRI = MF.getRegInfo(); 404 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 405 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 406 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 407 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 408 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 409 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 410 411 // Walk the instructions from the bottom up. Currently we don't look past 412 // block boundaries, and the blocks aren't ordered so the block visitation 413 // order isn't significant, but we may want to change this in the future. 414 for (MachineBasicBlock &MBB : MF) { 415 // Don't use a range-based for loop, because we modify the list as we're 416 // iterating over it and the end iterator may change. 417 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 418 MachineInstr *Insert = &*MII; 419 // Don't nest anything inside a phi. 420 if (Insert->getOpcode() == TargetOpcode::PHI) 421 break; 422 423 // Don't nest anything inside an inline asm, because we don't have 424 // constraints for $push inputs. 425 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 426 continue; 427 428 // Ignore debugging intrinsics. 429 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 430 continue; 431 432 // Iterate through the inputs in reverse order, since we'll be pulling 433 // operands off the stack in LIFO order. 434 CommutingState Commuting; 435 TreeWalkerState TreeWalker(Insert); 436 while (!TreeWalker.Done()) { 437 MachineOperand &Op = TreeWalker.Pop(); 438 439 // We're only interested in explicit virtual register operands. 440 if (!Op.isReg()) 441 continue; 442 443 unsigned Reg = Op.getReg(); 444 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 445 assert(!Op.isImplicit() && 446 "explicit_uses() should only iterate over explicit operands"); 447 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 448 continue; 449 450 // Identify the definition for this register at this point. Most 451 // registers are in SSA form here so we try a quick MRI query first. 452 MachineInstr *Def = MRI.getUniqueVRegDef(Reg); 453 if (!Def) { 454 // MRI doesn't know what the Def is. Try asking LIS. 455 const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 456 LIS.getInstructionIndex(*Insert)); 457 if (!ValNo) 458 continue; 459 Def = LIS.getInstructionFromIndex(ValNo->def); 460 if (!Def) 461 continue; 462 } 463 464 // Don't nest an INLINE_ASM def into anything, because we don't have 465 // constraints for $pop outputs. 466 if (Def->getOpcode() == TargetOpcode::INLINEASM) 467 continue; 468 469 // Don't nest PHIs inside of anything. 470 if (Def->getOpcode() == TargetOpcode::PHI) 471 continue; 472 473 // Argument instructions represent live-in registers and not real 474 // instructions. 475 if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || 476 Def->getOpcode() == WebAssembly::ARGUMENT_I64 || 477 Def->getOpcode() == WebAssembly::ARGUMENT_F32 || 478 Def->getOpcode() == WebAssembly::ARGUMENT_F64) 479 continue; 480 481 // Decide which strategy to take. Prefer to move a single-use value 482 // over cloning it, and prefer cloning over introducing a tee_local. 483 // For moving, we require the def to be in the same block as the use; 484 // this makes things simpler (LiveIntervals' handleMove function only 485 // supports intra-block moves) and it's MachineSink's job to catch all 486 // the sinking opportunities anyway. 487 bool SameBlock = Def->getParent() == &MBB; 488 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) && 489 !TreeWalker.IsOnStack(Reg); 490 if (CanMove && MRI.hasOneUse(Reg)) { 491 Insert = MoveForSingleUse(Reg, Def, MBB, Insert, LIS, MFI); 492 } else if (Def->isAsCheapAsAMove() && 493 TII->isTriviallyReMaterializable(Def, &AA)) { 494 Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI, 495 MRI, TII, TRI); 496 } else if (CanMove && 497 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT)) { 498 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 499 MRI, TII); 500 } else { 501 // We failed to stackify the operand. If the problem was ordering 502 // constraints, Commuting may be able to help. 503 if (!CanMove && SameBlock) 504 Commuting.MaybeCommute(Insert, TreeWalker, TII); 505 // Proceed to the next operand. 506 continue; 507 } 508 509 // We stackified an operand. Add the defining instruction's operands to 510 // the worklist stack now to continue to build an ever deeper tree. 511 Commuting.Reset(); 512 TreeWalker.PushOperands(Insert); 513 } 514 515 // If we stackified any operands, skip over the tree to start looking for 516 // the next instruction we can build a tree on. 517 if (Insert != &*MII) { 518 ImposeStackOrdering(&*MII); 519 MII = std::prev( 520 make_reverse_iterator(MachineBasicBlock::iterator(Insert))); 521 Changed = true; 522 } 523 } 524 } 525 526 // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so 527 // that it never looks like a use-before-def. 528 if (Changed) { 529 MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); 530 for (MachineBasicBlock &MBB : MF) 531 MBB.addLiveIn(WebAssembly::EXPR_STACK); 532 } 533 534 #ifndef NDEBUG 535 // Verify that pushes and pops are performed in LIFO order. 536 SmallVector<unsigned, 0> Stack; 537 for (MachineBasicBlock &MBB : MF) { 538 for (MachineInstr &MI : MBB) { 539 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 540 if (!MO.isReg()) 541 continue; 542 unsigned Reg = MO.getReg(); 543 544 // Don't stackify physregs like SP or FP. 545 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 546 continue; 547 548 if (MFI.isVRegStackified(Reg)) { 549 if (MO.isDef()) 550 Stack.push_back(Reg); 551 else 552 assert(Stack.pop_back_val() == Reg && 553 "Register stack pop should be paired with a push"); 554 } 555 } 556 } 557 // TODO: Generalize this code to support keeping values on the stack across 558 // basic block boundaries. 559 assert(Stack.empty() && 560 "Register stack pushes and pops should be balanced"); 561 } 562 #endif 563 564 return Changed; 565 } 566