1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "WebAssembly.h" 24 #include "WebAssemblyDebugValueManager.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void imposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void convertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 auto *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 auto *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 Register TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 124 MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32)); 125 MI->addOperand(MachineOperand::CreateReg(TempReg, false)); 126 MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 127 TII->get(WebAssembly::CONST_I32), TempReg) 128 .addImm(0); 129 LIS.InsertMachineInstrInMaps(*Const); 130 } else { 131 llvm_unreachable("Unexpected reg class"); 132 } 133 } 134 135 // Determine whether a call to the callee referenced by 136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 137 // effects. 138 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write, 139 bool &Effects, bool &StackPointer) { 140 // All calls can use the stack pointer. 141 StackPointer = true; 142 143 const MachineOperand &MO = WebAssembly::getCalleeOp(MI); 144 if (MO.isGlobal()) { 145 const Constant *GV = MO.getGlobal(); 146 if (const auto *GA = dyn_cast<GlobalAlias>(GV)) 147 if (!GA->isInterposable()) 148 GV = GA->getAliasee(); 149 150 if (const auto *F = dyn_cast<Function>(GV)) { 151 if (!F->doesNotThrow()) 152 Effects = true; 153 if (F->doesNotAccessMemory()) 154 return; 155 if (F->onlyReadsMemory()) { 156 Read = true; 157 return; 158 } 159 } 160 } 161 162 // Assume the worst. 163 Write = true; 164 Read = true; 165 Effects = true; 166 } 167 168 // Determine whether MI reads memory, writes memory, has side effects, 169 // and/or uses the stack pointer value. 170 static void query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 171 bool &Write, bool &Effects, bool &StackPointer) { 172 assert(!MI.isTerminator()); 173 174 if (MI.isDebugInstr() || MI.isPosition()) 175 return; 176 177 // Check for loads. 178 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 179 Read = true; 180 181 // Check for stores. 182 if (MI.mayStore()) { 183 Write = true; 184 } else if (MI.hasOrderedMemoryRef()) { 185 switch (MI.getOpcode()) { 186 case WebAssembly::DIV_S_I32: 187 case WebAssembly::DIV_S_I64: 188 case WebAssembly::REM_S_I32: 189 case WebAssembly::REM_S_I64: 190 case WebAssembly::DIV_U_I32: 191 case WebAssembly::DIV_U_I64: 192 case WebAssembly::REM_U_I32: 193 case WebAssembly::REM_U_I64: 194 case WebAssembly::I32_TRUNC_S_F32: 195 case WebAssembly::I64_TRUNC_S_F32: 196 case WebAssembly::I32_TRUNC_S_F64: 197 case WebAssembly::I64_TRUNC_S_F64: 198 case WebAssembly::I32_TRUNC_U_F32: 199 case WebAssembly::I64_TRUNC_U_F32: 200 case WebAssembly::I32_TRUNC_U_F64: 201 case WebAssembly::I64_TRUNC_U_F64: 202 // These instruction have hasUnmodeledSideEffects() returning true 203 // because they trap on overflow and invalid so they can't be arbitrarily 204 // moved, however hasOrderedMemoryRef() interprets this plus their lack 205 // of memoperands as having a potential unknown memory reference. 206 break; 207 default: 208 // Record volatile accesses, unless it's a call, as calls are handled 209 // specially below. 210 if (!MI.isCall()) { 211 Write = true; 212 Effects = true; 213 } 214 break; 215 } 216 } 217 218 // Check for side effects. 219 if (MI.hasUnmodeledSideEffects()) { 220 switch (MI.getOpcode()) { 221 case WebAssembly::DIV_S_I32: 222 case WebAssembly::DIV_S_I64: 223 case WebAssembly::REM_S_I32: 224 case WebAssembly::REM_S_I64: 225 case WebAssembly::DIV_U_I32: 226 case WebAssembly::DIV_U_I64: 227 case WebAssembly::REM_U_I32: 228 case WebAssembly::REM_U_I64: 229 case WebAssembly::I32_TRUNC_S_F32: 230 case WebAssembly::I64_TRUNC_S_F32: 231 case WebAssembly::I32_TRUNC_S_F64: 232 case WebAssembly::I64_TRUNC_S_F64: 233 case WebAssembly::I32_TRUNC_U_F32: 234 case WebAssembly::I64_TRUNC_U_F32: 235 case WebAssembly::I32_TRUNC_U_F64: 236 case WebAssembly::I64_TRUNC_U_F64: 237 // These instructions have hasUnmodeledSideEffects() returning true 238 // because they trap on overflow and invalid so they can't be arbitrarily 239 // moved, however in the specific case of register stackifying, it is safe 240 // to move them because overflow and invalid are Undefined Behavior. 241 break; 242 default: 243 Effects = true; 244 break; 245 } 246 } 247 248 // Check for writes to __stack_pointer global. 249 if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 && 250 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 251 StackPointer = true; 252 253 // Analyze calls. 254 if (MI.isCall()) { 255 queryCallee(MI, Read, Write, Effects, StackPointer); 256 } 257 } 258 259 // Test whether Def is safe and profitable to rematerialize. 260 static bool shouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 261 const WebAssemblyInstrInfo *TII) { 262 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 263 } 264 265 // Identify the definition for this register at this point. This is a 266 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 267 // LiveIntervals to handle complex cases. 268 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert, 269 const MachineRegisterInfo &MRI, 270 const LiveIntervals &LIS) { 271 // Most registers are in SSA form here so we try a quick MRI query first. 272 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 273 return Def; 274 275 // MRI doesn't know what the Def is. Try asking LIS. 276 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 277 LIS.getInstructionIndex(*Insert))) 278 return LIS.getInstructionFromIndex(ValNo->def); 279 280 return nullptr; 281 } 282 283 // Test whether Reg, as defined at Def, has exactly one use. This is a 284 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 285 // to handle complex cases. 286 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 287 MachineDominatorTree &MDT, LiveIntervals &LIS) { 288 // Most registers are in SSA form here so we try a quick MRI query first. 289 if (MRI.hasOneUse(Reg)) 290 return true; 291 292 bool HasOne = false; 293 const LiveInterval &LI = LIS.getInterval(Reg); 294 const VNInfo *DefVNI = 295 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 296 assert(DefVNI); 297 for (auto &I : MRI.use_nodbg_operands(Reg)) { 298 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 299 if (Result.valueIn() == DefVNI) { 300 if (!Result.isKill()) 301 return false; 302 if (HasOne) 303 return false; 304 HasOne = true; 305 } 306 } 307 return HasOne; 308 } 309 310 // Test whether it's safe to move Def to just before Insert. 311 // TODO: Compute memory dependencies in a way that doesn't require always 312 // walking the block. 313 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 314 // more precise. 315 static bool isSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 316 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 317 assert(Def->getParent() == Insert->getParent()); 318 319 // 'catch' and 'extract_exception' should be the first instruction of a BB and 320 // cannot move. 321 if (Def->getOpcode() == WebAssembly::CATCH || 322 Def->getOpcode() == WebAssembly::EXTRACT_EXCEPTION_I32) { 323 const MachineBasicBlock *MBB = Def->getParent(); 324 auto NextI = std::next(MachineBasicBlock::const_iterator(Def)); 325 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI) 326 ; 327 if (NextI != Insert) 328 return false; 329 } 330 331 // Check for register dependencies. 332 SmallVector<unsigned, 4> MutableRegisters; 333 for (const MachineOperand &MO : Def->operands()) { 334 if (!MO.isReg() || MO.isUndef()) 335 continue; 336 Register Reg = MO.getReg(); 337 338 // If the register is dead here and at Insert, ignore it. 339 if (MO.isDead() && Insert->definesRegister(Reg) && 340 !Insert->readsRegister(Reg)) 341 continue; 342 343 if (Register::isPhysicalRegister(Reg)) { 344 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 345 // from moving down, and we've already checked for that. 346 if (Reg == WebAssembly::ARGUMENTS) 347 continue; 348 // If the physical register is never modified, ignore it. 349 if (!MRI.isPhysRegModified(Reg)) 350 continue; 351 // Otherwise, it's a physical register with unknown liveness. 352 return false; 353 } 354 355 // If one of the operands isn't in SSA form, it has different values at 356 // different times, and we need to make sure we don't move our use across 357 // a different def. 358 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 359 MutableRegisters.push_back(Reg); 360 } 361 362 bool Read = false, Write = false, Effects = false, StackPointer = false; 363 query(*Def, AA, Read, Write, Effects, StackPointer); 364 365 // If the instruction does not access memory and has no side effects, it has 366 // no additional dependencies. 367 bool HasMutableRegisters = !MutableRegisters.empty(); 368 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 369 return true; 370 371 // Scan through the intervening instructions between Def and Insert. 372 MachineBasicBlock::const_iterator D(Def), I(Insert); 373 for (--I; I != D; --I) { 374 bool InterveningRead = false; 375 bool InterveningWrite = false; 376 bool InterveningEffects = false; 377 bool InterveningStackPointer = false; 378 query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 379 InterveningStackPointer); 380 if (Effects && InterveningEffects) 381 return false; 382 if (Read && InterveningWrite) 383 return false; 384 if (Write && (InterveningRead || InterveningWrite)) 385 return false; 386 if (StackPointer && InterveningStackPointer) 387 return false; 388 389 for (unsigned Reg : MutableRegisters) 390 for (const MachineOperand &MO : I->operands()) 391 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 392 return false; 393 } 394 395 return true; 396 } 397 398 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 399 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 400 const MachineBasicBlock &MBB, 401 const MachineRegisterInfo &MRI, 402 const MachineDominatorTree &MDT, 403 LiveIntervals &LIS, 404 WebAssemblyFunctionInfo &MFI) { 405 const LiveInterval &LI = LIS.getInterval(Reg); 406 407 const MachineInstr *OneUseInst = OneUse.getParent(); 408 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 409 410 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 411 if (&Use == &OneUse) 412 continue; 413 414 const MachineInstr *UseInst = Use.getParent(); 415 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 416 417 if (UseVNI != OneUseVNI) 418 continue; 419 420 if (UseInst == OneUseInst) { 421 // Another use in the same instruction. We need to ensure that the one 422 // selected use happens "before" it. 423 if (&OneUse > &Use) 424 return false; 425 } else { 426 // Test that the use is dominated by the one selected use. 427 while (!MDT.dominates(OneUseInst, UseInst)) { 428 // Actually, dominating is over-conservative. Test that the use would 429 // happen after the one selected use in the stack evaluation order. 430 // 431 // This is needed as a consequence of using implicit local.gets for 432 // uses and implicit local.sets for defs. 433 if (UseInst->getDesc().getNumDefs() == 0) 434 return false; 435 const MachineOperand &MO = UseInst->getOperand(0); 436 if (!MO.isReg()) 437 return false; 438 Register DefReg = MO.getReg(); 439 if (!Register::isVirtualRegister(DefReg) || 440 !MFI.isVRegStackified(DefReg)) 441 return false; 442 assert(MRI.hasOneNonDBGUse(DefReg)); 443 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 444 const MachineInstr *NewUseInst = NewUse.getParent(); 445 if (NewUseInst == OneUseInst) { 446 if (&OneUse > &NewUse) 447 return false; 448 break; 449 } 450 UseInst = NewUseInst; 451 } 452 } 453 } 454 return true; 455 } 456 457 /// Get the appropriate tee opcode for the given register class. 458 static unsigned getTeeOpcode(const TargetRegisterClass *RC) { 459 if (RC == &WebAssembly::I32RegClass) 460 return WebAssembly::TEE_I32; 461 if (RC == &WebAssembly::I64RegClass) 462 return WebAssembly::TEE_I64; 463 if (RC == &WebAssembly::F32RegClass) 464 return WebAssembly::TEE_F32; 465 if (RC == &WebAssembly::F64RegClass) 466 return WebAssembly::TEE_F64; 467 if (RC == &WebAssembly::V128RegClass) 468 return WebAssembly::TEE_V128; 469 llvm_unreachable("Unexpected register class"); 470 } 471 472 // Shrink LI to its uses, cleaning up LI. 473 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 474 if (LIS.shrinkToUses(&LI)) { 475 SmallVector<LiveInterval *, 4> SplitLIs; 476 LIS.splitSeparateComponents(LI, SplitLIs); 477 } 478 } 479 480 /// A single-use def in the same block with no intervening memory or register 481 /// dependencies; move the def down and nest it with the current instruction. 482 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op, 483 MachineInstr *Def, MachineBasicBlock &MBB, 484 MachineInstr *Insert, LiveIntervals &LIS, 485 WebAssemblyFunctionInfo &MFI, 486 MachineRegisterInfo &MRI) { 487 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 488 489 WebAssemblyDebugValueManager DefDIs(Def); 490 MBB.splice(Insert, &MBB, Def); 491 DefDIs.move(Insert); 492 LIS.handleMove(*Def); 493 494 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 495 // No one else is using this register for anything so we can just stackify 496 // it in place. 497 MFI.stackifyVReg(Reg); 498 } else { 499 // The register may have unrelated uses or defs; create a new register for 500 // just our one def and use so that we can stackify it. 501 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 502 Def->getOperand(0).setReg(NewReg); 503 Op.setReg(NewReg); 504 505 // Tell LiveIntervals about the new register. 506 LIS.createAndComputeVirtRegInterval(NewReg); 507 508 // Tell LiveIntervals about the changes to the old register. 509 LiveInterval &LI = LIS.getInterval(Reg); 510 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 511 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 512 /*RemoveDeadValNo=*/true); 513 514 MFI.stackifyVReg(NewReg); 515 516 DefDIs.updateReg(NewReg); 517 518 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 519 } 520 521 imposeStackOrdering(Def); 522 return Def; 523 } 524 525 /// A trivially cloneable instruction; clone it and nest the new copy with the 526 /// current instruction. 527 static MachineInstr *rematerializeCheapDef( 528 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 529 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 530 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 531 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 532 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 533 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 534 535 WebAssemblyDebugValueManager DefDIs(&Def); 536 537 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 538 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 539 Op.setReg(NewReg); 540 MachineInstr *Clone = &*std::prev(Insert); 541 LIS.InsertMachineInstrInMaps(*Clone); 542 LIS.createAndComputeVirtRegInterval(NewReg); 543 MFI.stackifyVReg(NewReg); 544 imposeStackOrdering(Clone); 545 546 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 547 548 // Shrink the interval. 549 bool IsDead = MRI.use_empty(Reg); 550 if (!IsDead) { 551 LiveInterval &LI = LIS.getInterval(Reg); 552 shrinkToUses(LI, LIS); 553 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 554 } 555 556 // If that was the last use of the original, delete the original. 557 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 558 if (IsDead) { 559 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 560 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 561 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 562 LIS.removeInterval(Reg); 563 LIS.RemoveMachineInstrFromMaps(Def); 564 Def.eraseFromParent(); 565 566 DefDIs.move(&*Insert); 567 DefDIs.updateReg(NewReg); 568 } else { 569 DefDIs.clone(&*Insert, NewReg); 570 } 571 572 return Clone; 573 } 574 575 /// A multiple-use def in the same block with no intervening memory or register 576 /// dependencies; move the def down, nest it with the current instruction, and 577 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 578 /// this: 579 /// 580 /// Reg = INST ... // Def 581 /// INST ..., Reg, ... // Insert 582 /// INST ..., Reg, ... 583 /// INST ..., Reg, ... 584 /// 585 /// to this: 586 /// 587 /// DefReg = INST ... // Def (to become the new Insert) 588 /// TeeReg, Reg = TEE_... DefReg 589 /// INST ..., TeeReg, ... // Insert 590 /// INST ..., Reg, ... 591 /// INST ..., Reg, ... 592 /// 593 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 594 /// resulting code. 595 static MachineInstr *moveAndTeeForMultiUse( 596 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 597 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 598 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 599 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 600 601 WebAssemblyDebugValueManager DefDIs(Def); 602 603 // Move Def into place. 604 MBB.splice(Insert, &MBB, Def); 605 LIS.handleMove(*Def); 606 607 // Create the Tee and attach the registers. 608 const auto *RegClass = MRI.getRegClass(Reg); 609 Register TeeReg = MRI.createVirtualRegister(RegClass); 610 Register DefReg = MRI.createVirtualRegister(RegClass); 611 MachineOperand &DefMO = Def->getOperand(0); 612 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 613 TII->get(getTeeOpcode(RegClass)), TeeReg) 614 .addReg(Reg, RegState::Define) 615 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 616 Op.setReg(TeeReg); 617 DefMO.setReg(DefReg); 618 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 619 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 620 621 DefDIs.move(Insert); 622 623 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 624 LiveInterval &LI = LIS.getInterval(Reg); 625 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 626 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 627 I->start = TeeIdx; 628 ValNo->def = TeeIdx; 629 shrinkToUses(LI, LIS); 630 631 // Finish stackifying the new regs. 632 LIS.createAndComputeVirtRegInterval(TeeReg); 633 LIS.createAndComputeVirtRegInterval(DefReg); 634 MFI.stackifyVReg(DefReg); 635 MFI.stackifyVReg(TeeReg); 636 imposeStackOrdering(Def); 637 imposeStackOrdering(Tee); 638 639 DefDIs.clone(Tee, DefReg); 640 DefDIs.clone(Insert, TeeReg); 641 642 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 643 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 644 return Def; 645 } 646 647 namespace { 648 /// A stack for walking the tree of instructions being built, visiting the 649 /// MachineOperands in DFS order. 650 class TreeWalkerState { 651 using mop_iterator = MachineInstr::mop_iterator; 652 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>; 653 using RangeTy = iterator_range<mop_reverse_iterator>; 654 SmallVector<RangeTy, 4> Worklist; 655 656 public: 657 explicit TreeWalkerState(MachineInstr *Insert) { 658 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 659 if (Range.begin() != Range.end()) 660 Worklist.push_back(reverse(Range)); 661 } 662 663 bool done() const { return Worklist.empty(); } 664 665 MachineOperand &pop() { 666 RangeTy &Range = Worklist.back(); 667 MachineOperand &Op = *Range.begin(); 668 Range = drop_begin(Range, 1); 669 if (Range.begin() == Range.end()) 670 Worklist.pop_back(); 671 assert((Worklist.empty() || 672 Worklist.back().begin() != Worklist.back().end()) && 673 "Empty ranges shouldn't remain in the worklist"); 674 return Op; 675 } 676 677 /// Push Instr's operands onto the stack to be visited. 678 void pushOperands(MachineInstr *Instr) { 679 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 680 if (Range.begin() != Range.end()) 681 Worklist.push_back(reverse(Range)); 682 } 683 684 /// Some of Instr's operands are on the top of the stack; remove them and 685 /// re-insert them starting from the beginning (because we've commuted them). 686 void resetTopOperands(MachineInstr *Instr) { 687 assert(hasRemainingOperands(Instr) && 688 "Reseting operands should only be done when the instruction has " 689 "an operand still on the stack"); 690 Worklist.back() = reverse(Instr->explicit_uses()); 691 } 692 693 /// Test whether Instr has operands remaining to be visited at the top of 694 /// the stack. 695 bool hasRemainingOperands(const MachineInstr *Instr) const { 696 if (Worklist.empty()) 697 return false; 698 const RangeTy &Range = Worklist.back(); 699 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 700 } 701 702 /// Test whether the given register is present on the stack, indicating an 703 /// operand in the tree that we haven't visited yet. Moving a definition of 704 /// Reg to a point in the tree after that would change its value. 705 /// 706 /// This is needed as a consequence of using implicit local.gets for 707 /// uses and implicit local.sets for defs. 708 bool isOnStack(unsigned Reg) const { 709 for (const RangeTy &Range : Worklist) 710 for (const MachineOperand &MO : Range) 711 if (MO.isReg() && MO.getReg() == Reg) 712 return true; 713 return false; 714 } 715 }; 716 717 /// State to keep track of whether commuting is in flight or whether it's been 718 /// tried for the current instruction and didn't work. 719 class CommutingState { 720 /// There are effectively three states: the initial state where we haven't 721 /// started commuting anything and we don't know anything yet, the tentative 722 /// state where we've commuted the operands of the current instruction and are 723 /// revisiting it, and the declined state where we've reverted the operands 724 /// back to their original order and will no longer commute it further. 725 bool TentativelyCommuting = false; 726 bool Declined = false; 727 728 /// During the tentative state, these hold the operand indices of the commuted 729 /// operands. 730 unsigned Operand0, Operand1; 731 732 public: 733 /// Stackification for an operand was not successful due to ordering 734 /// constraints. If possible, and if we haven't already tried it and declined 735 /// it, commute Insert's operands and prepare to revisit it. 736 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 737 const WebAssemblyInstrInfo *TII) { 738 if (TentativelyCommuting) { 739 assert(!Declined && 740 "Don't decline commuting until you've finished trying it"); 741 // Commuting didn't help. Revert it. 742 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 743 TentativelyCommuting = false; 744 Declined = true; 745 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) { 746 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 747 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 748 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 749 // Tentatively commute the operands and try again. 750 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 751 TreeWalker.resetTopOperands(Insert); 752 TentativelyCommuting = true; 753 Declined = false; 754 } 755 } 756 } 757 758 /// Stackification for some operand was successful. Reset to the default 759 /// state. 760 void reset() { 761 TentativelyCommuting = false; 762 Declined = false; 763 } 764 }; 765 } // end anonymous namespace 766 767 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 768 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 769 "********** Function: " 770 << MF.getName() << '\n'); 771 772 bool Changed = false; 773 MachineRegisterInfo &MRI = MF.getRegInfo(); 774 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 775 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 776 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 777 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 778 auto &MDT = getAnalysis<MachineDominatorTree>(); 779 auto &LIS = getAnalysis<LiveIntervals>(); 780 781 // Walk the instructions from the bottom up. Currently we don't look past 782 // block boundaries, and the blocks aren't ordered so the block visitation 783 // order isn't significant, but we may want to change this in the future. 784 for (MachineBasicBlock &MBB : MF) { 785 // Don't use a range-based for loop, because we modify the list as we're 786 // iterating over it and the end iterator may change. 787 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 788 MachineInstr *Insert = &*MII; 789 // Don't nest anything inside an inline asm, because we don't have 790 // constraints for $push inputs. 791 if (Insert->isInlineAsm()) 792 continue; 793 794 // Ignore debugging intrinsics. 795 if (Insert->isDebugValue()) 796 continue; 797 798 // Iterate through the inputs in reverse order, since we'll be pulling 799 // operands off the stack in LIFO order. 800 CommutingState Commuting; 801 TreeWalkerState TreeWalker(Insert); 802 while (!TreeWalker.done()) { 803 MachineOperand &Op = TreeWalker.pop(); 804 805 // We're only interested in explicit virtual register operands. 806 if (!Op.isReg()) 807 continue; 808 809 Register Reg = Op.getReg(); 810 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 811 assert(!Op.isImplicit() && 812 "explicit_uses() should only iterate over explicit operands"); 813 if (Register::isPhysicalRegister(Reg)) 814 continue; 815 816 // Identify the definition for this register at this point. 817 MachineInstr *Def = getVRegDef(Reg, Insert, MRI, LIS); 818 if (!Def) 819 continue; 820 821 // Don't nest an INLINE_ASM def into anything, because we don't have 822 // constraints for $pop outputs. 823 if (Def->isInlineAsm()) 824 continue; 825 826 // Argument instructions represent live-in registers and not real 827 // instructions. 828 if (WebAssembly::isArgument(Def->getOpcode())) 829 continue; 830 831 // Currently catch's return value register cannot be stackified, because 832 // the wasm LLVM backend currently does not support live-in values 833 // entering blocks, which is a part of multi-value proposal. 834 // 835 // Once we support live-in values of wasm blocks, this can be: 836 // catch ; push exnref value onto stack 837 // block exnref -> i32 838 // br_on_exn $__cpp_exception ; pop the exnref value 839 // end_block 840 // 841 // But because we don't support it yet, the catch instruction's dst 842 // register should be assigned to a local to be propagated across 843 // 'block' boundary now. 844 // 845 // TODO Fix this once we support the multi-value proposal. 846 if (Def->getOpcode() == WebAssembly::CATCH) 847 continue; 848 849 // Decide which strategy to take. Prefer to move a single-use value 850 // over cloning it, and prefer cloning over introducing a tee. 851 // For moving, we require the def to be in the same block as the use; 852 // this makes things simpler (LiveIntervals' handleMove function only 853 // supports intra-block moves) and it's MachineSink's job to catch all 854 // the sinking opportunities anyway. 855 bool SameBlock = Def->getParent() == &MBB; 856 bool CanMove = SameBlock && isSafeToMove(Def, Insert, AA, MRI) && 857 !TreeWalker.isOnStack(Reg); 858 if (CanMove && hasOneUse(Reg, Def, MRI, MDT, LIS)) { 859 Insert = moveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 860 861 // If we are removing the frame base reg completely, remove the debug 862 // info as well. 863 // TODO: Encode this properly as a stackified value. 864 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg) 865 MFI.clearFrameBaseVreg(); 866 } else if (shouldRematerialize(*Def, AA, TII)) { 867 Insert = 868 rematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 869 LIS, MFI, MRI, TII, TRI); 870 } else if (CanMove && 871 oneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 872 Insert = moveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 873 MRI, TII); 874 } else { 875 // We failed to stackify the operand. If the problem was ordering 876 // constraints, Commuting may be able to help. 877 if (!CanMove && SameBlock) 878 Commuting.maybeCommute(Insert, TreeWalker, TII); 879 // Proceed to the next operand. 880 continue; 881 } 882 883 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 884 // to a constant 0 so that the def is explicit, and the push/pop 885 // correspondence is maintained. 886 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 887 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 888 889 // We stackified an operand. Add the defining instruction's operands to 890 // the worklist stack now to continue to build an ever deeper tree. 891 Commuting.reset(); 892 TreeWalker.pushOperands(Insert); 893 } 894 895 // If we stackified any operands, skip over the tree to start looking for 896 // the next instruction we can build a tree on. 897 if (Insert != &*MII) { 898 imposeStackOrdering(&*MII); 899 MII = MachineBasicBlock::iterator(Insert).getReverse(); 900 Changed = true; 901 } 902 } 903 } 904 905 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 906 // that it never looks like a use-before-def. 907 if (Changed) { 908 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 909 for (MachineBasicBlock &MBB : MF) 910 MBB.addLiveIn(WebAssembly::VALUE_STACK); 911 } 912 913 #ifndef NDEBUG 914 // Verify that pushes and pops are performed in LIFO order. 915 SmallVector<unsigned, 0> Stack; 916 for (MachineBasicBlock &MBB : MF) { 917 for (MachineInstr &MI : MBB) { 918 if (MI.isDebugInstr()) 919 continue; 920 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 921 if (!MO.isReg()) 922 continue; 923 Register Reg = MO.getReg(); 924 925 if (MFI.isVRegStackified(Reg)) { 926 if (MO.isDef()) 927 Stack.push_back(Reg); 928 else 929 assert(Stack.pop_back_val() == Reg && 930 "Register stack pop should be paired with a push"); 931 } 932 } 933 } 934 // TODO: Generalize this code to support keeping values on the stack across 935 // basic block boundaries. 936 assert(Stack.empty() && 937 "Register stack pushes and pops should be balanced"); 938 } 939 #endif 940 941 return Changed; 942 } 943