1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file implements a register stacking pass.
12 ///
13 /// This pass reorders instructions to put register uses and defs in an order
14 /// such that they form single-use expression trees. Registers fitting this form
15 /// are then marked as "stackified", meaning references to them are replaced by
16 /// "push" and "pop" from the stack.
17 ///
18 /// This is primarily a code size optimization, since temporary values on the
19 /// expression don't need to be named.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "WebAssembly.h"
24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "wasm-reg-stackify"
39 
40 namespace {
41 class WebAssemblyRegStackify final : public MachineFunctionPass {
42   const char *getPassName() const override {
43     return "WebAssembly Register Stackify";
44   }
45 
46   void getAnalysisUsage(AnalysisUsage &AU) const override {
47     AU.setPreservesCFG();
48     AU.addRequired<AAResultsWrapperPass>();
49     AU.addRequired<MachineDominatorTree>();
50     AU.addRequired<LiveIntervals>();
51     AU.addPreserved<MachineBlockFrequencyInfo>();
52     AU.addPreserved<SlotIndexes>();
53     AU.addPreserved<LiveIntervals>();
54     AU.addPreservedID(LiveVariablesID);
55     AU.addPreserved<MachineDominatorTree>();
56     MachineFunctionPass::getAnalysisUsage(AU);
57   }
58 
59   bool runOnMachineFunction(MachineFunction &MF) override;
60 
61 public:
62   static char ID; // Pass identification, replacement for typeid
63   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
64 };
65 } // end anonymous namespace
66 
67 char WebAssemblyRegStackify::ID = 0;
68 FunctionPass *llvm::createWebAssemblyRegStackify() {
69   return new WebAssemblyRegStackify();
70 }
71 
72 // Decorate the given instruction with implicit operands that enforce the
73 // expression stack ordering constraints for an instruction which is on
74 // the expression stack.
75 static void ImposeStackOrdering(MachineInstr *MI) {
76   // Write the opaque EXPR_STACK register.
77   if (!MI->definesRegister(WebAssembly::EXPR_STACK))
78     MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
79                                              /*isDef=*/true,
80                                              /*isImp=*/true));
81 
82   // Also read the opaque EXPR_STACK register.
83   if (!MI->readsRegister(WebAssembly::EXPR_STACK))
84     MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK,
85                                              /*isDef=*/false,
86                                              /*isImp=*/true));
87 }
88 
89 // Test whether it's safe to move Def to just before Insert.
90 // TODO: Compute memory dependencies in a way that doesn't require always
91 // walking the block.
92 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
93 // more precise.
94 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
95                          AliasAnalysis &AA, const LiveIntervals &LIS,
96                          const MachineRegisterInfo &MRI) {
97   assert(Def->getParent() == Insert->getParent());
98   bool SawStore = false, SawSideEffects = false;
99   MachineBasicBlock::const_iterator D(Def), I(Insert);
100 
101   // Check for register dependencies.
102   for (const MachineOperand &MO : Def->operands()) {
103     if (!MO.isReg() || MO.isUndef())
104       continue;
105     unsigned Reg = MO.getReg();
106 
107     // If the register is dead here and at Insert, ignore it.
108     if (MO.isDead() && Insert->definesRegister(Reg) &&
109         !Insert->readsRegister(Reg))
110       continue;
111 
112     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
113       // If the physical register is never modified, ignore it.
114       if (!MRI.isPhysRegModified(Reg))
115         continue;
116       // Otherwise, it's a physical register with unknown liveness.
117       return false;
118     }
119 
120     // Ask LiveIntervals whether moving this virtual register use or def to
121     // Insert will change value numbers are seen.
122     const LiveInterval &LI = LIS.getInterval(Reg);
123     VNInfo *DefVNI =
124         MO.isDef() ? LI.getVNInfoAt(LIS.getInstructionIndex(Def).getRegSlot())
125                    : LI.getVNInfoBefore(LIS.getInstructionIndex(Def));
126     assert(DefVNI && "Instruction input missing value number");
127     VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(Insert));
128     if (InsVNI && DefVNI != InsVNI)
129       return false;
130   }
131 
132   // Check for memory dependencies and side effects.
133   for (--I; I != D; --I)
134     SawSideEffects |= !I->isSafeToMove(&AA, SawStore);
135   return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) &&
136          !(SawSideEffects && !Def->isSafeToMove(&AA, SawStore));
137 }
138 
139 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
140 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
141                                      const MachineBasicBlock &MBB,
142                                      const MachineRegisterInfo &MRI,
143                                      const MachineDominatorTree &MDT) {
144   for (const MachineOperand &Use : MRI.use_operands(Reg)) {
145     if (&Use == &OneUse)
146       continue;
147     const MachineInstr *UseInst = Use.getParent();
148     const MachineInstr *OneUseInst = OneUse.getParent();
149     if (UseInst->getOpcode() == TargetOpcode::PHI) {
150       // Test that the PHI use, which happens on the CFG edge rather than
151       // within the PHI's own block, is dominated by the one selected use.
152       const MachineBasicBlock *Pred =
153           UseInst->getOperand(&Use - &UseInst->getOperand(0) + 1).getMBB();
154       if (!MDT.dominates(&MBB, Pred))
155         return false;
156     } else if (UseInst == OneUseInst) {
157       // Another use in the same instruction. We need to ensure that the one
158       // selected use happens "before" it.
159       if (&OneUse > &Use)
160         return false;
161     } else {
162       // Test that the use is dominated by the one selected use.
163       if (!MDT.dominates(OneUseInst, UseInst))
164         return false;
165     }
166   }
167   return true;
168 }
169 
170 /// Get the appropriate tee_local opcode for the given register class.
171 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) {
172   if (RC == &WebAssembly::I32RegClass)
173     return WebAssembly::TEE_LOCAL_I32;
174   if (RC == &WebAssembly::I64RegClass)
175     return WebAssembly::TEE_LOCAL_I64;
176   if (RC == &WebAssembly::F32RegClass)
177     return WebAssembly::TEE_LOCAL_F32;
178   if (RC == &WebAssembly::F64RegClass)
179     return WebAssembly::TEE_LOCAL_F64;
180   llvm_unreachable("Unexpected register class");
181 }
182 
183 /// A single-use def in the same block with no intervening memory or register
184 /// dependencies; move the def down and nest it with the current instruction.
185 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineInstr *Def,
186                                       MachineBasicBlock &MBB,
187                                       MachineInstr *Insert, LiveIntervals &LIS,
188                                       WebAssemblyFunctionInfo &MFI) {
189   MBB.splice(Insert, &MBB, Def);
190   LIS.handleMove(Def);
191   MFI.stackifyVReg(Reg);
192   ImposeStackOrdering(Def);
193   return Def;
194 }
195 
196 /// A trivially cloneable instruction; clone it and nest the new copy with the
197 /// current instruction.
198 static MachineInstr *
199 RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def,
200                       MachineBasicBlock &MBB, MachineInstr *Insert,
201                       LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
202                       MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII,
203                       const WebAssemblyRegisterInfo *TRI) {
204   unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
205   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
206   Op.setReg(NewReg);
207   MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert));
208   LIS.InsertMachineInstrInMaps(Clone);
209   LIS.createAndComputeVirtRegInterval(NewReg);
210   MFI.stackifyVReg(NewReg);
211   ImposeStackOrdering(Clone);
212 
213   // If that was the last use of the original, delete the original.
214   // Otherwise shrink the LiveInterval.
215   if (MRI.use_empty(Reg)) {
216     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
217     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
218     LIS.removeVRegDefAt(LIS.getInterval(Reg), Idx);
219     LIS.removeInterval(Reg);
220     LIS.RemoveMachineInstrFromMaps(Def);
221     Def->eraseFromParent();
222   } else {
223     LIS.shrinkToUses(&LIS.getInterval(Reg));
224   }
225   return Clone;
226 }
227 
228 /// A multiple-use def in the same block with no intervening memory or register
229 /// dependencies; move the def down, nest it with the current instruction, and
230 /// insert a tee_local to satisfy the rest of the uses. As an illustration,
231 /// rewrite this:
232 ///
233 ///    Reg = INST ...        // Def
234 ///    INST ..., Reg, ...    // Insert
235 ///    INST ..., Reg, ...
236 ///    INST ..., Reg, ...
237 ///
238 /// to this:
239 ///
240 ///    Reg = INST ...        // Def (to become the new Insert)
241 ///    TeeReg, NewReg = TEE_LOCAL_... Reg
242 ///    INST ..., TeeReg, ... // Insert
243 ///    INST ..., NewReg, ...
244 ///    INST ..., NewReg, ...
245 ///
246 /// with Reg and TeeReg stackified. This eliminates a get_local from the
247 /// resulting code.
248 static MachineInstr *MoveAndTeeForMultiUse(
249     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
250     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
251     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
252   MBB.splice(Insert, &MBB, Def);
253   LIS.handleMove(Def);
254   const auto *RegClass = MRI.getRegClass(Reg);
255   unsigned NewReg = MRI.createVirtualRegister(RegClass);
256   unsigned TeeReg = MRI.createVirtualRegister(RegClass);
257   MRI.replaceRegWith(Reg, NewReg);
258   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
259                               TII->get(GetTeeLocalOpcode(RegClass)), TeeReg)
260                           .addReg(NewReg, RegState::Define)
261                           .addReg(Reg);
262   Op.setReg(TeeReg);
263   Def->getOperand(0).setReg(Reg);
264   LIS.InsertMachineInstrInMaps(Tee);
265   LIS.shrinkToUses(&LIS.getInterval(Reg));
266   LIS.createAndComputeVirtRegInterval(NewReg);
267   LIS.createAndComputeVirtRegInterval(TeeReg);
268   MFI.stackifyVReg(Reg);
269   MFI.stackifyVReg(TeeReg);
270   ImposeStackOrdering(Def);
271   ImposeStackOrdering(Tee);
272   return Def;
273 }
274 
275 namespace {
276 /// A stack for walking the tree of instructions being built, visiting the
277 /// MachineOperands in DFS order.
278 class TreeWalkerState {
279   typedef MachineInstr::mop_iterator mop_iterator;
280   typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
281   typedef iterator_range<mop_reverse_iterator> RangeTy;
282   SmallVector<RangeTy, 4> Worklist;
283 
284 public:
285   explicit TreeWalkerState(MachineInstr *Insert) {
286     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
287     if (Range.begin() != Range.end())
288       Worklist.push_back(reverse(Range));
289   }
290 
291   bool Done() const { return Worklist.empty(); }
292 
293   MachineOperand &Pop() {
294     RangeTy &Range = Worklist.back();
295     MachineOperand &Op = *Range.begin();
296     Range = drop_begin(Range, 1);
297     if (Range.begin() == Range.end())
298       Worklist.pop_back();
299     assert((Worklist.empty() ||
300             Worklist.back().begin() != Worklist.back().end()) &&
301            "Empty ranges shouldn't remain in the worklist");
302     return Op;
303   }
304 
305   /// Push Instr's operands onto the stack to be visited.
306   void PushOperands(MachineInstr *Instr) {
307     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
308     if (Range.begin() != Range.end())
309       Worklist.push_back(reverse(Range));
310   }
311 
312   /// Some of Instr's operands are on the top of the stack; remove them and
313   /// re-insert them starting from the beginning (because we've commuted them).
314   void ResetTopOperands(MachineInstr *Instr) {
315     assert(HasRemainingOperands(Instr) &&
316            "Reseting operands should only be done when the instruction has "
317            "an operand still on the stack");
318     Worklist.back() = reverse(Instr->explicit_uses());
319   }
320 
321   /// Test whether Instr has operands remaining to be visited at the top of
322   /// the stack.
323   bool HasRemainingOperands(const MachineInstr *Instr) const {
324     if (Worklist.empty())
325       return false;
326     const RangeTy &Range = Worklist.back();
327     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
328   }
329 };
330 
331 /// State to keep track of whether commuting is in flight or whether it's been
332 /// tried for the current instruction and didn't work.
333 class CommutingState {
334   /// There are effectively three states: the initial state where we haven't
335   /// started commuting anything and we don't know anything yet, the tenative
336   /// state where we've commuted the operands of the current instruction and are
337   /// revisting it, and the declined state where we've reverted the operands
338   /// back to their original order and will no longer commute it further.
339   bool TentativelyCommuting;
340   bool Declined;
341 
342   /// During the tentative state, these hold the operand indices of the commuted
343   /// operands.
344   unsigned Operand0, Operand1;
345 
346 public:
347   CommutingState() : TentativelyCommuting(false), Declined(false) {}
348 
349   /// Stackification for an operand was not successful due to ordering
350   /// constraints. If possible, and if we haven't already tried it and declined
351   /// it, commute Insert's operands and prepare to revisit it.
352   void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
353                     const WebAssemblyInstrInfo *TII) {
354     if (TentativelyCommuting) {
355       assert(!Declined &&
356              "Don't decline commuting until you've finished trying it");
357       // Commuting didn't help. Revert it.
358       TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1);
359       TentativelyCommuting = false;
360       Declined = true;
361     } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
362       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
363       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
364       if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) {
365         // Tentatively commute the operands and try again.
366         TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1);
367         TreeWalker.ResetTopOperands(Insert);
368         TentativelyCommuting = true;
369         Declined = false;
370       }
371     }
372   }
373 
374   /// Stackification for some operand was successful. Reset to the default
375   /// state.
376   void Reset() {
377     TentativelyCommuting = false;
378     Declined = false;
379   }
380 };
381 } // end anonymous namespace
382 
383 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
384   DEBUG(dbgs() << "********** Register Stackifying **********\n"
385                   "********** Function: "
386                << MF.getName() << '\n');
387 
388   bool Changed = false;
389   MachineRegisterInfo &MRI = MF.getRegInfo();
390   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
391   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
392   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
393   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
394   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
395   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
396 
397   // Walk the instructions from the bottom up. Currently we don't look past
398   // block boundaries, and the blocks aren't ordered so the block visitation
399   // order isn't significant, but we may want to change this in the future.
400   for (MachineBasicBlock &MBB : MF) {
401     // Don't use a range-based for loop, because we modify the list as we're
402     // iterating over it and the end iterator may change.
403     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
404       MachineInstr *Insert = &*MII;
405       // Don't nest anything inside a phi.
406       if (Insert->getOpcode() == TargetOpcode::PHI)
407         break;
408 
409       // Don't nest anything inside an inline asm, because we don't have
410       // constraints for $push inputs.
411       if (Insert->getOpcode() == TargetOpcode::INLINEASM)
412         break;
413 
414       // Iterate through the inputs in reverse order, since we'll be pulling
415       // operands off the stack in LIFO order.
416       CommutingState Commuting;
417       TreeWalkerState TreeWalker(Insert);
418       while (!TreeWalker.Done()) {
419         MachineOperand &Op = TreeWalker.Pop();
420 
421         // We're only interested in explicit virtual register operands.
422         if (!Op.isReg())
423           continue;
424 
425         unsigned Reg = Op.getReg();
426         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
427         assert(!Op.isImplicit() &&
428                "explicit_uses() should only iterate over explicit operands");
429         if (TargetRegisterInfo::isPhysicalRegister(Reg))
430           continue;
431 
432         // Identify the definition for this register at this point. Most
433         // registers are in SSA form here so we try a quick MRI query first.
434         MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
435         if (!Def) {
436           // MRI doesn't know what the Def is. Try asking LIS.
437           const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
438               LIS.getInstructionIndex(Insert));
439           if (!ValNo)
440             continue;
441           Def = LIS.getInstructionFromIndex(ValNo->def);
442           if (!Def)
443             continue;
444         }
445 
446         // Don't nest an INLINE_ASM def into anything, because we don't have
447         // constraints for $pop outputs.
448         if (Def->getOpcode() == TargetOpcode::INLINEASM)
449           continue;
450 
451         // Don't nest PHIs inside of anything.
452         if (Def->getOpcode() == TargetOpcode::PHI)
453           continue;
454 
455         // Argument instructions represent live-in registers and not real
456         // instructions.
457         if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 ||
458             Def->getOpcode() == WebAssembly::ARGUMENT_I64 ||
459             Def->getOpcode() == WebAssembly::ARGUMENT_F32 ||
460             Def->getOpcode() == WebAssembly::ARGUMENT_F64)
461           continue;
462 
463         // Decide which strategy to take. Prefer to move a single-use value
464         // over cloning it, and prefer cloning over introducing a tee_local.
465         // For moving, we require the def to be in the same block as the use;
466         // this makes things simpler (LiveIntervals' handleMove function only
467         // supports intra-block moves) and it's MachineSink's job to catch all
468         // the sinking opportunities anyway.
469         bool SameBlock = Def->getParent() == &MBB;
470         bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI);
471         if (CanMove && MRI.hasOneUse(Reg)) {
472           Insert = MoveForSingleUse(Reg, Def, MBB, Insert, LIS, MFI);
473         } else if (Def->isAsCheapAsAMove() &&
474                    TII->isTriviallyReMaterializable(Def, &AA)) {
475           Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI,
476                                          MRI, TII, TRI);
477         } else if (CanMove &&
478                    OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT)) {
479           Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
480                                          MRI, TII);
481         } else {
482           // We failed to stackify the operand. If the problem was ordering
483           // constraints, Commuting may be able to help.
484           if (!CanMove && SameBlock)
485             Commuting.MaybeCommute(Insert, TreeWalker, TII);
486           // Proceed to the next operand.
487           continue;
488         }
489 
490         // We stackified an operand. Add the defining instruction's operands to
491         // the worklist stack now to continue to build an ever deeper tree.
492         Commuting.Reset();
493         TreeWalker.PushOperands(Insert);
494       }
495 
496       // If we stackified any operands, skip over the tree to start looking for
497       // the next instruction we can build a tree on.
498       if (Insert != &*MII) {
499         ImposeStackOrdering(&*MII);
500         MII = std::prev(
501             make_reverse_iterator(MachineBasicBlock::iterator(Insert)));
502         Changed = true;
503       }
504     }
505   }
506 
507   // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so
508   // that it never looks like a use-before-def.
509   if (Changed) {
510     MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK);
511     for (MachineBasicBlock &MBB : MF)
512       MBB.addLiveIn(WebAssembly::EXPR_STACK);
513   }
514 
515 #ifndef NDEBUG
516   // Verify that pushes and pops are performed in LIFO order.
517   SmallVector<unsigned, 0> Stack;
518   for (MachineBasicBlock &MBB : MF) {
519     for (MachineInstr &MI : MBB) {
520       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
521         if (!MO.isReg())
522           continue;
523         unsigned Reg = MO.getReg();
524 
525         // Don't stackify physregs like SP or FP.
526         if (!TargetRegisterInfo::isVirtualRegister(Reg))
527           continue;
528 
529         if (MFI.isVRegStackified(Reg)) {
530           if (MO.isDef())
531             Stack.push_back(Reg);
532           else
533             assert(Stack.pop_back_val() == Reg &&
534                    "Register stack pop should be paired with a push");
535         }
536       }
537     }
538     // TODO: Generalize this code to support keeping values on the stack across
539     // basic block boundaries.
540     assert(Stack.empty() &&
541            "Register stack pushes and pops should be balanced");
542   }
543 #endif
544 
545   return Changed;
546 }
547