1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// expression don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-reg-stackify" 39 40 namespace { 41 class WebAssemblyRegStackify final : public MachineFunctionPass { 42 const char *getPassName() const override { 43 return "WebAssembly Register Stackify"; 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.setPreservesCFG(); 48 AU.addRequired<AAResultsWrapperPass>(); 49 AU.addRequired<MachineDominatorTree>(); 50 AU.addRequired<LiveIntervals>(); 51 AU.addPreserved<MachineBlockFrequencyInfo>(); 52 AU.addPreserved<SlotIndexes>(); 53 AU.addPreserved<LiveIntervals>(); 54 AU.addPreservedID(LiveVariablesID); 55 AU.addPreserved<MachineDominatorTree>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 64 }; 65 } // end anonymous namespace 66 67 char WebAssemblyRegStackify::ID = 0; 68 FunctionPass *llvm::createWebAssemblyRegStackify() { 69 return new WebAssemblyRegStackify(); 70 } 71 72 // Decorate the given instruction with implicit operands that enforce the 73 // expression stack ordering constraints for an instruction which is on 74 // the expression stack. 75 static void ImposeStackOrdering(MachineInstr *MI) { 76 // Write the opaque EXPR_STACK register. 77 if (!MI->definesRegister(WebAssembly::EXPR_STACK)) 78 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 79 /*isDef=*/true, 80 /*isImp=*/true)); 81 82 // Also read the opaque EXPR_STACK register. 83 if (!MI->readsRegister(WebAssembly::EXPR_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 85 /*isDef=*/false, 86 /*isImp=*/true)); 87 } 88 89 // Determine whether a call to the callee referenced by 90 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 91 // effects. 92 static void QueryCallee(const MachineInstr *MI, unsigned CalleeOpNo, 93 bool &Read, bool &Write, bool &Effects, 94 bool &StackPointer) { 95 // All calls can use the stack pointer. 96 StackPointer = true; 97 98 const MachineOperand &MO = MI->getOperand(CalleeOpNo); 99 if (MO.isGlobal()) { 100 const Constant *GV = MO.getGlobal(); 101 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 102 if (!GA->isInterposable()) 103 GV = GA->getAliasee(); 104 105 if (const Function *F = dyn_cast<Function>(GV)) { 106 if (!F->doesNotThrow()) 107 Effects = true; 108 if (F->doesNotAccessMemory()) 109 return; 110 if (F->onlyReadsMemory()) { 111 Read = true; 112 return; 113 } 114 } 115 } 116 117 // Assume the worst. 118 Write = true; 119 Read = true; 120 Effects = true; 121 } 122 123 // Determine whether MI reads memory, writes memory, has side effects, 124 // and/or uses the __stack_pointer value. 125 static void Query(const MachineInstr *MI, AliasAnalysis &AA, 126 bool &Read, bool &Write, bool &Effects, bool &StackPointer) { 127 assert(!MI->isPosition()); 128 assert(!MI->isTerminator()); 129 130 if (MI->isDebugValue()) 131 return; 132 133 // Check for loads. 134 if (MI->mayLoad() && !MI->isInvariantLoad(&AA)) 135 Read = true; 136 137 // Check for stores. 138 if (MI->mayStore()) { 139 Write = true; 140 141 // Check for stores to __stack_pointer. 142 for (auto MMO : MI->memoperands()) { 143 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 144 if (MPI.V.is<const PseudoSourceValue *>()) { 145 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 146 if (const ExternalSymbolPseudoSourceValue *EPSV = 147 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 148 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") 149 StackPointer = true; 150 } 151 } 152 } else if (MI->hasOrderedMemoryRef()) { 153 switch (MI->getOpcode()) { 154 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 155 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 156 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 157 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 158 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 159 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 160 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 161 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 162 // These instruction have hasUnmodeledSideEffects() returning true 163 // because they trap on overflow and invalid so they can't be arbitrarily 164 // moved, however hasOrderedMemoryRef() interprets this plus their lack 165 // of memoperands as having a potential unknown memory reference. 166 break; 167 default: 168 // Record volatile accesses, unless it's a call, as calls are handled 169 // specially below. 170 if (!MI->isCall()) { 171 Write = true; 172 Effects = true; 173 } 174 break; 175 } 176 } 177 178 // Check for side effects. 179 if (MI->hasUnmodeledSideEffects()) { 180 switch (MI->getOpcode()) { 181 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 182 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 183 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 184 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 185 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 186 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 187 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 188 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 189 // These instructions have hasUnmodeledSideEffects() returning true 190 // because they trap on overflow and invalid so they can't be arbitrarily 191 // moved, however in the specific case of register stackifying, it is safe 192 // to move them because overflow and invalid are Undefined Behavior. 193 break; 194 default: 195 Effects = true; 196 break; 197 } 198 } 199 200 // Analyze calls. 201 if (MI->isCall()) { 202 switch (MI->getOpcode()) { 203 case WebAssembly::CALL_VOID: 204 case WebAssembly::CALL_INDIRECT_VOID: 205 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 206 break; 207 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 208 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 209 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 210 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 211 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 212 break; 213 default: 214 llvm_unreachable("unexpected call opcode"); 215 } 216 } 217 } 218 219 // Test whether Def is safe and profitable to rematerialize. 220 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 221 const WebAssemblyInstrInfo *TII) { 222 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 223 } 224 225 // Identify the definition for this register at this point. This is a 226 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 227 // LiveIntervals to handle complex cases. 228 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 229 const MachineRegisterInfo &MRI, 230 const LiveIntervals &LIS) 231 { 232 // Most registers are in SSA form here so we try a quick MRI query first. 233 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 234 return Def; 235 236 // MRI doesn't know what the Def is. Try asking LIS. 237 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 238 LIS.getInstructionIndex(*Insert))) 239 return LIS.getInstructionFromIndex(ValNo->def); 240 241 return nullptr; 242 } 243 244 // Test whether Reg, as defined at Def, has exactly one use. This is a 245 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 246 // to handle complex cases. 247 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 248 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 249 LiveIntervals &LIS) { 250 // Most registers are in SSA form here so we try a quick MRI query first. 251 if (MRI.hasOneUse(Reg)) 252 return true; 253 254 bool HasOne = false; 255 const LiveInterval &LI = LIS.getInterval(Reg); 256 const VNInfo *DefVNI = LI.getVNInfoAt( 257 LIS.getInstructionIndex(*Def).getRegSlot()); 258 assert(DefVNI); 259 for (auto I : MRI.use_nodbg_operands(Reg)) { 260 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 261 if (Result.valueIn() == DefVNI) { 262 if (!Result.isKill()) 263 return false; 264 if (HasOne) 265 return false; 266 HasOne = true; 267 } 268 } 269 return HasOne; 270 } 271 272 // Test whether it's safe to move Def to just before Insert. 273 // TODO: Compute memory dependencies in a way that doesn't require always 274 // walking the block. 275 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 276 // more precise. 277 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 278 AliasAnalysis &AA, const LiveIntervals &LIS, 279 const MachineRegisterInfo &MRI) { 280 assert(Def->getParent() == Insert->getParent()); 281 282 // Check for register dependencies. 283 for (const MachineOperand &MO : Def->operands()) { 284 if (!MO.isReg() || MO.isUndef()) 285 continue; 286 unsigned Reg = MO.getReg(); 287 288 // If the register is dead here and at Insert, ignore it. 289 if (MO.isDead() && Insert->definesRegister(Reg) && 290 !Insert->readsRegister(Reg)) 291 continue; 292 293 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 294 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 295 // from moving down, and we've already checked for that. 296 if (Reg == WebAssembly::ARGUMENTS) 297 continue; 298 // If the physical register is never modified, ignore it. 299 if (!MRI.isPhysRegModified(Reg)) 300 continue; 301 // Otherwise, it's a physical register with unknown liveness. 302 return false; 303 } 304 305 // Ask LiveIntervals whether moving this virtual register use or def to 306 // Insert will change which value numbers are seen. 307 // 308 // If the operand is a use of a register that is also defined in the same 309 // instruction, test that the newly defined value reaches the insert point, 310 // since the operand will be moving along with the def. 311 const LiveInterval &LI = LIS.getInterval(Reg); 312 VNInfo *DefVNI = 313 (MO.isDef() || Def->definesRegister(Reg)) ? 314 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) : 315 LI.getVNInfoBefore(LIS.getInstructionIndex(*Def)); 316 assert(DefVNI && "Instruction input missing value number"); 317 VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert)); 318 if (InsVNI && DefVNI != InsVNI) 319 return false; 320 } 321 322 bool Read = false, Write = false, Effects = false, StackPointer = false; 323 Query(Def, AA, Read, Write, Effects, StackPointer); 324 325 // If the instruction does not access memory and has no side effects, it has 326 // no additional dependencies. 327 if (!Read && !Write && !Effects && !StackPointer) 328 return true; 329 330 // Scan through the intervening instructions between Def and Insert. 331 MachineBasicBlock::const_iterator D(Def), I(Insert); 332 for (--I; I != D; --I) { 333 bool InterveningRead = false; 334 bool InterveningWrite = false; 335 bool InterveningEffects = false; 336 bool InterveningStackPointer = false; 337 Query(I, AA, InterveningRead, InterveningWrite, InterveningEffects, 338 InterveningStackPointer); 339 if (Effects && InterveningEffects) 340 return false; 341 if (Read && InterveningWrite) 342 return false; 343 if (Write && (InterveningRead || InterveningWrite)) 344 return false; 345 if (StackPointer && InterveningStackPointer) 346 return false; 347 } 348 349 return true; 350 } 351 352 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 353 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 354 const MachineBasicBlock &MBB, 355 const MachineRegisterInfo &MRI, 356 const MachineDominatorTree &MDT, 357 LiveIntervals &LIS, 358 WebAssemblyFunctionInfo &MFI) { 359 const LiveInterval &LI = LIS.getInterval(Reg); 360 361 const MachineInstr *OneUseInst = OneUse.getParent(); 362 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 363 364 for (const MachineOperand &Use : MRI.use_operands(Reg)) { 365 if (&Use == &OneUse) 366 continue; 367 368 const MachineInstr *UseInst = Use.getParent(); 369 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 370 371 if (UseVNI != OneUseVNI) 372 continue; 373 374 const MachineInstr *OneUseInst = OneUse.getParent(); 375 if (UseInst == OneUseInst) { 376 // Another use in the same instruction. We need to ensure that the one 377 // selected use happens "before" it. 378 if (&OneUse > &Use) 379 return false; 380 } else { 381 // Test that the use is dominated by the one selected use. 382 while (!MDT.dominates(OneUseInst, UseInst)) { 383 // Actually, dominating is over-conservative. Test that the use would 384 // happen after the one selected use in the stack evaluation order. 385 // 386 // This is needed as a consequence of using implicit get_locals for 387 // uses and implicit set_locals for defs. 388 if (UseInst->getDesc().getNumDefs() == 0) 389 return false; 390 const MachineOperand &MO = UseInst->getOperand(0); 391 if (!MO.isReg()) 392 return false; 393 unsigned DefReg = MO.getReg(); 394 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 395 !MFI.isVRegStackified(DefReg)) 396 return false; 397 assert(MRI.hasOneUse(DefReg)); 398 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 399 const MachineInstr *NewUseInst = NewUse.getParent(); 400 if (NewUseInst == OneUseInst) { 401 if (&OneUse > &NewUse) 402 return false; 403 break; 404 } 405 UseInst = NewUseInst; 406 } 407 } 408 } 409 return true; 410 } 411 412 /// Get the appropriate tee_local opcode for the given register class. 413 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) { 414 if (RC == &WebAssembly::I32RegClass) 415 return WebAssembly::TEE_LOCAL_I32; 416 if (RC == &WebAssembly::I64RegClass) 417 return WebAssembly::TEE_LOCAL_I64; 418 if (RC == &WebAssembly::F32RegClass) 419 return WebAssembly::TEE_LOCAL_F32; 420 if (RC == &WebAssembly::F64RegClass) 421 return WebAssembly::TEE_LOCAL_F64; 422 llvm_unreachable("Unexpected register class"); 423 } 424 425 // Shrink LI to its uses, cleaning up LI. 426 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 427 if (LIS.shrinkToUses(&LI)) { 428 SmallVector<LiveInterval*, 4> SplitLIs; 429 LIS.splitSeparateComponents(LI, SplitLIs); 430 } 431 } 432 433 /// A single-use def in the same block with no intervening memory or register 434 /// dependencies; move the def down and nest it with the current instruction. 435 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 436 MachineInstr *Def, 437 MachineBasicBlock &MBB, 438 MachineInstr *Insert, LiveIntervals &LIS, 439 WebAssemblyFunctionInfo &MFI, 440 MachineRegisterInfo &MRI) { 441 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 442 443 MBB.splice(Insert, &MBB, Def); 444 LIS.handleMove(*Def); 445 446 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 447 // No one else is using this register for anything so we can just stackify 448 // it in place. 449 MFI.stackifyVReg(Reg); 450 } else { 451 // The register may have unrelated uses or defs; create a new register for 452 // just our one def and use so that we can stackify it. 453 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 454 Def->getOperand(0).setReg(NewReg); 455 Op.setReg(NewReg); 456 457 // Tell LiveIntervals about the new register. 458 LIS.createAndComputeVirtRegInterval(NewReg); 459 460 // Tell LiveIntervals about the changes to the old register. 461 LiveInterval &LI = LIS.getInterval(Reg); 462 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 463 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 464 /*RemoveDeadValNo=*/true); 465 466 MFI.stackifyVReg(NewReg); 467 468 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 469 } 470 471 ImposeStackOrdering(Def); 472 return Def; 473 } 474 475 /// A trivially cloneable instruction; clone it and nest the new copy with the 476 /// current instruction. 477 static MachineInstr *RematerializeCheapDef( 478 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 479 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 480 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 481 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 482 DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 483 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 484 485 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 486 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 487 Op.setReg(NewReg); 488 MachineInstr *Clone = &*std::prev(Insert); 489 LIS.InsertMachineInstrInMaps(*Clone); 490 LIS.createAndComputeVirtRegInterval(NewReg); 491 MFI.stackifyVReg(NewReg); 492 ImposeStackOrdering(Clone); 493 494 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 495 496 // Shrink the interval. 497 bool IsDead = MRI.use_empty(Reg); 498 if (!IsDead) { 499 LiveInterval &LI = LIS.getInterval(Reg); 500 ShrinkToUses(LI, LIS); 501 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 502 } 503 504 // If that was the last use of the original, delete the original. 505 if (IsDead) { 506 DEBUG(dbgs() << " - Deleting original\n"); 507 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 508 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 509 LIS.removeInterval(Reg); 510 LIS.RemoveMachineInstrFromMaps(Def); 511 Def.eraseFromParent(); 512 } 513 514 return Clone; 515 } 516 517 /// A multiple-use def in the same block with no intervening memory or register 518 /// dependencies; move the def down, nest it with the current instruction, and 519 /// insert a tee_local to satisfy the rest of the uses. As an illustration, 520 /// rewrite this: 521 /// 522 /// Reg = INST ... // Def 523 /// INST ..., Reg, ... // Insert 524 /// INST ..., Reg, ... 525 /// INST ..., Reg, ... 526 /// 527 /// to this: 528 /// 529 /// DefReg = INST ... // Def (to become the new Insert) 530 /// TeeReg, Reg = TEE_LOCAL_... DefReg 531 /// INST ..., TeeReg, ... // Insert 532 /// INST ..., Reg, ... 533 /// INST ..., Reg, ... 534 /// 535 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 536 /// resulting code. 537 static MachineInstr *MoveAndTeeForMultiUse( 538 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 539 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 540 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 541 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 542 543 // Move Def into place. 544 MBB.splice(Insert, &MBB, Def); 545 LIS.handleMove(*Def); 546 547 // Create the Tee and attach the registers. 548 const auto *RegClass = MRI.getRegClass(Reg); 549 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 550 unsigned DefReg = MRI.createVirtualRegister(RegClass); 551 MachineOperand &DefMO = Def->getOperand(0); 552 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 553 TII->get(GetTeeLocalOpcode(RegClass)), TeeReg) 554 .addReg(Reg, RegState::Define) 555 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 556 Op.setReg(TeeReg); 557 DefMO.setReg(DefReg); 558 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 559 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 560 561 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 562 LiveInterval &LI = LIS.getInterval(Reg); 563 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 564 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 565 I->start = TeeIdx; 566 ValNo->def = TeeIdx; 567 ShrinkToUses(LI, LIS); 568 569 // Finish stackifying the new regs. 570 LIS.createAndComputeVirtRegInterval(TeeReg); 571 LIS.createAndComputeVirtRegInterval(DefReg); 572 MFI.stackifyVReg(DefReg); 573 MFI.stackifyVReg(TeeReg); 574 ImposeStackOrdering(Def); 575 ImposeStackOrdering(Tee); 576 577 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 578 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 579 return Def; 580 } 581 582 namespace { 583 /// A stack for walking the tree of instructions being built, visiting the 584 /// MachineOperands in DFS order. 585 class TreeWalkerState { 586 typedef MachineInstr::mop_iterator mop_iterator; 587 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 588 typedef iterator_range<mop_reverse_iterator> RangeTy; 589 SmallVector<RangeTy, 4> Worklist; 590 591 public: 592 explicit TreeWalkerState(MachineInstr *Insert) { 593 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 594 if (Range.begin() != Range.end()) 595 Worklist.push_back(reverse(Range)); 596 } 597 598 bool Done() const { return Worklist.empty(); } 599 600 MachineOperand &Pop() { 601 RangeTy &Range = Worklist.back(); 602 MachineOperand &Op = *Range.begin(); 603 Range = drop_begin(Range, 1); 604 if (Range.begin() == Range.end()) 605 Worklist.pop_back(); 606 assert((Worklist.empty() || 607 Worklist.back().begin() != Worklist.back().end()) && 608 "Empty ranges shouldn't remain in the worklist"); 609 return Op; 610 } 611 612 /// Push Instr's operands onto the stack to be visited. 613 void PushOperands(MachineInstr *Instr) { 614 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 615 if (Range.begin() != Range.end()) 616 Worklist.push_back(reverse(Range)); 617 } 618 619 /// Some of Instr's operands are on the top of the stack; remove them and 620 /// re-insert them starting from the beginning (because we've commuted them). 621 void ResetTopOperands(MachineInstr *Instr) { 622 assert(HasRemainingOperands(Instr) && 623 "Reseting operands should only be done when the instruction has " 624 "an operand still on the stack"); 625 Worklist.back() = reverse(Instr->explicit_uses()); 626 } 627 628 /// Test whether Instr has operands remaining to be visited at the top of 629 /// the stack. 630 bool HasRemainingOperands(const MachineInstr *Instr) const { 631 if (Worklist.empty()) 632 return false; 633 const RangeTy &Range = Worklist.back(); 634 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 635 } 636 637 /// Test whether the given register is present on the stack, indicating an 638 /// operand in the tree that we haven't visited yet. Moving a definition of 639 /// Reg to a point in the tree after that would change its value. 640 /// 641 /// This is needed as a consequence of using implicit get_locals for 642 /// uses and implicit set_locals for defs. 643 bool IsOnStack(unsigned Reg) const { 644 for (const RangeTy &Range : Worklist) 645 for (const MachineOperand &MO : Range) 646 if (MO.isReg() && MO.getReg() == Reg) 647 return true; 648 return false; 649 } 650 }; 651 652 /// State to keep track of whether commuting is in flight or whether it's been 653 /// tried for the current instruction and didn't work. 654 class CommutingState { 655 /// There are effectively three states: the initial state where we haven't 656 /// started commuting anything and we don't know anything yet, the tenative 657 /// state where we've commuted the operands of the current instruction and are 658 /// revisting it, and the declined state where we've reverted the operands 659 /// back to their original order and will no longer commute it further. 660 bool TentativelyCommuting; 661 bool Declined; 662 663 /// During the tentative state, these hold the operand indices of the commuted 664 /// operands. 665 unsigned Operand0, Operand1; 666 667 public: 668 CommutingState() : TentativelyCommuting(false), Declined(false) {} 669 670 /// Stackification for an operand was not successful due to ordering 671 /// constraints. If possible, and if we haven't already tried it and declined 672 /// it, commute Insert's operands and prepare to revisit it. 673 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 674 const WebAssemblyInstrInfo *TII) { 675 if (TentativelyCommuting) { 676 assert(!Declined && 677 "Don't decline commuting until you've finished trying it"); 678 // Commuting didn't help. Revert it. 679 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 680 TentativelyCommuting = false; 681 Declined = true; 682 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 683 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 684 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 685 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 686 // Tentatively commute the operands and try again. 687 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 688 TreeWalker.ResetTopOperands(Insert); 689 TentativelyCommuting = true; 690 Declined = false; 691 } 692 } 693 } 694 695 /// Stackification for some operand was successful. Reset to the default 696 /// state. 697 void Reset() { 698 TentativelyCommuting = false; 699 Declined = false; 700 } 701 }; 702 } // end anonymous namespace 703 704 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 705 DEBUG(dbgs() << "********** Register Stackifying **********\n" 706 "********** Function: " 707 << MF.getName() << '\n'); 708 709 bool Changed = false; 710 MachineRegisterInfo &MRI = MF.getRegInfo(); 711 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 712 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 713 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 714 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 715 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 716 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 717 718 // Walk the instructions from the bottom up. Currently we don't look past 719 // block boundaries, and the blocks aren't ordered so the block visitation 720 // order isn't significant, but we may want to change this in the future. 721 for (MachineBasicBlock &MBB : MF) { 722 // Don't use a range-based for loop, because we modify the list as we're 723 // iterating over it and the end iterator may change. 724 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 725 MachineInstr *Insert = &*MII; 726 // Don't nest anything inside an inline asm, because we don't have 727 // constraints for $push inputs. 728 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 729 continue; 730 731 // Ignore debugging intrinsics. 732 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 733 continue; 734 735 // Iterate through the inputs in reverse order, since we'll be pulling 736 // operands off the stack in LIFO order. 737 CommutingState Commuting; 738 TreeWalkerState TreeWalker(Insert); 739 while (!TreeWalker.Done()) { 740 MachineOperand &Op = TreeWalker.Pop(); 741 742 // We're only interested in explicit virtual register operands. 743 if (!Op.isReg()) 744 continue; 745 746 unsigned Reg = Op.getReg(); 747 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 748 assert(!Op.isImplicit() && 749 "explicit_uses() should only iterate over explicit operands"); 750 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 751 continue; 752 753 // Identify the definition for this register at this point. Most 754 // registers are in SSA form here so we try a quick MRI query first. 755 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 756 if (!Def) 757 continue; 758 759 // Don't nest an INLINE_ASM def into anything, because we don't have 760 // constraints for $pop outputs. 761 if (Def->getOpcode() == TargetOpcode::INLINEASM) 762 continue; 763 764 // Argument instructions represent live-in registers and not real 765 // instructions. 766 if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || 767 Def->getOpcode() == WebAssembly::ARGUMENT_I64 || 768 Def->getOpcode() == WebAssembly::ARGUMENT_F32 || 769 Def->getOpcode() == WebAssembly::ARGUMENT_F64) 770 continue; 771 772 // Decide which strategy to take. Prefer to move a single-use value 773 // over cloning it, and prefer cloning over introducing a tee_local. 774 // For moving, we require the def to be in the same block as the use; 775 // this makes things simpler (LiveIntervals' handleMove function only 776 // supports intra-block moves) and it's MachineSink's job to catch all 777 // the sinking opportunities anyway. 778 bool SameBlock = Def->getParent() == &MBB; 779 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) && 780 !TreeWalker.IsOnStack(Reg); 781 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 782 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 783 } else if (ShouldRematerialize(*Def, AA, TII)) { 784 Insert = 785 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 786 LIS, MFI, MRI, TII, TRI); 787 } else if (CanMove && 788 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 789 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 790 MRI, TII); 791 } else { 792 // We failed to stackify the operand. If the problem was ordering 793 // constraints, Commuting may be able to help. 794 if (!CanMove && SameBlock) 795 Commuting.MaybeCommute(Insert, TreeWalker, TII); 796 // Proceed to the next operand. 797 continue; 798 } 799 800 // We stackified an operand. Add the defining instruction's operands to 801 // the worklist stack now to continue to build an ever deeper tree. 802 Commuting.Reset(); 803 TreeWalker.PushOperands(Insert); 804 } 805 806 // If we stackified any operands, skip over the tree to start looking for 807 // the next instruction we can build a tree on. 808 if (Insert != &*MII) { 809 ImposeStackOrdering(&*MII); 810 MII = std::prev( 811 llvm::make_reverse_iterator(MachineBasicBlock::iterator(Insert))); 812 Changed = true; 813 } 814 } 815 } 816 817 // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so 818 // that it never looks like a use-before-def. 819 if (Changed) { 820 MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); 821 for (MachineBasicBlock &MBB : MF) 822 MBB.addLiveIn(WebAssembly::EXPR_STACK); 823 } 824 825 #ifndef NDEBUG 826 // Verify that pushes and pops are performed in LIFO order. 827 SmallVector<unsigned, 0> Stack; 828 for (MachineBasicBlock &MBB : MF) { 829 for (MachineInstr &MI : MBB) { 830 if (MI.isDebugValue()) 831 continue; 832 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 833 if (!MO.isReg()) 834 continue; 835 unsigned Reg = MO.getReg(); 836 837 if (MFI.isVRegStackified(Reg)) { 838 if (MO.isDef()) 839 Stack.push_back(Reg); 840 else 841 assert(Stack.pop_back_val() == Reg && 842 "Register stack pop should be paired with a push"); 843 } 844 } 845 } 846 // TODO: Generalize this code to support keeping values on the stack across 847 // basic block boundaries. 848 assert(Stack.empty() && 849 "Register stack pushes and pops should be balanced"); 850 } 851 #endif 852 853 return Changed; 854 } 855