1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void ImposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 unsigned TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 124 MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32)); 125 MI->addOperand(MachineOperand::CreateReg(TempReg, false)); 126 MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 127 TII->get(WebAssembly::CONST_I32), TempReg) 128 .addImm(0); 129 LIS.InsertMachineInstrInMaps(*Const); 130 } else { 131 llvm_unreachable("Unexpected reg class"); 132 } 133 } 134 135 // Determine whether a call to the callee referenced by 136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 137 // effects. 138 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 139 bool &Write, bool &Effects, bool &StackPointer) { 140 // All calls can use the stack pointer. 141 StackPointer = true; 142 143 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 144 if (MO.isGlobal()) { 145 const Constant *GV = MO.getGlobal(); 146 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 147 if (!GA->isInterposable()) 148 GV = GA->getAliasee(); 149 150 if (const Function *F = dyn_cast<Function>(GV)) { 151 if (!F->doesNotThrow()) 152 Effects = true; 153 if (F->doesNotAccessMemory()) 154 return; 155 if (F->onlyReadsMemory()) { 156 Read = true; 157 return; 158 } 159 } 160 } 161 162 // Assume the worst. 163 Write = true; 164 Read = true; 165 Effects = true; 166 } 167 168 // Determine whether MI reads memory, writes memory, has side effects, 169 // and/or uses the stack pointer value. 170 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 171 bool &Write, bool &Effects, bool &StackPointer) { 172 assert(!MI.isTerminator()); 173 174 if (MI.isDebugInstr() || MI.isPosition()) 175 return; 176 177 // Check for loads. 178 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 179 Read = true; 180 181 // Check for stores. 182 if (MI.mayStore()) { 183 Write = true; 184 185 // Check for stores to __stack_pointer. 186 for (auto MMO : MI.memoperands()) { 187 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 188 if (MPI.V.is<const PseudoSourceValue *>()) { 189 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 190 if (const ExternalSymbolPseudoSourceValue *EPSV = 191 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 192 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { 193 StackPointer = true; 194 } 195 } 196 } 197 } else if (MI.hasOrderedMemoryRef()) { 198 switch (MI.getOpcode()) { 199 case WebAssembly::DIV_S_I32: 200 case WebAssembly::DIV_S_I64: 201 case WebAssembly::REM_S_I32: 202 case WebAssembly::REM_S_I64: 203 case WebAssembly::DIV_U_I32: 204 case WebAssembly::DIV_U_I64: 205 case WebAssembly::REM_U_I32: 206 case WebAssembly::REM_U_I64: 207 case WebAssembly::I32_TRUNC_S_F32: 208 case WebAssembly::I64_TRUNC_S_F32: 209 case WebAssembly::I32_TRUNC_S_F64: 210 case WebAssembly::I64_TRUNC_S_F64: 211 case WebAssembly::I32_TRUNC_U_F32: 212 case WebAssembly::I64_TRUNC_U_F32: 213 case WebAssembly::I32_TRUNC_U_F64: 214 case WebAssembly::I64_TRUNC_U_F64: 215 // These instruction have hasUnmodeledSideEffects() returning true 216 // because they trap on overflow and invalid so they can't be arbitrarily 217 // moved, however hasOrderedMemoryRef() interprets this plus their lack 218 // of memoperands as having a potential unknown memory reference. 219 break; 220 default: 221 // Record volatile accesses, unless it's a call, as calls are handled 222 // specially below. 223 if (!MI.isCall()) { 224 Write = true; 225 Effects = true; 226 } 227 break; 228 } 229 } 230 231 // Check for side effects. 232 if (MI.hasUnmodeledSideEffects()) { 233 switch (MI.getOpcode()) { 234 case WebAssembly::DIV_S_I32: 235 case WebAssembly::DIV_S_I64: 236 case WebAssembly::REM_S_I32: 237 case WebAssembly::REM_S_I64: 238 case WebAssembly::DIV_U_I32: 239 case WebAssembly::DIV_U_I64: 240 case WebAssembly::REM_U_I32: 241 case WebAssembly::REM_U_I64: 242 case WebAssembly::I32_TRUNC_S_F32: 243 case WebAssembly::I64_TRUNC_S_F32: 244 case WebAssembly::I32_TRUNC_S_F64: 245 case WebAssembly::I64_TRUNC_S_F64: 246 case WebAssembly::I32_TRUNC_U_F32: 247 case WebAssembly::I64_TRUNC_U_F32: 248 case WebAssembly::I32_TRUNC_U_F64: 249 case WebAssembly::I64_TRUNC_U_F64: 250 // These instructions have hasUnmodeledSideEffects() returning true 251 // because they trap on overflow and invalid so they can't be arbitrarily 252 // moved, however in the specific case of register stackifying, it is safe 253 // to move them because overflow and invalid are Undefined Behavior. 254 break; 255 default: 256 Effects = true; 257 break; 258 } 259 } 260 261 // Analyze calls. 262 if (MI.isCall()) { 263 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); 264 QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 265 } 266 } 267 268 // Test whether Def is safe and profitable to rematerialize. 269 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 270 const WebAssemblyInstrInfo *TII) { 271 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 272 } 273 274 // Identify the definition for this register at this point. This is a 275 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 276 // LiveIntervals to handle complex cases. 277 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 278 const MachineRegisterInfo &MRI, 279 const LiveIntervals &LIS) { 280 // Most registers are in SSA form here so we try a quick MRI query first. 281 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 282 return Def; 283 284 // MRI doesn't know what the Def is. Try asking LIS. 285 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 286 LIS.getInstructionIndex(*Insert))) 287 return LIS.getInstructionFromIndex(ValNo->def); 288 289 return nullptr; 290 } 291 292 // Test whether Reg, as defined at Def, has exactly one use. This is a 293 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 294 // to handle complex cases. 295 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 296 MachineDominatorTree &MDT, LiveIntervals &LIS) { 297 // Most registers are in SSA form here so we try a quick MRI query first. 298 if (MRI.hasOneUse(Reg)) 299 return true; 300 301 bool HasOne = false; 302 const LiveInterval &LI = LIS.getInterval(Reg); 303 const VNInfo *DefVNI = 304 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 305 assert(DefVNI); 306 for (auto &I : MRI.use_nodbg_operands(Reg)) { 307 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 308 if (Result.valueIn() == DefVNI) { 309 if (!Result.isKill()) 310 return false; 311 if (HasOne) 312 return false; 313 HasOne = true; 314 } 315 } 316 return HasOne; 317 } 318 319 // Test whether it's safe to move Def to just before Insert. 320 // TODO: Compute memory dependencies in a way that doesn't require always 321 // walking the block. 322 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 323 // more precise. 324 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 325 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 326 assert(Def->getParent() == Insert->getParent()); 327 328 // Check for register dependencies. 329 SmallVector<unsigned, 4> MutableRegisters; 330 for (const MachineOperand &MO : Def->operands()) { 331 if (!MO.isReg() || MO.isUndef()) 332 continue; 333 unsigned Reg = MO.getReg(); 334 335 // If the register is dead here and at Insert, ignore it. 336 if (MO.isDead() && Insert->definesRegister(Reg) && 337 !Insert->readsRegister(Reg)) 338 continue; 339 340 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 341 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 342 // from moving down, and we've already checked for that. 343 if (Reg == WebAssembly::ARGUMENTS) 344 continue; 345 // If the physical register is never modified, ignore it. 346 if (!MRI.isPhysRegModified(Reg)) 347 continue; 348 // Otherwise, it's a physical register with unknown liveness. 349 return false; 350 } 351 352 // If one of the operands isn't in SSA form, it has different values at 353 // different times, and we need to make sure we don't move our use across 354 // a different def. 355 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 356 MutableRegisters.push_back(Reg); 357 } 358 359 bool Read = false, Write = false, Effects = false, StackPointer = false; 360 Query(*Def, AA, Read, Write, Effects, StackPointer); 361 362 // If the instruction does not access memory and has no side effects, it has 363 // no additional dependencies. 364 bool HasMutableRegisters = !MutableRegisters.empty(); 365 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 366 return true; 367 368 // Scan through the intervening instructions between Def and Insert. 369 MachineBasicBlock::const_iterator D(Def), I(Insert); 370 for (--I; I != D; --I) { 371 bool InterveningRead = false; 372 bool InterveningWrite = false; 373 bool InterveningEffects = false; 374 bool InterveningStackPointer = false; 375 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 376 InterveningStackPointer); 377 if (Effects && InterveningEffects) 378 return false; 379 if (Read && InterveningWrite) 380 return false; 381 if (Write && (InterveningRead || InterveningWrite)) 382 return false; 383 if (StackPointer && InterveningStackPointer) 384 return false; 385 386 for (unsigned Reg : MutableRegisters) 387 for (const MachineOperand &MO : I->operands()) 388 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 389 return false; 390 } 391 392 return true; 393 } 394 395 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 396 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 397 const MachineBasicBlock &MBB, 398 const MachineRegisterInfo &MRI, 399 const MachineDominatorTree &MDT, 400 LiveIntervals &LIS, 401 WebAssemblyFunctionInfo &MFI) { 402 const LiveInterval &LI = LIS.getInterval(Reg); 403 404 const MachineInstr *OneUseInst = OneUse.getParent(); 405 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 406 407 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 408 if (&Use == &OneUse) 409 continue; 410 411 const MachineInstr *UseInst = Use.getParent(); 412 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 413 414 if (UseVNI != OneUseVNI) 415 continue; 416 417 const MachineInstr *OneUseInst = OneUse.getParent(); 418 if (UseInst == OneUseInst) { 419 // Another use in the same instruction. We need to ensure that the one 420 // selected use happens "before" it. 421 if (&OneUse > &Use) 422 return false; 423 } else { 424 // Test that the use is dominated by the one selected use. 425 while (!MDT.dominates(OneUseInst, UseInst)) { 426 // Actually, dominating is over-conservative. Test that the use would 427 // happen after the one selected use in the stack evaluation order. 428 // 429 // This is needed as a consequence of using implicit get_locals for 430 // uses and implicit set_locals for defs. 431 if (UseInst->getDesc().getNumDefs() == 0) 432 return false; 433 const MachineOperand &MO = UseInst->getOperand(0); 434 if (!MO.isReg()) 435 return false; 436 unsigned DefReg = MO.getReg(); 437 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 438 !MFI.isVRegStackified(DefReg)) 439 return false; 440 assert(MRI.hasOneNonDBGUse(DefReg)); 441 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 442 const MachineInstr *NewUseInst = NewUse.getParent(); 443 if (NewUseInst == OneUseInst) { 444 if (&OneUse > &NewUse) 445 return false; 446 break; 447 } 448 UseInst = NewUseInst; 449 } 450 } 451 } 452 return true; 453 } 454 455 /// Get the appropriate tee opcode for the given register class. 456 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 457 if (RC == &WebAssembly::I32RegClass) 458 return WebAssembly::TEE_I32; 459 if (RC == &WebAssembly::I64RegClass) 460 return WebAssembly::TEE_I64; 461 if (RC == &WebAssembly::F32RegClass) 462 return WebAssembly::TEE_F32; 463 if (RC == &WebAssembly::F64RegClass) 464 return WebAssembly::TEE_F64; 465 if (RC == &WebAssembly::V128RegClass) 466 return WebAssembly::TEE_V128; 467 llvm_unreachable("Unexpected register class"); 468 } 469 470 // Shrink LI to its uses, cleaning up LI. 471 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 472 if (LIS.shrinkToUses(&LI)) { 473 SmallVector<LiveInterval *, 4> SplitLIs; 474 LIS.splitSeparateComponents(LI, SplitLIs); 475 } 476 } 477 478 static void MoveDebugValues(unsigned Reg, MachineInstr *Insert, 479 MachineBasicBlock &MBB, MachineRegisterInfo &MRI) { 480 for (auto &Op : MRI.reg_operands(Reg)) { 481 MachineInstr *MI = Op.getParent(); 482 assert(MI != nullptr); 483 if (MI->isDebugValue() && MI->getParent() == &MBB) 484 MBB.splice(Insert, &MBB, MI); 485 } 486 } 487 488 static void UpdateDebugValuesReg(unsigned Reg, unsigned NewReg, 489 MachineBasicBlock &MBB, 490 MachineRegisterInfo &MRI) { 491 for (auto &Op : MRI.reg_operands(Reg)) { 492 MachineInstr *MI = Op.getParent(); 493 assert(MI != nullptr); 494 if (MI->isDebugValue() && MI->getParent() == &MBB) 495 Op.setReg(NewReg); 496 } 497 } 498 499 /// A single-use def in the same block with no intervening memory or register 500 /// dependencies; move the def down and nest it with the current instruction. 501 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, 502 MachineInstr *Def, MachineBasicBlock &MBB, 503 MachineInstr *Insert, LiveIntervals &LIS, 504 WebAssemblyFunctionInfo &MFI, 505 MachineRegisterInfo &MRI) { 506 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 507 508 MBB.splice(Insert, &MBB, Def); 509 MoveDebugValues(Reg, Insert, MBB, MRI); 510 LIS.handleMove(*Def); 511 512 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 513 // No one else is using this register for anything so we can just stackify 514 // it in place. 515 MFI.stackifyVReg(Reg); 516 } else { 517 // The register may have unrelated uses or defs; create a new register for 518 // just our one def and use so that we can stackify it. 519 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 520 Def->getOperand(0).setReg(NewReg); 521 Op.setReg(NewReg); 522 523 // Tell LiveIntervals about the new register. 524 LIS.createAndComputeVirtRegInterval(NewReg); 525 526 // Tell LiveIntervals about the changes to the old register. 527 LiveInterval &LI = LIS.getInterval(Reg); 528 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 529 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 530 /*RemoveDeadValNo=*/true); 531 532 MFI.stackifyVReg(NewReg); 533 534 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 535 536 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 537 } 538 539 ImposeStackOrdering(Def); 540 return Def; 541 } 542 543 static void CloneDebugValues(unsigned Reg, MachineInstr *Insert, 544 unsigned TargetReg, MachineBasicBlock &MBB, 545 MachineRegisterInfo &MRI, 546 const WebAssemblyInstrInfo *TII) { 547 SmallPtrSet<MachineInstr *, 4> Instrs; 548 for (auto &Op : MRI.reg_operands(Reg)) { 549 MachineInstr *MI = Op.getParent(); 550 assert(MI != nullptr); 551 if (MI->isDebugValue() && MI->getParent() == &MBB && 552 Instrs.find(MI) == Instrs.end()) 553 Instrs.insert(MI); 554 } 555 for (const auto &MI : Instrs) { 556 MachineInstr &Clone = TII->duplicate(MBB, Insert, *MI); 557 for (unsigned i = 0, e = Clone.getNumOperands(); i != e; ++i) { 558 MachineOperand &MO = Clone.getOperand(i); 559 if (MO.isReg() && MO.getReg() == Reg) 560 MO.setReg(TargetReg); 561 } 562 LLVM_DEBUG(dbgs() << " - - Cloned DBG_VALUE: "; Clone.dump()); 563 } 564 } 565 566 /// A trivially cloneable instruction; clone it and nest the new copy with the 567 /// current instruction. 568 static MachineInstr *RematerializeCheapDef( 569 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 570 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 571 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 572 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 573 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 574 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 575 576 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 577 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 578 Op.setReg(NewReg); 579 MachineInstr *Clone = &*std::prev(Insert); 580 LIS.InsertMachineInstrInMaps(*Clone); 581 LIS.createAndComputeVirtRegInterval(NewReg); 582 MFI.stackifyVReg(NewReg); 583 ImposeStackOrdering(Clone); 584 585 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 586 587 // Shrink the interval. 588 bool IsDead = MRI.use_empty(Reg); 589 if (!IsDead) { 590 LiveInterval &LI = LIS.getInterval(Reg); 591 ShrinkToUses(LI, LIS); 592 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 593 } 594 595 // If that was the last use of the original, delete the original. 596 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 597 if (IsDead) { 598 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 599 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 600 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 601 LIS.removeInterval(Reg); 602 LIS.RemoveMachineInstrFromMaps(Def); 603 Def.eraseFromParent(); 604 605 MoveDebugValues(Reg, &*Insert, MBB, MRI); 606 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 607 } else { 608 CloneDebugValues(Reg, &*Insert, NewReg, MBB, MRI, TII); 609 } 610 611 return Clone; 612 } 613 614 /// A multiple-use def in the same block with no intervening memory or register 615 /// dependencies; move the def down, nest it with the current instruction, and 616 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 617 /// this: 618 /// 619 /// Reg = INST ... // Def 620 /// INST ..., Reg, ... // Insert 621 /// INST ..., Reg, ... 622 /// INST ..., Reg, ... 623 /// 624 /// to this: 625 /// 626 /// DefReg = INST ... // Def (to become the new Insert) 627 /// TeeReg, Reg = TEE_... DefReg 628 /// INST ..., TeeReg, ... // Insert 629 /// INST ..., Reg, ... 630 /// INST ..., Reg, ... 631 /// 632 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 633 /// resulting code. 634 static MachineInstr *MoveAndTeeForMultiUse( 635 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 636 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 637 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 638 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 639 640 // Move Def into place. 641 MBB.splice(Insert, &MBB, Def); 642 LIS.handleMove(*Def); 643 644 // Create the Tee and attach the registers. 645 const auto *RegClass = MRI.getRegClass(Reg); 646 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 647 unsigned DefReg = MRI.createVirtualRegister(RegClass); 648 MachineOperand &DefMO = Def->getOperand(0); 649 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 650 TII->get(GetTeeOpcode(RegClass)), TeeReg) 651 .addReg(Reg, RegState::Define) 652 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 653 Op.setReg(TeeReg); 654 DefMO.setReg(DefReg); 655 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 656 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 657 658 MoveDebugValues(Reg, Insert, MBB, MRI); 659 660 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 661 LiveInterval &LI = LIS.getInterval(Reg); 662 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 663 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 664 I->start = TeeIdx; 665 ValNo->def = TeeIdx; 666 ShrinkToUses(LI, LIS); 667 668 // Finish stackifying the new regs. 669 LIS.createAndComputeVirtRegInterval(TeeReg); 670 LIS.createAndComputeVirtRegInterval(DefReg); 671 MFI.stackifyVReg(DefReg); 672 MFI.stackifyVReg(TeeReg); 673 ImposeStackOrdering(Def); 674 ImposeStackOrdering(Tee); 675 676 CloneDebugValues(Reg, Tee, DefReg, MBB, MRI, TII); 677 CloneDebugValues(Reg, Insert, TeeReg, MBB, MRI, TII); 678 679 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 680 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 681 return Def; 682 } 683 684 namespace { 685 /// A stack for walking the tree of instructions being built, visiting the 686 /// MachineOperands in DFS order. 687 class TreeWalkerState { 688 typedef MachineInstr::mop_iterator mop_iterator; 689 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 690 typedef iterator_range<mop_reverse_iterator> RangeTy; 691 SmallVector<RangeTy, 4> Worklist; 692 693 public: 694 explicit TreeWalkerState(MachineInstr *Insert) { 695 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 696 if (Range.begin() != Range.end()) 697 Worklist.push_back(reverse(Range)); 698 } 699 700 bool Done() const { return Worklist.empty(); } 701 702 MachineOperand &Pop() { 703 RangeTy &Range = Worklist.back(); 704 MachineOperand &Op = *Range.begin(); 705 Range = drop_begin(Range, 1); 706 if (Range.begin() == Range.end()) 707 Worklist.pop_back(); 708 assert((Worklist.empty() || 709 Worklist.back().begin() != Worklist.back().end()) && 710 "Empty ranges shouldn't remain in the worklist"); 711 return Op; 712 } 713 714 /// Push Instr's operands onto the stack to be visited. 715 void PushOperands(MachineInstr *Instr) { 716 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 717 if (Range.begin() != Range.end()) 718 Worklist.push_back(reverse(Range)); 719 } 720 721 /// Some of Instr's operands are on the top of the stack; remove them and 722 /// re-insert them starting from the beginning (because we've commuted them). 723 void ResetTopOperands(MachineInstr *Instr) { 724 assert(HasRemainingOperands(Instr) && 725 "Reseting operands should only be done when the instruction has " 726 "an operand still on the stack"); 727 Worklist.back() = reverse(Instr->explicit_uses()); 728 } 729 730 /// Test whether Instr has operands remaining to be visited at the top of 731 /// the stack. 732 bool HasRemainingOperands(const MachineInstr *Instr) const { 733 if (Worklist.empty()) 734 return false; 735 const RangeTy &Range = Worklist.back(); 736 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 737 } 738 739 /// Test whether the given register is present on the stack, indicating an 740 /// operand in the tree that we haven't visited yet. Moving a definition of 741 /// Reg to a point in the tree after that would change its value. 742 /// 743 /// This is needed as a consequence of using implicit get_locals for 744 /// uses and implicit set_locals for defs. 745 bool IsOnStack(unsigned Reg) const { 746 for (const RangeTy &Range : Worklist) 747 for (const MachineOperand &MO : Range) 748 if (MO.isReg() && MO.getReg() == Reg) 749 return true; 750 return false; 751 } 752 }; 753 754 /// State to keep track of whether commuting is in flight or whether it's been 755 /// tried for the current instruction and didn't work. 756 class CommutingState { 757 /// There are effectively three states: the initial state where we haven't 758 /// started commuting anything and we don't know anything yet, the tentative 759 /// state where we've commuted the operands of the current instruction and are 760 /// revisiting it, and the declined state where we've reverted the operands 761 /// back to their original order and will no longer commute it further. 762 bool TentativelyCommuting; 763 bool Declined; 764 765 /// During the tentative state, these hold the operand indices of the commuted 766 /// operands. 767 unsigned Operand0, Operand1; 768 769 public: 770 CommutingState() : TentativelyCommuting(false), Declined(false) {} 771 772 /// Stackification for an operand was not successful due to ordering 773 /// constraints. If possible, and if we haven't already tried it and declined 774 /// it, commute Insert's operands and prepare to revisit it. 775 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 776 const WebAssemblyInstrInfo *TII) { 777 if (TentativelyCommuting) { 778 assert(!Declined && 779 "Don't decline commuting until you've finished trying it"); 780 // Commuting didn't help. Revert it. 781 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 782 TentativelyCommuting = false; 783 Declined = true; 784 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 785 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 786 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 787 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 788 // Tentatively commute the operands and try again. 789 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 790 TreeWalker.ResetTopOperands(Insert); 791 TentativelyCommuting = true; 792 Declined = false; 793 } 794 } 795 } 796 797 /// Stackification for some operand was successful. Reset to the default 798 /// state. 799 void Reset() { 800 TentativelyCommuting = false; 801 Declined = false; 802 } 803 }; 804 } // end anonymous namespace 805 806 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 807 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 808 "********** Function: " 809 << MF.getName() << '\n'); 810 811 bool Changed = false; 812 MachineRegisterInfo &MRI = MF.getRegInfo(); 813 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 814 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 815 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 816 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 817 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 818 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 819 820 // Walk the instructions from the bottom up. Currently we don't look past 821 // block boundaries, and the blocks aren't ordered so the block visitation 822 // order isn't significant, but we may want to change this in the future. 823 for (MachineBasicBlock &MBB : MF) { 824 // Don't use a range-based for loop, because we modify the list as we're 825 // iterating over it and the end iterator may change. 826 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 827 MachineInstr *Insert = &*MII; 828 // Don't nest anything inside an inline asm, because we don't have 829 // constraints for $push inputs. 830 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 831 continue; 832 833 // Ignore debugging intrinsics. 834 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 835 continue; 836 837 // Iterate through the inputs in reverse order, since we'll be pulling 838 // operands off the stack in LIFO order. 839 CommutingState Commuting; 840 TreeWalkerState TreeWalker(Insert); 841 while (!TreeWalker.Done()) { 842 MachineOperand &Op = TreeWalker.Pop(); 843 844 // We're only interested in explicit virtual register operands. 845 if (!Op.isReg()) 846 continue; 847 848 unsigned Reg = Op.getReg(); 849 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 850 assert(!Op.isImplicit() && 851 "explicit_uses() should only iterate over explicit operands"); 852 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 853 continue; 854 855 // Identify the definition for this register at this point. 856 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 857 if (!Def) 858 continue; 859 860 // Don't nest an INLINE_ASM def into anything, because we don't have 861 // constraints for $pop outputs. 862 if (Def->getOpcode() == TargetOpcode::INLINEASM) 863 continue; 864 865 // Argument instructions represent live-in registers and not real 866 // instructions. 867 if (WebAssembly::isArgument(*Def)) 868 continue; 869 870 // Decide which strategy to take. Prefer to move a single-use value 871 // over cloning it, and prefer cloning over introducing a tee. 872 // For moving, we require the def to be in the same block as the use; 873 // this makes things simpler (LiveIntervals' handleMove function only 874 // supports intra-block moves) and it's MachineSink's job to catch all 875 // the sinking opportunities anyway. 876 bool SameBlock = Def->getParent() == &MBB; 877 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 878 !TreeWalker.IsOnStack(Reg); 879 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 880 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 881 } else if (ShouldRematerialize(*Def, AA, TII)) { 882 Insert = 883 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 884 LIS, MFI, MRI, TII, TRI); 885 } else if (CanMove && 886 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 887 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 888 MRI, TII); 889 } else { 890 // We failed to stackify the operand. If the problem was ordering 891 // constraints, Commuting may be able to help. 892 if (!CanMove && SameBlock) 893 Commuting.MaybeCommute(Insert, TreeWalker, TII); 894 // Proceed to the next operand. 895 continue; 896 } 897 898 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 899 // to a constant 0 so that the def is explicit, and the push/pop 900 // correspondence is maintained. 901 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 902 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 903 904 // We stackified an operand. Add the defining instruction's operands to 905 // the worklist stack now to continue to build an ever deeper tree. 906 Commuting.Reset(); 907 TreeWalker.PushOperands(Insert); 908 } 909 910 // If we stackified any operands, skip over the tree to start looking for 911 // the next instruction we can build a tree on. 912 if (Insert != &*MII) { 913 ImposeStackOrdering(&*MII); 914 MII = MachineBasicBlock::iterator(Insert).getReverse(); 915 Changed = true; 916 } 917 } 918 } 919 920 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 921 // that it never looks like a use-before-def. 922 if (Changed) { 923 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 924 for (MachineBasicBlock &MBB : MF) 925 MBB.addLiveIn(WebAssembly::VALUE_STACK); 926 } 927 928 #ifndef NDEBUG 929 // Verify that pushes and pops are performed in LIFO order. 930 SmallVector<unsigned, 0> Stack; 931 for (MachineBasicBlock &MBB : MF) { 932 for (MachineInstr &MI : MBB) { 933 if (MI.isDebugInstr()) 934 continue; 935 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 936 if (!MO.isReg()) 937 continue; 938 unsigned Reg = MO.getReg(); 939 940 if (MFI.isVRegStackified(Reg)) { 941 if (MO.isDef()) 942 Stack.push_back(Reg); 943 else 944 assert(Stack.pop_back_val() == Reg && 945 "Register stack pop should be paired with a push"); 946 } 947 } 948 } 949 // TODO: Generalize this code to support keeping values on the stack across 950 // basic block boundaries. 951 assert(Stack.empty() && 952 "Register stack pushes and pops should be balanced"); 953 } 954 #endif 955 956 return Changed; 957 } 958