1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void ImposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF) { 102 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 103 104 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 105 if (RegClass == &WebAssembly::I32RegClass) { 106 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 107 MI->addOperand(MachineOperand::CreateImm(0)); 108 } else if (RegClass == &WebAssembly::I64RegClass) { 109 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 110 MI->addOperand(MachineOperand::CreateImm(0)); 111 } else if (RegClass == &WebAssembly::F32RegClass) { 112 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 113 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 114 Type::getFloatTy(MF.getFunction().getContext()))); 115 MI->addOperand(MachineOperand::CreateFPImm(Val)); 116 } else if (RegClass == &WebAssembly::F64RegClass) { 117 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 118 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 119 Type::getDoubleTy(MF.getFunction().getContext()))); 120 MI->addOperand(MachineOperand::CreateFPImm(Val)); 121 } else { 122 llvm_unreachable("Unexpected reg class"); 123 } 124 } 125 126 // Determine whether a call to the callee referenced by 127 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 128 // effects. 129 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 130 bool &Write, bool &Effects, bool &StackPointer) { 131 // All calls can use the stack pointer. 132 StackPointer = true; 133 134 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 135 if (MO.isGlobal()) { 136 const Constant *GV = MO.getGlobal(); 137 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 138 if (!GA->isInterposable()) 139 GV = GA->getAliasee(); 140 141 if (const Function *F = dyn_cast<Function>(GV)) { 142 if (!F->doesNotThrow()) 143 Effects = true; 144 if (F->doesNotAccessMemory()) 145 return; 146 if (F->onlyReadsMemory()) { 147 Read = true; 148 return; 149 } 150 } 151 } 152 153 // Assume the worst. 154 Write = true; 155 Read = true; 156 Effects = true; 157 } 158 159 // Determine whether MI reads memory, writes memory, has side effects, 160 // and/or uses the stack pointer value. 161 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 162 bool &Write, bool &Effects, bool &StackPointer) { 163 assert(!MI.isTerminator()); 164 165 if (MI.isDebugInstr() || MI.isPosition()) 166 return; 167 168 // Check for loads. 169 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 170 Read = true; 171 172 // Check for stores. 173 if (MI.mayStore()) { 174 Write = true; 175 176 // Check for stores to __stack_pointer. 177 for (auto MMO : MI.memoperands()) { 178 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 179 if (MPI.V.is<const PseudoSourceValue *>()) { 180 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 181 if (const ExternalSymbolPseudoSourceValue *EPSV = 182 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 183 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { 184 StackPointer = true; 185 } 186 } 187 } 188 } else if (MI.hasOrderedMemoryRef()) { 189 switch (MI.getOpcode()) { 190 case WebAssembly::DIV_S_I32: 191 case WebAssembly::DIV_S_I64: 192 case WebAssembly::REM_S_I32: 193 case WebAssembly::REM_S_I64: 194 case WebAssembly::DIV_U_I32: 195 case WebAssembly::DIV_U_I64: 196 case WebAssembly::REM_U_I32: 197 case WebAssembly::REM_U_I64: 198 case WebAssembly::I32_TRUNC_S_F32: 199 case WebAssembly::I64_TRUNC_S_F32: 200 case WebAssembly::I32_TRUNC_S_F64: 201 case WebAssembly::I64_TRUNC_S_F64: 202 case WebAssembly::I32_TRUNC_U_F32: 203 case WebAssembly::I64_TRUNC_U_F32: 204 case WebAssembly::I32_TRUNC_U_F64: 205 case WebAssembly::I64_TRUNC_U_F64: 206 // These instruction have hasUnmodeledSideEffects() returning true 207 // because they trap on overflow and invalid so they can't be arbitrarily 208 // moved, however hasOrderedMemoryRef() interprets this plus their lack 209 // of memoperands as having a potential unknown memory reference. 210 break; 211 default: 212 // Record volatile accesses, unless it's a call, as calls are handled 213 // specially below. 214 if (!MI.isCall()) { 215 Write = true; 216 Effects = true; 217 } 218 break; 219 } 220 } 221 222 // Check for side effects. 223 if (MI.hasUnmodeledSideEffects()) { 224 switch (MI.getOpcode()) { 225 case WebAssembly::DIV_S_I32: 226 case WebAssembly::DIV_S_I64: 227 case WebAssembly::REM_S_I32: 228 case WebAssembly::REM_S_I64: 229 case WebAssembly::DIV_U_I32: 230 case WebAssembly::DIV_U_I64: 231 case WebAssembly::REM_U_I32: 232 case WebAssembly::REM_U_I64: 233 case WebAssembly::I32_TRUNC_S_F32: 234 case WebAssembly::I64_TRUNC_S_F32: 235 case WebAssembly::I32_TRUNC_S_F64: 236 case WebAssembly::I64_TRUNC_S_F64: 237 case WebAssembly::I32_TRUNC_U_F32: 238 case WebAssembly::I64_TRUNC_U_F32: 239 case WebAssembly::I32_TRUNC_U_F64: 240 case WebAssembly::I64_TRUNC_U_F64: 241 // These instructions have hasUnmodeledSideEffects() returning true 242 // because they trap on overflow and invalid so they can't be arbitrarily 243 // moved, however in the specific case of register stackifying, it is safe 244 // to move them because overflow and invalid are Undefined Behavior. 245 break; 246 default: 247 Effects = true; 248 break; 249 } 250 } 251 252 // Analyze calls. 253 if (MI.isCall()) { 254 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); 255 QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 256 } 257 } 258 259 // Test whether Def is safe and profitable to rematerialize. 260 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 261 const WebAssemblyInstrInfo *TII) { 262 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 263 } 264 265 // Identify the definition for this register at this point. This is a 266 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 267 // LiveIntervals to handle complex cases. 268 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 269 const MachineRegisterInfo &MRI, 270 const LiveIntervals &LIS) { 271 // Most registers are in SSA form here so we try a quick MRI query first. 272 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 273 return Def; 274 275 // MRI doesn't know what the Def is. Try asking LIS. 276 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 277 LIS.getInstructionIndex(*Insert))) 278 return LIS.getInstructionFromIndex(ValNo->def); 279 280 return nullptr; 281 } 282 283 // Test whether Reg, as defined at Def, has exactly one use. This is a 284 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 285 // to handle complex cases. 286 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 287 MachineDominatorTree &MDT, LiveIntervals &LIS) { 288 // Most registers are in SSA form here so we try a quick MRI query first. 289 if (MRI.hasOneUse(Reg)) 290 return true; 291 292 bool HasOne = false; 293 const LiveInterval &LI = LIS.getInterval(Reg); 294 const VNInfo *DefVNI = 295 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 296 assert(DefVNI); 297 for (auto &I : MRI.use_nodbg_operands(Reg)) { 298 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 299 if (Result.valueIn() == DefVNI) { 300 if (!Result.isKill()) 301 return false; 302 if (HasOne) 303 return false; 304 HasOne = true; 305 } 306 } 307 return HasOne; 308 } 309 310 // Test whether it's safe to move Def to just before Insert. 311 // TODO: Compute memory dependencies in a way that doesn't require always 312 // walking the block. 313 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 314 // more precise. 315 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 316 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 317 assert(Def->getParent() == Insert->getParent()); 318 319 // Check for register dependencies. 320 SmallVector<unsigned, 4> MutableRegisters; 321 for (const MachineOperand &MO : Def->operands()) { 322 if (!MO.isReg() || MO.isUndef()) 323 continue; 324 unsigned Reg = MO.getReg(); 325 326 // If the register is dead here and at Insert, ignore it. 327 if (MO.isDead() && Insert->definesRegister(Reg) && 328 !Insert->readsRegister(Reg)) 329 continue; 330 331 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 332 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 333 // from moving down, and we've already checked for that. 334 if (Reg == WebAssembly::ARGUMENTS) 335 continue; 336 // If the physical register is never modified, ignore it. 337 if (!MRI.isPhysRegModified(Reg)) 338 continue; 339 // Otherwise, it's a physical register with unknown liveness. 340 return false; 341 } 342 343 // If one of the operands isn't in SSA form, it has different values at 344 // different times, and we need to make sure we don't move our use across 345 // a different def. 346 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 347 MutableRegisters.push_back(Reg); 348 } 349 350 bool Read = false, Write = false, Effects = false, StackPointer = false; 351 Query(*Def, AA, Read, Write, Effects, StackPointer); 352 353 // If the instruction does not access memory and has no side effects, it has 354 // no additional dependencies. 355 bool HasMutableRegisters = !MutableRegisters.empty(); 356 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 357 return true; 358 359 // Scan through the intervening instructions between Def and Insert. 360 MachineBasicBlock::const_iterator D(Def), I(Insert); 361 for (--I; I != D; --I) { 362 bool InterveningRead = false; 363 bool InterveningWrite = false; 364 bool InterveningEffects = false; 365 bool InterveningStackPointer = false; 366 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 367 InterveningStackPointer); 368 if (Effects && InterveningEffects) 369 return false; 370 if (Read && InterveningWrite) 371 return false; 372 if (Write && (InterveningRead || InterveningWrite)) 373 return false; 374 if (StackPointer && InterveningStackPointer) 375 return false; 376 377 for (unsigned Reg : MutableRegisters) 378 for (const MachineOperand &MO : I->operands()) 379 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 380 return false; 381 } 382 383 return true; 384 } 385 386 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 387 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 388 const MachineBasicBlock &MBB, 389 const MachineRegisterInfo &MRI, 390 const MachineDominatorTree &MDT, 391 LiveIntervals &LIS, 392 WebAssemblyFunctionInfo &MFI) { 393 const LiveInterval &LI = LIS.getInterval(Reg); 394 395 const MachineInstr *OneUseInst = OneUse.getParent(); 396 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 397 398 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 399 if (&Use == &OneUse) 400 continue; 401 402 const MachineInstr *UseInst = Use.getParent(); 403 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 404 405 if (UseVNI != OneUseVNI) 406 continue; 407 408 const MachineInstr *OneUseInst = OneUse.getParent(); 409 if (UseInst == OneUseInst) { 410 // Another use in the same instruction. We need to ensure that the one 411 // selected use happens "before" it. 412 if (&OneUse > &Use) 413 return false; 414 } else { 415 // Test that the use is dominated by the one selected use. 416 while (!MDT.dominates(OneUseInst, UseInst)) { 417 // Actually, dominating is over-conservative. Test that the use would 418 // happen after the one selected use in the stack evaluation order. 419 // 420 // This is needed as a consequence of using implicit get_locals for 421 // uses and implicit set_locals for defs. 422 if (UseInst->getDesc().getNumDefs() == 0) 423 return false; 424 const MachineOperand &MO = UseInst->getOperand(0); 425 if (!MO.isReg()) 426 return false; 427 unsigned DefReg = MO.getReg(); 428 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 429 !MFI.isVRegStackified(DefReg)) 430 return false; 431 assert(MRI.hasOneUse(DefReg)); 432 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 433 const MachineInstr *NewUseInst = NewUse.getParent(); 434 if (NewUseInst == OneUseInst) { 435 if (&OneUse > &NewUse) 436 return false; 437 break; 438 } 439 UseInst = NewUseInst; 440 } 441 } 442 } 443 return true; 444 } 445 446 /// Get the appropriate tee opcode for the given register class. 447 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 448 if (RC == &WebAssembly::I32RegClass) 449 return WebAssembly::TEE_I32; 450 if (RC == &WebAssembly::I64RegClass) 451 return WebAssembly::TEE_I64; 452 if (RC == &WebAssembly::F32RegClass) 453 return WebAssembly::TEE_F32; 454 if (RC == &WebAssembly::F64RegClass) 455 return WebAssembly::TEE_F64; 456 if (RC == &WebAssembly::V128RegClass) 457 return WebAssembly::TEE_V128; 458 llvm_unreachable("Unexpected register class"); 459 } 460 461 // Shrink LI to its uses, cleaning up LI. 462 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 463 if (LIS.shrinkToUses(&LI)) { 464 SmallVector<LiveInterval *, 4> SplitLIs; 465 LIS.splitSeparateComponents(LI, SplitLIs); 466 } 467 } 468 469 static void MoveDebugValues(unsigned Reg, MachineInstr *Insert, 470 MachineBasicBlock &MBB, MachineRegisterInfo &MRI) { 471 for (auto &Op : MRI.reg_operands(Reg)) { 472 MachineInstr *MI = Op.getParent(); 473 assert(MI != nullptr); 474 if (MI->isDebugValue() && MI->getParent() == &MBB) 475 MBB.splice(Insert, &MBB, MI); 476 } 477 } 478 479 static void UpdateDebugValuesReg(unsigned Reg, unsigned NewReg, 480 MachineBasicBlock &MBB, 481 MachineRegisterInfo &MRI) { 482 for (auto &Op : MRI.reg_operands(Reg)) { 483 MachineInstr *MI = Op.getParent(); 484 assert(MI != nullptr); 485 if (MI->isDebugValue() && MI->getParent() == &MBB) 486 Op.setReg(NewReg); 487 } 488 } 489 490 /// A single-use def in the same block with no intervening memory or register 491 /// dependencies; move the def down and nest it with the current instruction. 492 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, 493 MachineInstr *Def, MachineBasicBlock &MBB, 494 MachineInstr *Insert, LiveIntervals &LIS, 495 WebAssemblyFunctionInfo &MFI, 496 MachineRegisterInfo &MRI) { 497 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 498 499 MBB.splice(Insert, &MBB, Def); 500 MoveDebugValues(Reg, Insert, MBB, MRI); 501 LIS.handleMove(*Def); 502 503 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 504 // No one else is using this register for anything so we can just stackify 505 // it in place. 506 MFI.stackifyVReg(Reg); 507 } else { 508 // The register may have unrelated uses or defs; create a new register for 509 // just our one def and use so that we can stackify it. 510 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 511 Def->getOperand(0).setReg(NewReg); 512 Op.setReg(NewReg); 513 514 // Tell LiveIntervals about the new register. 515 LIS.createAndComputeVirtRegInterval(NewReg); 516 517 // Tell LiveIntervals about the changes to the old register. 518 LiveInterval &LI = LIS.getInterval(Reg); 519 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 520 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 521 /*RemoveDeadValNo=*/true); 522 523 MFI.stackifyVReg(NewReg); 524 525 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 526 527 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 528 } 529 530 ImposeStackOrdering(Def); 531 return Def; 532 } 533 534 static void CloneDebugValues(unsigned Reg, MachineInstr *Insert, 535 unsigned TargetReg, MachineBasicBlock &MBB, 536 MachineRegisterInfo &MRI, 537 const WebAssemblyInstrInfo *TII) { 538 SmallPtrSet<MachineInstr *, 4> Instrs; 539 for (auto &Op : MRI.reg_operands(Reg)) { 540 MachineInstr *MI = Op.getParent(); 541 assert(MI != nullptr); 542 if (MI->isDebugValue() && MI->getParent() == &MBB && 543 Instrs.find(MI) == Instrs.end()) 544 Instrs.insert(MI); 545 } 546 for (const auto &MI : Instrs) { 547 MachineInstr &Clone = TII->duplicate(MBB, Insert, *MI); 548 for (unsigned i = 0, e = Clone.getNumOperands(); i != e; ++i) { 549 MachineOperand &MO = Clone.getOperand(i); 550 if (MO.isReg() && MO.getReg() == Reg) 551 MO.setReg(TargetReg); 552 } 553 LLVM_DEBUG(dbgs() << " - - Cloned DBG_VALUE: "; Clone.dump()); 554 } 555 } 556 557 /// A trivially cloneable instruction; clone it and nest the new copy with the 558 /// current instruction. 559 static MachineInstr *RematerializeCheapDef( 560 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 561 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 562 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 563 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 564 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 565 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 566 567 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 568 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 569 Op.setReg(NewReg); 570 MachineInstr *Clone = &*std::prev(Insert); 571 LIS.InsertMachineInstrInMaps(*Clone); 572 LIS.createAndComputeVirtRegInterval(NewReg); 573 MFI.stackifyVReg(NewReg); 574 ImposeStackOrdering(Clone); 575 576 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 577 578 // Shrink the interval. 579 bool IsDead = MRI.use_empty(Reg); 580 if (!IsDead) { 581 LiveInterval &LI = LIS.getInterval(Reg); 582 ShrinkToUses(LI, LIS); 583 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 584 } 585 586 // If that was the last use of the original, delete the original. 587 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 588 if (IsDead) { 589 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 590 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 591 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 592 LIS.removeInterval(Reg); 593 LIS.RemoveMachineInstrFromMaps(Def); 594 Def.eraseFromParent(); 595 596 MoveDebugValues(Reg, &*Insert, MBB, MRI); 597 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 598 } else { 599 CloneDebugValues(Reg, &*Insert, NewReg, MBB, MRI, TII); 600 } 601 602 return Clone; 603 } 604 605 /// A multiple-use def in the same block with no intervening memory or register 606 /// dependencies; move the def down, nest it with the current instruction, and 607 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 608 /// this: 609 /// 610 /// Reg = INST ... // Def 611 /// INST ..., Reg, ... // Insert 612 /// INST ..., Reg, ... 613 /// INST ..., Reg, ... 614 /// 615 /// to this: 616 /// 617 /// DefReg = INST ... // Def (to become the new Insert) 618 /// TeeReg, Reg = TEE_... DefReg 619 /// INST ..., TeeReg, ... // Insert 620 /// INST ..., Reg, ... 621 /// INST ..., Reg, ... 622 /// 623 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 624 /// resulting code. 625 static MachineInstr *MoveAndTeeForMultiUse( 626 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 627 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 628 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 629 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 630 631 // Move Def into place. 632 MBB.splice(Insert, &MBB, Def); 633 LIS.handleMove(*Def); 634 635 // Create the Tee and attach the registers. 636 const auto *RegClass = MRI.getRegClass(Reg); 637 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 638 unsigned DefReg = MRI.createVirtualRegister(RegClass); 639 MachineOperand &DefMO = Def->getOperand(0); 640 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 641 TII->get(GetTeeOpcode(RegClass)), TeeReg) 642 .addReg(Reg, RegState::Define) 643 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 644 Op.setReg(TeeReg); 645 DefMO.setReg(DefReg); 646 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 647 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 648 649 MoveDebugValues(Reg, Insert, MBB, MRI); 650 651 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 652 LiveInterval &LI = LIS.getInterval(Reg); 653 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 654 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 655 I->start = TeeIdx; 656 ValNo->def = TeeIdx; 657 ShrinkToUses(LI, LIS); 658 659 // Finish stackifying the new regs. 660 LIS.createAndComputeVirtRegInterval(TeeReg); 661 LIS.createAndComputeVirtRegInterval(DefReg); 662 MFI.stackifyVReg(DefReg); 663 MFI.stackifyVReg(TeeReg); 664 ImposeStackOrdering(Def); 665 ImposeStackOrdering(Tee); 666 667 CloneDebugValues(Reg, Tee, DefReg, MBB, MRI, TII); 668 CloneDebugValues(Reg, Insert, TeeReg, MBB, MRI, TII); 669 670 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 671 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 672 return Def; 673 } 674 675 namespace { 676 /// A stack for walking the tree of instructions being built, visiting the 677 /// MachineOperands in DFS order. 678 class TreeWalkerState { 679 typedef MachineInstr::mop_iterator mop_iterator; 680 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 681 typedef iterator_range<mop_reverse_iterator> RangeTy; 682 SmallVector<RangeTy, 4> Worklist; 683 684 public: 685 explicit TreeWalkerState(MachineInstr *Insert) { 686 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 687 if (Range.begin() != Range.end()) 688 Worklist.push_back(reverse(Range)); 689 } 690 691 bool Done() const { return Worklist.empty(); } 692 693 MachineOperand &Pop() { 694 RangeTy &Range = Worklist.back(); 695 MachineOperand &Op = *Range.begin(); 696 Range = drop_begin(Range, 1); 697 if (Range.begin() == Range.end()) 698 Worklist.pop_back(); 699 assert((Worklist.empty() || 700 Worklist.back().begin() != Worklist.back().end()) && 701 "Empty ranges shouldn't remain in the worklist"); 702 return Op; 703 } 704 705 /// Push Instr's operands onto the stack to be visited. 706 void PushOperands(MachineInstr *Instr) { 707 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 708 if (Range.begin() != Range.end()) 709 Worklist.push_back(reverse(Range)); 710 } 711 712 /// Some of Instr's operands are on the top of the stack; remove them and 713 /// re-insert them starting from the beginning (because we've commuted them). 714 void ResetTopOperands(MachineInstr *Instr) { 715 assert(HasRemainingOperands(Instr) && 716 "Reseting operands should only be done when the instruction has " 717 "an operand still on the stack"); 718 Worklist.back() = reverse(Instr->explicit_uses()); 719 } 720 721 /// Test whether Instr has operands remaining to be visited at the top of 722 /// the stack. 723 bool HasRemainingOperands(const MachineInstr *Instr) const { 724 if (Worklist.empty()) 725 return false; 726 const RangeTy &Range = Worklist.back(); 727 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 728 } 729 730 /// Test whether the given register is present on the stack, indicating an 731 /// operand in the tree that we haven't visited yet. Moving a definition of 732 /// Reg to a point in the tree after that would change its value. 733 /// 734 /// This is needed as a consequence of using implicit get_locals for 735 /// uses and implicit set_locals for defs. 736 bool IsOnStack(unsigned Reg) const { 737 for (const RangeTy &Range : Worklist) 738 for (const MachineOperand &MO : Range) 739 if (MO.isReg() && MO.getReg() == Reg) 740 return true; 741 return false; 742 } 743 }; 744 745 /// State to keep track of whether commuting is in flight or whether it's been 746 /// tried for the current instruction and didn't work. 747 class CommutingState { 748 /// There are effectively three states: the initial state where we haven't 749 /// started commuting anything and we don't know anything yet, the tenative 750 /// state where we've commuted the operands of the current instruction and are 751 /// revisting it, and the declined state where we've reverted the operands 752 /// back to their original order and will no longer commute it further. 753 bool TentativelyCommuting; 754 bool Declined; 755 756 /// During the tentative state, these hold the operand indices of the commuted 757 /// operands. 758 unsigned Operand0, Operand1; 759 760 public: 761 CommutingState() : TentativelyCommuting(false), Declined(false) {} 762 763 /// Stackification for an operand was not successful due to ordering 764 /// constraints. If possible, and if we haven't already tried it and declined 765 /// it, commute Insert's operands and prepare to revisit it. 766 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 767 const WebAssemblyInstrInfo *TII) { 768 if (TentativelyCommuting) { 769 assert(!Declined && 770 "Don't decline commuting until you've finished trying it"); 771 // Commuting didn't help. Revert it. 772 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 773 TentativelyCommuting = false; 774 Declined = true; 775 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 776 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 777 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 778 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 779 // Tentatively commute the operands and try again. 780 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 781 TreeWalker.ResetTopOperands(Insert); 782 TentativelyCommuting = true; 783 Declined = false; 784 } 785 } 786 } 787 788 /// Stackification for some operand was successful. Reset to the default 789 /// state. 790 void Reset() { 791 TentativelyCommuting = false; 792 Declined = false; 793 } 794 }; 795 } // end anonymous namespace 796 797 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 798 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 799 "********** Function: " 800 << MF.getName() << '\n'); 801 802 bool Changed = false; 803 MachineRegisterInfo &MRI = MF.getRegInfo(); 804 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 805 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 806 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 807 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 808 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 809 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 810 811 // Walk the instructions from the bottom up. Currently we don't look past 812 // block boundaries, and the blocks aren't ordered so the block visitation 813 // order isn't significant, but we may want to change this in the future. 814 for (MachineBasicBlock &MBB : MF) { 815 // Don't use a range-based for loop, because we modify the list as we're 816 // iterating over it and the end iterator may change. 817 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 818 MachineInstr *Insert = &*MII; 819 // Don't nest anything inside an inline asm, because we don't have 820 // constraints for $push inputs. 821 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 822 continue; 823 824 // Ignore debugging intrinsics. 825 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 826 continue; 827 828 // Iterate through the inputs in reverse order, since we'll be pulling 829 // operands off the stack in LIFO order. 830 CommutingState Commuting; 831 TreeWalkerState TreeWalker(Insert); 832 while (!TreeWalker.Done()) { 833 MachineOperand &Op = TreeWalker.Pop(); 834 835 // We're only interested in explicit virtual register operands. 836 if (!Op.isReg()) 837 continue; 838 839 unsigned Reg = Op.getReg(); 840 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 841 assert(!Op.isImplicit() && 842 "explicit_uses() should only iterate over explicit operands"); 843 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 844 continue; 845 846 // Identify the definition for this register at this point. 847 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 848 if (!Def) 849 continue; 850 851 // Don't nest an INLINE_ASM def into anything, because we don't have 852 // constraints for $pop outputs. 853 if (Def->getOpcode() == TargetOpcode::INLINEASM) 854 continue; 855 856 // Argument instructions represent live-in registers and not real 857 // instructions. 858 if (WebAssembly::isArgument(*Def)) 859 continue; 860 861 // Decide which strategy to take. Prefer to move a single-use value 862 // over cloning it, and prefer cloning over introducing a tee. 863 // For moving, we require the def to be in the same block as the use; 864 // this makes things simpler (LiveIntervals' handleMove function only 865 // supports intra-block moves) and it's MachineSink's job to catch all 866 // the sinking opportunities anyway. 867 bool SameBlock = Def->getParent() == &MBB; 868 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 869 !TreeWalker.IsOnStack(Reg); 870 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 871 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 872 } else if (ShouldRematerialize(*Def, AA, TII)) { 873 Insert = 874 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 875 LIS, MFI, MRI, TII, TRI); 876 } else if (CanMove && 877 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 878 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 879 MRI, TII); 880 } else { 881 // We failed to stackify the operand. If the problem was ordering 882 // constraints, Commuting may be able to help. 883 if (!CanMove && SameBlock) 884 Commuting.MaybeCommute(Insert, TreeWalker, TII); 885 // Proceed to the next operand. 886 continue; 887 } 888 889 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 890 // to a constant 0 so that the def is explicit, and the push/pop 891 // correspondence is maintained. 892 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 893 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); 894 895 // We stackified an operand. Add the defining instruction's operands to 896 // the worklist stack now to continue to build an ever deeper tree. 897 Commuting.Reset(); 898 TreeWalker.PushOperands(Insert); 899 } 900 901 // If we stackified any operands, skip over the tree to start looking for 902 // the next instruction we can build a tree on. 903 if (Insert != &*MII) { 904 ImposeStackOrdering(&*MII); 905 MII = MachineBasicBlock::iterator(Insert).getReverse(); 906 Changed = true; 907 } 908 } 909 } 910 911 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 912 // that it never looks like a use-before-def. 913 if (Changed) { 914 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 915 for (MachineBasicBlock &MBB : MF) 916 MBB.addLiveIn(WebAssembly::VALUE_STACK); 917 } 918 919 #ifndef NDEBUG 920 // Verify that pushes and pops are performed in LIFO order. 921 SmallVector<unsigned, 0> Stack; 922 for (MachineBasicBlock &MBB : MF) { 923 for (MachineInstr &MI : MBB) { 924 if (MI.isDebugInstr()) 925 continue; 926 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 927 if (!MO.isReg()) 928 continue; 929 unsigned Reg = MO.getReg(); 930 931 if (MFI.isVRegStackified(Reg)) { 932 if (MO.isDef()) 933 Stack.push_back(Reg); 934 else 935 assert(Stack.pop_back_val() == Reg && 936 "Register stack pop should be paired with a push"); 937 } 938 } 939 } 940 // TODO: Generalize this code to support keeping values on the stack across 941 // basic block boundaries. 942 assert(Stack.empty() && 943 "Register stack pushes and pops should be balanced"); 944 } 945 #endif 946 947 return Changed; 948 } 949