1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/LiveIntervals.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-reg-stackify" 41 42 namespace { 43 class WebAssemblyRegStackify final : public MachineFunctionPass { 44 StringRef getPassName() const override { 45 return "WebAssembly Register Stackify"; 46 } 47 48 void getAnalysisUsage(AnalysisUsage &AU) const override { 49 AU.setPreservesCFG(); 50 AU.addRequired<AAResultsWrapperPass>(); 51 AU.addRequired<MachineDominatorTree>(); 52 AU.addRequired<LiveIntervals>(); 53 AU.addPreserved<MachineBlockFrequencyInfo>(); 54 AU.addPreserved<SlotIndexes>(); 55 AU.addPreserved<LiveIntervals>(); 56 AU.addPreservedID(LiveVariablesID); 57 AU.addPreserved<MachineDominatorTree>(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 } 60 61 bool runOnMachineFunction(MachineFunction &MF) override; 62 63 public: 64 static char ID; // Pass identification, replacement for typeid 65 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 66 }; 67 } // end anonymous namespace 68 69 char WebAssemblyRegStackify::ID = 0; 70 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 71 "Reorder instructions to use the WebAssembly value stack", 72 false, false) 73 74 FunctionPass *llvm::createWebAssemblyRegStackify() { 75 return new WebAssemblyRegStackify(); 76 } 77 78 // Decorate the given instruction with implicit operands that enforce the 79 // expression stack ordering constraints for an instruction which is on 80 // the expression stack. 81 static void ImposeStackOrdering(MachineInstr *MI) { 82 // Write the opaque VALUE_STACK register. 83 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 85 /*isDef=*/true, 86 /*isImp=*/true)); 87 88 // Also read the opaque VALUE_STACK register. 89 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 90 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 91 /*isDef=*/false, 92 /*isImp=*/true)); 93 } 94 95 // Convert an IMPLICIT_DEF instruction into an instruction which defines 96 // a constant zero value. 97 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 98 MachineRegisterInfo &MRI, 99 const TargetInstrInfo *TII, 100 MachineFunction &MF) { 101 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 102 103 const auto *RegClass = 104 MRI.getRegClass(MI->getOperand(0).getReg()); 105 if (RegClass == &WebAssembly::I32RegClass) { 106 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 107 MI->addOperand(MachineOperand::CreateImm(0)); 108 } else if (RegClass == &WebAssembly::I64RegClass) { 109 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 110 MI->addOperand(MachineOperand::CreateImm(0)); 111 } else if (RegClass == &WebAssembly::F32RegClass) { 112 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 113 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 114 Type::getFloatTy(MF.getFunction().getContext()))); 115 MI->addOperand(MachineOperand::CreateFPImm(Val)); 116 } else if (RegClass == &WebAssembly::F64RegClass) { 117 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 118 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 119 Type::getDoubleTy(MF.getFunction().getContext()))); 120 MI->addOperand(MachineOperand::CreateFPImm(Val)); 121 } else { 122 llvm_unreachable("Unexpected reg class"); 123 } 124 } 125 126 // Determine whether a call to the callee referenced by 127 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 128 // effects. 129 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 130 bool &Write, bool &Effects, bool &StackPointer) { 131 // All calls can use the stack pointer. 132 StackPointer = true; 133 134 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 135 if (MO.isGlobal()) { 136 const Constant *GV = MO.getGlobal(); 137 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 138 if (!GA->isInterposable()) 139 GV = GA->getAliasee(); 140 141 if (const Function *F = dyn_cast<Function>(GV)) { 142 if (!F->doesNotThrow()) 143 Effects = true; 144 if (F->doesNotAccessMemory()) 145 return; 146 if (F->onlyReadsMemory()) { 147 Read = true; 148 return; 149 } 150 } 151 } 152 153 // Assume the worst. 154 Write = true; 155 Read = true; 156 Effects = true; 157 } 158 159 // Determine whether MI reads memory, writes memory, has side effects, 160 // and/or uses the stack pointer value. 161 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 162 bool &Write, bool &Effects, bool &StackPointer) { 163 assert(!MI.isTerminator()); 164 165 if (MI.isDebugInstr() || MI.isPosition()) 166 return; 167 168 // Check for loads. 169 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 170 Read = true; 171 172 // Check for stores. 173 if (MI.mayStore()) { 174 Write = true; 175 176 // Check for stores to __stack_pointer. 177 for (auto MMO : MI.memoperands()) { 178 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 179 if (MPI.V.is<const PseudoSourceValue *>()) { 180 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 181 if (const ExternalSymbolPseudoSourceValue *EPSV = 182 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 183 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { 184 StackPointer = true; 185 } 186 } 187 } 188 } else if (MI.hasOrderedMemoryRef()) { 189 switch (MI.getOpcode()) { 190 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 191 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 192 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 193 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 194 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 195 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 196 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 197 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 198 // These instruction have hasUnmodeledSideEffects() returning true 199 // because they trap on overflow and invalid so they can't be arbitrarily 200 // moved, however hasOrderedMemoryRef() interprets this plus their lack 201 // of memoperands as having a potential unknown memory reference. 202 break; 203 default: 204 // Record volatile accesses, unless it's a call, as calls are handled 205 // specially below. 206 if (!MI.isCall()) { 207 Write = true; 208 Effects = true; 209 } 210 break; 211 } 212 } 213 214 // Check for side effects. 215 if (MI.hasUnmodeledSideEffects()) { 216 switch (MI.getOpcode()) { 217 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 218 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 219 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 220 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 221 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 222 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 223 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 224 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 225 // These instructions have hasUnmodeledSideEffects() returning true 226 // because they trap on overflow and invalid so they can't be arbitrarily 227 // moved, however in the specific case of register stackifying, it is safe 228 // to move them because overflow and invalid are Undefined Behavior. 229 break; 230 default: 231 Effects = true; 232 break; 233 } 234 } 235 236 // Analyze calls. 237 if (MI.isCall()) { 238 switch (MI.getOpcode()) { 239 case WebAssembly::CALL_VOID: 240 case WebAssembly::CALL_INDIRECT_VOID: 241 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 242 break; 243 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 244 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 245 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 246 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 247 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 248 break; 249 default: 250 llvm_unreachable("unexpected call opcode"); 251 } 252 } 253 } 254 255 // Test whether Def is safe and profitable to rematerialize. 256 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 257 const WebAssemblyInstrInfo *TII) { 258 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 259 } 260 261 // Identify the definition for this register at this point. This is a 262 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 263 // LiveIntervals to handle complex cases. 264 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 265 const MachineRegisterInfo &MRI, 266 const LiveIntervals &LIS) 267 { 268 // Most registers are in SSA form here so we try a quick MRI query first. 269 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 270 return Def; 271 272 // MRI doesn't know what the Def is. Try asking LIS. 273 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 274 LIS.getInstructionIndex(*Insert))) 275 return LIS.getInstructionFromIndex(ValNo->def); 276 277 return nullptr; 278 } 279 280 // Test whether Reg, as defined at Def, has exactly one use. This is a 281 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 282 // to handle complex cases. 283 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 284 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 285 LiveIntervals &LIS) { 286 // Most registers are in SSA form here so we try a quick MRI query first. 287 if (MRI.hasOneUse(Reg)) 288 return true; 289 290 bool HasOne = false; 291 const LiveInterval &LI = LIS.getInterval(Reg); 292 const VNInfo *DefVNI = LI.getVNInfoAt( 293 LIS.getInstructionIndex(*Def).getRegSlot()); 294 assert(DefVNI); 295 for (auto &I : MRI.use_nodbg_operands(Reg)) { 296 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 297 if (Result.valueIn() == DefVNI) { 298 if (!Result.isKill()) 299 return false; 300 if (HasOne) 301 return false; 302 HasOne = true; 303 } 304 } 305 return HasOne; 306 } 307 308 // Test whether it's safe to move Def to just before Insert. 309 // TODO: Compute memory dependencies in a way that doesn't require always 310 // walking the block. 311 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 312 // more precise. 313 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 314 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 315 assert(Def->getParent() == Insert->getParent()); 316 317 // Check for register dependencies. 318 SmallVector<unsigned, 4> MutableRegisters; 319 for (const MachineOperand &MO : Def->operands()) { 320 if (!MO.isReg() || MO.isUndef()) 321 continue; 322 unsigned Reg = MO.getReg(); 323 324 // If the register is dead here and at Insert, ignore it. 325 if (MO.isDead() && Insert->definesRegister(Reg) && 326 !Insert->readsRegister(Reg)) 327 continue; 328 329 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 330 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 331 // from moving down, and we've already checked for that. 332 if (Reg == WebAssembly::ARGUMENTS) 333 continue; 334 // If the physical register is never modified, ignore it. 335 if (!MRI.isPhysRegModified(Reg)) 336 continue; 337 // Otherwise, it's a physical register with unknown liveness. 338 return false; 339 } 340 341 // If one of the operands isn't in SSA form, it has different values at 342 // different times, and we need to make sure we don't move our use across 343 // a different def. 344 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 345 MutableRegisters.push_back(Reg); 346 } 347 348 bool Read = false, Write = false, Effects = false, StackPointer = false; 349 Query(*Def, AA, Read, Write, Effects, StackPointer); 350 351 // If the instruction does not access memory and has no side effects, it has 352 // no additional dependencies. 353 bool HasMutableRegisters = !MutableRegisters.empty(); 354 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 355 return true; 356 357 // Scan through the intervening instructions between Def and Insert. 358 MachineBasicBlock::const_iterator D(Def), I(Insert); 359 for (--I; I != D; --I) { 360 bool InterveningRead = false; 361 bool InterveningWrite = false; 362 bool InterveningEffects = false; 363 bool InterveningStackPointer = false; 364 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 365 InterveningStackPointer); 366 if (Effects && InterveningEffects) 367 return false; 368 if (Read && InterveningWrite) 369 return false; 370 if (Write && (InterveningRead || InterveningWrite)) 371 return false; 372 if (StackPointer && InterveningStackPointer) 373 return false; 374 375 for (unsigned Reg : MutableRegisters) 376 for (const MachineOperand &MO : I->operands()) 377 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 378 return false; 379 } 380 381 return true; 382 } 383 384 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 385 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 386 const MachineBasicBlock &MBB, 387 const MachineRegisterInfo &MRI, 388 const MachineDominatorTree &MDT, 389 LiveIntervals &LIS, 390 WebAssemblyFunctionInfo &MFI) { 391 const LiveInterval &LI = LIS.getInterval(Reg); 392 393 const MachineInstr *OneUseInst = OneUse.getParent(); 394 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 395 396 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 397 if (&Use == &OneUse) 398 continue; 399 400 const MachineInstr *UseInst = Use.getParent(); 401 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 402 403 if (UseVNI != OneUseVNI) 404 continue; 405 406 const MachineInstr *OneUseInst = OneUse.getParent(); 407 if (UseInst == OneUseInst) { 408 // Another use in the same instruction. We need to ensure that the one 409 // selected use happens "before" it. 410 if (&OneUse > &Use) 411 return false; 412 } else { 413 // Test that the use is dominated by the one selected use. 414 while (!MDT.dominates(OneUseInst, UseInst)) { 415 // Actually, dominating is over-conservative. Test that the use would 416 // happen after the one selected use in the stack evaluation order. 417 // 418 // This is needed as a consequence of using implicit get_locals for 419 // uses and implicit set_locals for defs. 420 if (UseInst->getDesc().getNumDefs() == 0) 421 return false; 422 const MachineOperand &MO = UseInst->getOperand(0); 423 if (!MO.isReg()) 424 return false; 425 unsigned DefReg = MO.getReg(); 426 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 427 !MFI.isVRegStackified(DefReg)) 428 return false; 429 assert(MRI.hasOneUse(DefReg)); 430 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 431 const MachineInstr *NewUseInst = NewUse.getParent(); 432 if (NewUseInst == OneUseInst) { 433 if (&OneUse > &NewUse) 434 return false; 435 break; 436 } 437 UseInst = NewUseInst; 438 } 439 } 440 } 441 return true; 442 } 443 444 /// Get the appropriate tee opcode for the given register class. 445 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 446 if (RC == &WebAssembly::I32RegClass) 447 return WebAssembly::TEE_I32; 448 if (RC == &WebAssembly::I64RegClass) 449 return WebAssembly::TEE_I64; 450 if (RC == &WebAssembly::F32RegClass) 451 return WebAssembly::TEE_F32; 452 if (RC == &WebAssembly::F64RegClass) 453 return WebAssembly::TEE_F64; 454 if (RC == &WebAssembly::V128RegClass) 455 return WebAssembly::TEE_V128; 456 llvm_unreachable("Unexpected register class"); 457 } 458 459 // Shrink LI to its uses, cleaning up LI. 460 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 461 if (LIS.shrinkToUses(&LI)) { 462 SmallVector<LiveInterval*, 4> SplitLIs; 463 LIS.splitSeparateComponents(LI, SplitLIs); 464 } 465 } 466 467 /// A single-use def in the same block with no intervening memory or register 468 /// dependencies; move the def down and nest it with the current instruction. 469 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 470 MachineInstr *Def, 471 MachineBasicBlock &MBB, 472 MachineInstr *Insert, LiveIntervals &LIS, 473 WebAssemblyFunctionInfo &MFI, 474 MachineRegisterInfo &MRI) { 475 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 476 477 MBB.splice(Insert, &MBB, Def); 478 LIS.handleMove(*Def); 479 480 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 481 // No one else is using this register for anything so we can just stackify 482 // it in place. 483 MFI.stackifyVReg(Reg); 484 } else { 485 // The register may have unrelated uses or defs; create a new register for 486 // just our one def and use so that we can stackify it. 487 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 488 Def->getOperand(0).setReg(NewReg); 489 Op.setReg(NewReg); 490 491 // Tell LiveIntervals about the new register. 492 LIS.createAndComputeVirtRegInterval(NewReg); 493 494 // Tell LiveIntervals about the changes to the old register. 495 LiveInterval &LI = LIS.getInterval(Reg); 496 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 497 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 498 /*RemoveDeadValNo=*/true); 499 500 MFI.stackifyVReg(NewReg); 501 502 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 503 } 504 505 ImposeStackOrdering(Def); 506 return Def; 507 } 508 509 /// A trivially cloneable instruction; clone it and nest the new copy with the 510 /// current instruction. 511 static MachineInstr *RematerializeCheapDef( 512 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 513 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 514 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 515 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 516 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 517 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 518 519 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 520 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 521 Op.setReg(NewReg); 522 MachineInstr *Clone = &*std::prev(Insert); 523 LIS.InsertMachineInstrInMaps(*Clone); 524 LIS.createAndComputeVirtRegInterval(NewReg); 525 MFI.stackifyVReg(NewReg); 526 ImposeStackOrdering(Clone); 527 528 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 529 530 // Shrink the interval. 531 bool IsDead = MRI.use_empty(Reg); 532 if (!IsDead) { 533 LiveInterval &LI = LIS.getInterval(Reg); 534 ShrinkToUses(LI, LIS); 535 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 536 } 537 538 // If that was the last use of the original, delete the original. 539 if (IsDead) { 540 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 541 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 542 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 543 LIS.removeInterval(Reg); 544 LIS.RemoveMachineInstrFromMaps(Def); 545 Def.eraseFromParent(); 546 } 547 548 return Clone; 549 } 550 551 /// A multiple-use def in the same block with no intervening memory or register 552 /// dependencies; move the def down, nest it with the current instruction, and 553 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 554 /// this: 555 /// 556 /// Reg = INST ... // Def 557 /// INST ..., Reg, ... // Insert 558 /// INST ..., Reg, ... 559 /// INST ..., Reg, ... 560 /// 561 /// to this: 562 /// 563 /// DefReg = INST ... // Def (to become the new Insert) 564 /// TeeReg, Reg = TEE_... DefReg 565 /// INST ..., TeeReg, ... // Insert 566 /// INST ..., Reg, ... 567 /// INST ..., Reg, ... 568 /// 569 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 570 /// resulting code. 571 static MachineInstr *MoveAndTeeForMultiUse( 572 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 573 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 574 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 575 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 576 577 // Move Def into place. 578 MBB.splice(Insert, &MBB, Def); 579 LIS.handleMove(*Def); 580 581 // Create the Tee and attach the registers. 582 const auto *RegClass = MRI.getRegClass(Reg); 583 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 584 unsigned DefReg = MRI.createVirtualRegister(RegClass); 585 MachineOperand &DefMO = Def->getOperand(0); 586 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 587 TII->get(GetTeeOpcode(RegClass)), TeeReg) 588 .addReg(Reg, RegState::Define) 589 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 590 Op.setReg(TeeReg); 591 DefMO.setReg(DefReg); 592 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 593 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 594 595 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 596 LiveInterval &LI = LIS.getInterval(Reg); 597 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 598 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 599 I->start = TeeIdx; 600 ValNo->def = TeeIdx; 601 ShrinkToUses(LI, LIS); 602 603 // Finish stackifying the new regs. 604 LIS.createAndComputeVirtRegInterval(TeeReg); 605 LIS.createAndComputeVirtRegInterval(DefReg); 606 MFI.stackifyVReg(DefReg); 607 MFI.stackifyVReg(TeeReg); 608 ImposeStackOrdering(Def); 609 ImposeStackOrdering(Tee); 610 611 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 612 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 613 return Def; 614 } 615 616 namespace { 617 /// A stack for walking the tree of instructions being built, visiting the 618 /// MachineOperands in DFS order. 619 class TreeWalkerState { 620 typedef MachineInstr::mop_iterator mop_iterator; 621 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 622 typedef iterator_range<mop_reverse_iterator> RangeTy; 623 SmallVector<RangeTy, 4> Worklist; 624 625 public: 626 explicit TreeWalkerState(MachineInstr *Insert) { 627 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 628 if (Range.begin() != Range.end()) 629 Worklist.push_back(reverse(Range)); 630 } 631 632 bool Done() const { return Worklist.empty(); } 633 634 MachineOperand &Pop() { 635 RangeTy &Range = Worklist.back(); 636 MachineOperand &Op = *Range.begin(); 637 Range = drop_begin(Range, 1); 638 if (Range.begin() == Range.end()) 639 Worklist.pop_back(); 640 assert((Worklist.empty() || 641 Worklist.back().begin() != Worklist.back().end()) && 642 "Empty ranges shouldn't remain in the worklist"); 643 return Op; 644 } 645 646 /// Push Instr's operands onto the stack to be visited. 647 void PushOperands(MachineInstr *Instr) { 648 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 649 if (Range.begin() != Range.end()) 650 Worklist.push_back(reverse(Range)); 651 } 652 653 /// Some of Instr's operands are on the top of the stack; remove them and 654 /// re-insert them starting from the beginning (because we've commuted them). 655 void ResetTopOperands(MachineInstr *Instr) { 656 assert(HasRemainingOperands(Instr) && 657 "Reseting operands should only be done when the instruction has " 658 "an operand still on the stack"); 659 Worklist.back() = reverse(Instr->explicit_uses()); 660 } 661 662 /// Test whether Instr has operands remaining to be visited at the top of 663 /// the stack. 664 bool HasRemainingOperands(const MachineInstr *Instr) const { 665 if (Worklist.empty()) 666 return false; 667 const RangeTy &Range = Worklist.back(); 668 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 669 } 670 671 /// Test whether the given register is present on the stack, indicating an 672 /// operand in the tree that we haven't visited yet. Moving a definition of 673 /// Reg to a point in the tree after that would change its value. 674 /// 675 /// This is needed as a consequence of using implicit get_locals for 676 /// uses and implicit set_locals for defs. 677 bool IsOnStack(unsigned Reg) const { 678 for (const RangeTy &Range : Worklist) 679 for (const MachineOperand &MO : Range) 680 if (MO.isReg() && MO.getReg() == Reg) 681 return true; 682 return false; 683 } 684 }; 685 686 /// State to keep track of whether commuting is in flight or whether it's been 687 /// tried for the current instruction and didn't work. 688 class CommutingState { 689 /// There are effectively three states: the initial state where we haven't 690 /// started commuting anything and we don't know anything yet, the tenative 691 /// state where we've commuted the operands of the current instruction and are 692 /// revisting it, and the declined state where we've reverted the operands 693 /// back to their original order and will no longer commute it further. 694 bool TentativelyCommuting; 695 bool Declined; 696 697 /// During the tentative state, these hold the operand indices of the commuted 698 /// operands. 699 unsigned Operand0, Operand1; 700 701 public: 702 CommutingState() : TentativelyCommuting(false), Declined(false) {} 703 704 /// Stackification for an operand was not successful due to ordering 705 /// constraints. If possible, and if we haven't already tried it and declined 706 /// it, commute Insert's operands and prepare to revisit it. 707 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 708 const WebAssemblyInstrInfo *TII) { 709 if (TentativelyCommuting) { 710 assert(!Declined && 711 "Don't decline commuting until you've finished trying it"); 712 // Commuting didn't help. Revert it. 713 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 714 TentativelyCommuting = false; 715 Declined = true; 716 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 717 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 718 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 719 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 720 // Tentatively commute the operands and try again. 721 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 722 TreeWalker.ResetTopOperands(Insert); 723 TentativelyCommuting = true; 724 Declined = false; 725 } 726 } 727 } 728 729 /// Stackification for some operand was successful. Reset to the default 730 /// state. 731 void Reset() { 732 TentativelyCommuting = false; 733 Declined = false; 734 } 735 }; 736 } // end anonymous namespace 737 738 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 739 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 740 "********** Function: " 741 << MF.getName() << '\n'); 742 743 bool Changed = false; 744 MachineRegisterInfo &MRI = MF.getRegInfo(); 745 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 746 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 747 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 748 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 749 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 750 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 751 752 // Disable the TEE optimization if we aren't doing direct wasm object 753 // emission, because lowering TEE to TEE_LOCAL is done in the ExplicitLocals 754 // pass, which is also disabled. 755 bool UseTee = true; 756 if (MF.getSubtarget<WebAssemblySubtarget>() 757 .getTargetTriple().isOSBinFormatELF()) 758 UseTee = false; 759 760 // Walk the instructions from the bottom up. Currently we don't look past 761 // block boundaries, and the blocks aren't ordered so the block visitation 762 // order isn't significant, but we may want to change this in the future. 763 for (MachineBasicBlock &MBB : MF) { 764 // Don't use a range-based for loop, because we modify the list as we're 765 // iterating over it and the end iterator may change. 766 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 767 MachineInstr *Insert = &*MII; 768 // Don't nest anything inside an inline asm, because we don't have 769 // constraints for $push inputs. 770 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 771 continue; 772 773 // Ignore debugging intrinsics. 774 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 775 continue; 776 777 // Iterate through the inputs in reverse order, since we'll be pulling 778 // operands off the stack in LIFO order. 779 CommutingState Commuting; 780 TreeWalkerState TreeWalker(Insert); 781 while (!TreeWalker.Done()) { 782 MachineOperand &Op = TreeWalker.Pop(); 783 784 // We're only interested in explicit virtual register operands. 785 if (!Op.isReg()) 786 continue; 787 788 unsigned Reg = Op.getReg(); 789 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 790 assert(!Op.isImplicit() && 791 "explicit_uses() should only iterate over explicit operands"); 792 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 793 continue; 794 795 // Identify the definition for this register at this point. 796 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 797 if (!Def) 798 continue; 799 800 // Don't nest an INLINE_ASM def into anything, because we don't have 801 // constraints for $pop outputs. 802 if (Def->getOpcode() == TargetOpcode::INLINEASM) 803 continue; 804 805 // Argument instructions represent live-in registers and not real 806 // instructions. 807 if (WebAssembly::isArgument(*Def)) 808 continue; 809 810 // Decide which strategy to take. Prefer to move a single-use value 811 // over cloning it, and prefer cloning over introducing a tee. 812 // For moving, we require the def to be in the same block as the use; 813 // this makes things simpler (LiveIntervals' handleMove function only 814 // supports intra-block moves) and it's MachineSink's job to catch all 815 // the sinking opportunities anyway. 816 bool SameBlock = Def->getParent() == &MBB; 817 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 818 !TreeWalker.IsOnStack(Reg); 819 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 820 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 821 } else if (ShouldRematerialize(*Def, AA, TII)) { 822 Insert = 823 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 824 LIS, MFI, MRI, TII, TRI); 825 } else if (UseTee && CanMove && 826 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 827 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 828 MRI, TII); 829 } else { 830 // We failed to stackify the operand. If the problem was ordering 831 // constraints, Commuting may be able to help. 832 if (!CanMove && SameBlock) 833 Commuting.MaybeCommute(Insert, TreeWalker, TII); 834 // Proceed to the next operand. 835 continue; 836 } 837 838 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 839 // to a constant 0 so that the def is explicit, and the push/pop 840 // correspondence is maintained. 841 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 842 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); 843 844 // We stackified an operand. Add the defining instruction's operands to 845 // the worklist stack now to continue to build an ever deeper tree. 846 Commuting.Reset(); 847 TreeWalker.PushOperands(Insert); 848 } 849 850 // If we stackified any operands, skip over the tree to start looking for 851 // the next instruction we can build a tree on. 852 if (Insert != &*MII) { 853 ImposeStackOrdering(&*MII); 854 MII = MachineBasicBlock::iterator(Insert).getReverse(); 855 Changed = true; 856 } 857 } 858 } 859 860 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 861 // that it never looks like a use-before-def. 862 if (Changed) { 863 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 864 for (MachineBasicBlock &MBB : MF) 865 MBB.addLiveIn(WebAssembly::VALUE_STACK); 866 } 867 868 #ifndef NDEBUG 869 // Verify that pushes and pops are performed in LIFO order. 870 SmallVector<unsigned, 0> Stack; 871 for (MachineBasicBlock &MBB : MF) { 872 for (MachineInstr &MI : MBB) { 873 if (MI.isDebugInstr()) 874 continue; 875 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 876 if (!MO.isReg()) 877 continue; 878 unsigned Reg = MO.getReg(); 879 880 if (MFI.isVRegStackified(Reg)) { 881 if (MO.isDef()) 882 Stack.push_back(Reg); 883 else 884 assert(Stack.pop_back_val() == Reg && 885 "Register stack pop should be paired with a push"); 886 } 887 } 888 } 889 // TODO: Generalize this code to support keeping values on the stack across 890 // basic block boundaries. 891 assert(Stack.empty() && 892 "Register stack pushes and pops should be balanced"); 893 } 894 #endif 895 896 return Changed; 897 } 898