1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements a register stacking pass.
12 ///
13 /// This pass reorders instructions to put register uses and defs in an order
14 /// such that they form single-use expression trees. Registers fitting this form
15 /// are then marked as "stackified", meaning references to them are replaced by
16 /// "push" and "pop" from the value stack.
17 ///
18 /// This is primarily a code size optimization, since temporary values on the
19 /// value stack don't need to be named.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
24 #include "WebAssembly.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-reg-stackify"
41 
42 namespace {
43 class WebAssemblyRegStackify final : public MachineFunctionPass {
44   StringRef getPassName() const override {
45     return "WebAssembly Register Stackify";
46   }
47 
48   void getAnalysisUsage(AnalysisUsage &AU) const override {
49     AU.setPreservesCFG();
50     AU.addRequired<AAResultsWrapperPass>();
51     AU.addRequired<MachineDominatorTree>();
52     AU.addRequired<LiveIntervals>();
53     AU.addPreserved<MachineBlockFrequencyInfo>();
54     AU.addPreserved<SlotIndexes>();
55     AU.addPreserved<LiveIntervals>();
56     AU.addPreservedID(LiveVariablesID);
57     AU.addPreserved<MachineDominatorTree>();
58     MachineFunctionPass::getAnalysisUsage(AU);
59   }
60 
61   bool runOnMachineFunction(MachineFunction &MF) override;
62 
63 public:
64   static char ID; // Pass identification, replacement for typeid
65   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
66 };
67 } // end anonymous namespace
68 
69 char WebAssemblyRegStackify::ID = 0;
70 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
71                 "Reorder instructions to use the WebAssembly value stack",
72                 false, false)
73 
74 FunctionPass *llvm::createWebAssemblyRegStackify() {
75   return new WebAssemblyRegStackify();
76 }
77 
78 // Decorate the given instruction with implicit operands that enforce the
79 // expression stack ordering constraints for an instruction which is on
80 // the expression stack.
81 static void ImposeStackOrdering(MachineInstr *MI) {
82   // Write the opaque VALUE_STACK register.
83   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
84     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
85                                              /*isDef=*/true,
86                                              /*isImp=*/true));
87 
88   // Also read the opaque VALUE_STACK register.
89   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
90     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
91                                              /*isDef=*/false,
92                                              /*isImp=*/true));
93 }
94 
95 // Convert an IMPLICIT_DEF instruction into an instruction which defines
96 // a constant zero value.
97 static void ConvertImplicitDefToConstZero(MachineInstr *MI,
98                                           MachineRegisterInfo &MRI,
99                                           const TargetInstrInfo *TII,
100                                           MachineFunction &MF) {
101   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
102 
103   const auto *RegClass =
104       MRI.getRegClass(MI->getOperand(0).getReg());
105   if (RegClass == &WebAssembly::I32RegClass) {
106     MI->setDesc(TII->get(WebAssembly::CONST_I32));
107     MI->addOperand(MachineOperand::CreateImm(0));
108   } else if (RegClass == &WebAssembly::I64RegClass) {
109     MI->setDesc(TII->get(WebAssembly::CONST_I64));
110     MI->addOperand(MachineOperand::CreateImm(0));
111   } else if (RegClass == &WebAssembly::F32RegClass) {
112     MI->setDesc(TII->get(WebAssembly::CONST_F32));
113     ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue(
114         Type::getFloatTy(MF.getFunction().getContext())));
115     MI->addOperand(MachineOperand::CreateFPImm(Val));
116   } else if (RegClass == &WebAssembly::F64RegClass) {
117     MI->setDesc(TII->get(WebAssembly::CONST_F64));
118     ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue(
119         Type::getDoubleTy(MF.getFunction().getContext())));
120     MI->addOperand(MachineOperand::CreateFPImm(Val));
121   } else {
122     llvm_unreachable("Unexpected reg class");
123   }
124 }
125 
126 // Determine whether a call to the callee referenced by
127 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
128 // effects.
129 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
130                         bool &Write, bool &Effects, bool &StackPointer) {
131   // All calls can use the stack pointer.
132   StackPointer = true;
133 
134   const MachineOperand &MO = MI.getOperand(CalleeOpNo);
135   if (MO.isGlobal()) {
136     const Constant *GV = MO.getGlobal();
137     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
138       if (!GA->isInterposable())
139         GV = GA->getAliasee();
140 
141     if (const Function *F = dyn_cast<Function>(GV)) {
142       if (!F->doesNotThrow())
143         Effects = true;
144       if (F->doesNotAccessMemory())
145         return;
146       if (F->onlyReadsMemory()) {
147         Read = true;
148         return;
149       }
150     }
151   }
152 
153   // Assume the worst.
154   Write = true;
155   Read = true;
156   Effects = true;
157 }
158 
159 // Determine whether MI reads memory, writes memory, has side effects,
160 // and/or uses the stack pointer value.
161 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
162                   bool &Write, bool &Effects, bool &StackPointer) {
163   assert(!MI.isPosition());
164   assert(!MI.isTerminator());
165 
166   if (MI.isDebugInstr())
167     return;
168 
169   // Check for loads.
170   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
171     Read = true;
172 
173   // Check for stores.
174   if (MI.mayStore()) {
175     Write = true;
176 
177     // Check for stores to __stack_pointer.
178     for (auto MMO : MI.memoperands()) {
179       const MachinePointerInfo &MPI = MMO->getPointerInfo();
180       if (MPI.V.is<const PseudoSourceValue *>()) {
181         auto PSV = MPI.V.get<const PseudoSourceValue *>();
182         if (const ExternalSymbolPseudoSourceValue *EPSV =
183                 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV))
184           if (StringRef(EPSV->getSymbol()) == "__stack_pointer") {
185             StackPointer = true;
186           }
187       }
188     }
189   } else if (MI.hasOrderedMemoryRef()) {
190     switch (MI.getOpcode()) {
191     case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
192     case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
193     case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
194     case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
195     case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
196     case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
197     case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
198     case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
199       // These instruction have hasUnmodeledSideEffects() returning true
200       // because they trap on overflow and invalid so they can't be arbitrarily
201       // moved, however hasOrderedMemoryRef() interprets this plus their lack
202       // of memoperands as having a potential unknown memory reference.
203       break;
204     default:
205       // Record volatile accesses, unless it's a call, as calls are handled
206       // specially below.
207       if (!MI.isCall()) {
208         Write = true;
209         Effects = true;
210       }
211       break;
212     }
213   }
214 
215   // Check for side effects.
216   if (MI.hasUnmodeledSideEffects()) {
217     switch (MI.getOpcode()) {
218     case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
219     case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
220     case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
221     case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
222     case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
223     case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
224     case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
225     case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
226       // These instructions have hasUnmodeledSideEffects() returning true
227       // because they trap on overflow and invalid so they can't be arbitrarily
228       // moved, however in the specific case of register stackifying, it is safe
229       // to move them because overflow and invalid are Undefined Behavior.
230       break;
231     default:
232       Effects = true;
233       break;
234     }
235   }
236 
237   // Analyze calls.
238   if (MI.isCall()) {
239     switch (MI.getOpcode()) {
240     case WebAssembly::CALL_VOID:
241     case WebAssembly::CALL_INDIRECT_VOID:
242       QueryCallee(MI, 0, Read, Write, Effects, StackPointer);
243       break;
244     case WebAssembly::CALL_I32: case WebAssembly::CALL_I64:
245     case WebAssembly::CALL_F32: case WebAssembly::CALL_F64:
246     case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64:
247     case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64:
248       QueryCallee(MI, 1, Read, Write, Effects, StackPointer);
249       break;
250     default:
251       llvm_unreachable("unexpected call opcode");
252     }
253   }
254 }
255 
256 // Test whether Def is safe and profitable to rematerialize.
257 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
258                                 const WebAssemblyInstrInfo *TII) {
259   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
260 }
261 
262 // Identify the definition for this register at this point. This is a
263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
264 // LiveIntervals to handle complex cases.
265 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert,
266                                 const MachineRegisterInfo &MRI,
267                                 const LiveIntervals &LIS)
268 {
269   // Most registers are in SSA form here so we try a quick MRI query first.
270   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
271     return Def;
272 
273   // MRI doesn't know what the Def is. Try asking LIS.
274   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
275           LIS.getInstructionIndex(*Insert)))
276     return LIS.getInstructionFromIndex(ValNo->def);
277 
278   return nullptr;
279 }
280 
281 // Test whether Reg, as defined at Def, has exactly one use. This is a
282 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
283 // to handle complex cases.
284 static bool HasOneUse(unsigned Reg, MachineInstr *Def,
285                       MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
286                       LiveIntervals &LIS) {
287   // Most registers are in SSA form here so we try a quick MRI query first.
288   if (MRI.hasOneUse(Reg))
289     return true;
290 
291   bool HasOne = false;
292   const LiveInterval &LI = LIS.getInterval(Reg);
293   const VNInfo *DefVNI = LI.getVNInfoAt(
294       LIS.getInstructionIndex(*Def).getRegSlot());
295   assert(DefVNI);
296   for (auto &I : MRI.use_nodbg_operands(Reg)) {
297     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
298     if (Result.valueIn() == DefVNI) {
299       if (!Result.isKill())
300         return false;
301       if (HasOne)
302         return false;
303       HasOne = true;
304     }
305   }
306   return HasOne;
307 }
308 
309 // Test whether it's safe to move Def to just before Insert.
310 // TODO: Compute memory dependencies in a way that doesn't require always
311 // walking the block.
312 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
313 // more precise.
314 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
315                          AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
316   assert(Def->getParent() == Insert->getParent());
317 
318   // Check for register dependencies.
319   SmallVector<unsigned, 4> MutableRegisters;
320   for (const MachineOperand &MO : Def->operands()) {
321     if (!MO.isReg() || MO.isUndef())
322       continue;
323     unsigned Reg = MO.getReg();
324 
325     // If the register is dead here and at Insert, ignore it.
326     if (MO.isDead() && Insert->definesRegister(Reg) &&
327         !Insert->readsRegister(Reg))
328       continue;
329 
330     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
331       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
332       // from moving down, and we've already checked for that.
333       if (Reg == WebAssembly::ARGUMENTS)
334         continue;
335       // If the physical register is never modified, ignore it.
336       if (!MRI.isPhysRegModified(Reg))
337         continue;
338       // Otherwise, it's a physical register with unknown liveness.
339       return false;
340     }
341 
342     // If one of the operands isn't in SSA form, it has different values at
343     // different times, and we need to make sure we don't move our use across
344     // a different def.
345     if (!MO.isDef() && !MRI.hasOneDef(Reg))
346       MutableRegisters.push_back(Reg);
347   }
348 
349   bool Read = false, Write = false, Effects = false, StackPointer = false;
350   Query(*Def, AA, Read, Write, Effects, StackPointer);
351 
352   // If the instruction does not access memory and has no side effects, it has
353   // no additional dependencies.
354   bool HasMutableRegisters = !MutableRegisters.empty();
355   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
356     return true;
357 
358   // Scan through the intervening instructions between Def and Insert.
359   MachineBasicBlock::const_iterator D(Def), I(Insert);
360   for (--I; I != D; --I) {
361     bool InterveningRead = false;
362     bool InterveningWrite = false;
363     bool InterveningEffects = false;
364     bool InterveningStackPointer = false;
365     Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
366           InterveningStackPointer);
367     if (Effects && InterveningEffects)
368       return false;
369     if (Read && InterveningWrite)
370       return false;
371     if (Write && (InterveningRead || InterveningWrite))
372       return false;
373     if (StackPointer && InterveningStackPointer)
374       return false;
375 
376     for (unsigned Reg : MutableRegisters)
377       for (const MachineOperand &MO : I->operands())
378         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
379           return false;
380   }
381 
382   return true;
383 }
384 
385 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
386 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
387                                      const MachineBasicBlock &MBB,
388                                      const MachineRegisterInfo &MRI,
389                                      const MachineDominatorTree &MDT,
390                                      LiveIntervals &LIS,
391                                      WebAssemblyFunctionInfo &MFI) {
392   const LiveInterval &LI = LIS.getInterval(Reg);
393 
394   const MachineInstr *OneUseInst = OneUse.getParent();
395   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
396 
397   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
398     if (&Use == &OneUse)
399       continue;
400 
401     const MachineInstr *UseInst = Use.getParent();
402     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
403 
404     if (UseVNI != OneUseVNI)
405       continue;
406 
407     const MachineInstr *OneUseInst = OneUse.getParent();
408     if (UseInst == OneUseInst) {
409       // Another use in the same instruction. We need to ensure that the one
410       // selected use happens "before" it.
411       if (&OneUse > &Use)
412         return false;
413     } else {
414       // Test that the use is dominated by the one selected use.
415       while (!MDT.dominates(OneUseInst, UseInst)) {
416         // Actually, dominating is over-conservative. Test that the use would
417         // happen after the one selected use in the stack evaluation order.
418         //
419         // This is needed as a consequence of using implicit get_locals for
420         // uses and implicit set_locals for defs.
421         if (UseInst->getDesc().getNumDefs() == 0)
422           return false;
423         const MachineOperand &MO = UseInst->getOperand(0);
424         if (!MO.isReg())
425           return false;
426         unsigned DefReg = MO.getReg();
427         if (!TargetRegisterInfo::isVirtualRegister(DefReg) ||
428             !MFI.isVRegStackified(DefReg))
429           return false;
430         assert(MRI.hasOneUse(DefReg));
431         const MachineOperand &NewUse = *MRI.use_begin(DefReg);
432         const MachineInstr *NewUseInst = NewUse.getParent();
433         if (NewUseInst == OneUseInst) {
434           if (&OneUse > &NewUse)
435             return false;
436           break;
437         }
438         UseInst = NewUseInst;
439       }
440     }
441   }
442   return true;
443 }
444 
445 /// Get the appropriate tee opcode for the given register class.
446 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) {
447   if (RC == &WebAssembly::I32RegClass)
448     return WebAssembly::TEE_I32;
449   if (RC == &WebAssembly::I64RegClass)
450     return WebAssembly::TEE_I64;
451   if (RC == &WebAssembly::F32RegClass)
452     return WebAssembly::TEE_F32;
453   if (RC == &WebAssembly::F64RegClass)
454     return WebAssembly::TEE_F64;
455   if (RC == &WebAssembly::V128RegClass)
456     return WebAssembly::TEE_V128;
457   llvm_unreachable("Unexpected register class");
458 }
459 
460 // Shrink LI to its uses, cleaning up LI.
461 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
462   if (LIS.shrinkToUses(&LI)) {
463     SmallVector<LiveInterval*, 4> SplitLIs;
464     LIS.splitSeparateComponents(LI, SplitLIs);
465   }
466 }
467 
468 /// A single-use def in the same block with no intervening memory or register
469 /// dependencies; move the def down and nest it with the current instruction.
470 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op,
471                                       MachineInstr *Def,
472                                       MachineBasicBlock &MBB,
473                                       MachineInstr *Insert, LiveIntervals &LIS,
474                                       WebAssemblyFunctionInfo &MFI,
475                                       MachineRegisterInfo &MRI) {
476   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
477 
478   MBB.splice(Insert, &MBB, Def);
479   LIS.handleMove(*Def);
480 
481   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
482     // No one else is using this register for anything so we can just stackify
483     // it in place.
484     MFI.stackifyVReg(Reg);
485   } else {
486     // The register may have unrelated uses or defs; create a new register for
487     // just our one def and use so that we can stackify it.
488     unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
489     Def->getOperand(0).setReg(NewReg);
490     Op.setReg(NewReg);
491 
492     // Tell LiveIntervals about the new register.
493     LIS.createAndComputeVirtRegInterval(NewReg);
494 
495     // Tell LiveIntervals about the changes to the old register.
496     LiveInterval &LI = LIS.getInterval(Reg);
497     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
498                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
499                      /*RemoveDeadValNo=*/true);
500 
501     MFI.stackifyVReg(NewReg);
502 
503     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
504   }
505 
506   ImposeStackOrdering(Def);
507   return Def;
508 }
509 
510 /// A trivially cloneable instruction; clone it and nest the new copy with the
511 /// current instruction.
512 static MachineInstr *RematerializeCheapDef(
513     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
514     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
515     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
516     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
517   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
518   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
519 
520   unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
521   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
522   Op.setReg(NewReg);
523   MachineInstr *Clone = &*std::prev(Insert);
524   LIS.InsertMachineInstrInMaps(*Clone);
525   LIS.createAndComputeVirtRegInterval(NewReg);
526   MFI.stackifyVReg(NewReg);
527   ImposeStackOrdering(Clone);
528 
529   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
530 
531   // Shrink the interval.
532   bool IsDead = MRI.use_empty(Reg);
533   if (!IsDead) {
534     LiveInterval &LI = LIS.getInterval(Reg);
535     ShrinkToUses(LI, LIS);
536     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
537   }
538 
539   // If that was the last use of the original, delete the original.
540   if (IsDead) {
541     LLVM_DEBUG(dbgs() << " - Deleting original\n");
542     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
543     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
544     LIS.removeInterval(Reg);
545     LIS.RemoveMachineInstrFromMaps(Def);
546     Def.eraseFromParent();
547   }
548 
549   return Clone;
550 }
551 
552 /// A multiple-use def in the same block with no intervening memory or register
553 /// dependencies; move the def down, nest it with the current instruction, and
554 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
555 /// this:
556 ///
557 ///    Reg = INST ...        // Def
558 ///    INST ..., Reg, ...    // Insert
559 ///    INST ..., Reg, ...
560 ///    INST ..., Reg, ...
561 ///
562 /// to this:
563 ///
564 ///    DefReg = INST ...     // Def (to become the new Insert)
565 ///    TeeReg, Reg = TEE_... DefReg
566 ///    INST ..., TeeReg, ... // Insert
567 ///    INST ..., Reg, ...
568 ///    INST ..., Reg, ...
569 ///
570 /// with DefReg and TeeReg stackified. This eliminates a get_local from the
571 /// resulting code.
572 static MachineInstr *MoveAndTeeForMultiUse(
573     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
574     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
575     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
576   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
577 
578   // Move Def into place.
579   MBB.splice(Insert, &MBB, Def);
580   LIS.handleMove(*Def);
581 
582   // Create the Tee and attach the registers.
583   const auto *RegClass = MRI.getRegClass(Reg);
584   unsigned TeeReg = MRI.createVirtualRegister(RegClass);
585   unsigned DefReg = MRI.createVirtualRegister(RegClass);
586   MachineOperand &DefMO = Def->getOperand(0);
587   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
588                               TII->get(GetTeeOpcode(RegClass)), TeeReg)
589                           .addReg(Reg, RegState::Define)
590                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
591   Op.setReg(TeeReg);
592   DefMO.setReg(DefReg);
593   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
594   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
595 
596   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
597   LiveInterval &LI = LIS.getInterval(Reg);
598   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
599   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
600   I->start = TeeIdx;
601   ValNo->def = TeeIdx;
602   ShrinkToUses(LI, LIS);
603 
604   // Finish stackifying the new regs.
605   LIS.createAndComputeVirtRegInterval(TeeReg);
606   LIS.createAndComputeVirtRegInterval(DefReg);
607   MFI.stackifyVReg(DefReg);
608   MFI.stackifyVReg(TeeReg);
609   ImposeStackOrdering(Def);
610   ImposeStackOrdering(Tee);
611 
612   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
613   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
614   return Def;
615 }
616 
617 namespace {
618 /// A stack for walking the tree of instructions being built, visiting the
619 /// MachineOperands in DFS order.
620 class TreeWalkerState {
621   typedef MachineInstr::mop_iterator mop_iterator;
622   typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
623   typedef iterator_range<mop_reverse_iterator> RangeTy;
624   SmallVector<RangeTy, 4> Worklist;
625 
626 public:
627   explicit TreeWalkerState(MachineInstr *Insert) {
628     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
629     if (Range.begin() != Range.end())
630       Worklist.push_back(reverse(Range));
631   }
632 
633   bool Done() const { return Worklist.empty(); }
634 
635   MachineOperand &Pop() {
636     RangeTy &Range = Worklist.back();
637     MachineOperand &Op = *Range.begin();
638     Range = drop_begin(Range, 1);
639     if (Range.begin() == Range.end())
640       Worklist.pop_back();
641     assert((Worklist.empty() ||
642             Worklist.back().begin() != Worklist.back().end()) &&
643            "Empty ranges shouldn't remain in the worklist");
644     return Op;
645   }
646 
647   /// Push Instr's operands onto the stack to be visited.
648   void PushOperands(MachineInstr *Instr) {
649     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
650     if (Range.begin() != Range.end())
651       Worklist.push_back(reverse(Range));
652   }
653 
654   /// Some of Instr's operands are on the top of the stack; remove them and
655   /// re-insert them starting from the beginning (because we've commuted them).
656   void ResetTopOperands(MachineInstr *Instr) {
657     assert(HasRemainingOperands(Instr) &&
658            "Reseting operands should only be done when the instruction has "
659            "an operand still on the stack");
660     Worklist.back() = reverse(Instr->explicit_uses());
661   }
662 
663   /// Test whether Instr has operands remaining to be visited at the top of
664   /// the stack.
665   bool HasRemainingOperands(const MachineInstr *Instr) const {
666     if (Worklist.empty())
667       return false;
668     const RangeTy &Range = Worklist.back();
669     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
670   }
671 
672   /// Test whether the given register is present on the stack, indicating an
673   /// operand in the tree that we haven't visited yet. Moving a definition of
674   /// Reg to a point in the tree after that would change its value.
675   ///
676   /// This is needed as a consequence of using implicit get_locals for
677   /// uses and implicit set_locals for defs.
678   bool IsOnStack(unsigned Reg) const {
679     for (const RangeTy &Range : Worklist)
680       for (const MachineOperand &MO : Range)
681         if (MO.isReg() && MO.getReg() == Reg)
682           return true;
683     return false;
684   }
685 };
686 
687 /// State to keep track of whether commuting is in flight or whether it's been
688 /// tried for the current instruction and didn't work.
689 class CommutingState {
690   /// There are effectively three states: the initial state where we haven't
691   /// started commuting anything and we don't know anything yet, the tenative
692   /// state where we've commuted the operands of the current instruction and are
693   /// revisting it, and the declined state where we've reverted the operands
694   /// back to their original order and will no longer commute it further.
695   bool TentativelyCommuting;
696   bool Declined;
697 
698   /// During the tentative state, these hold the operand indices of the commuted
699   /// operands.
700   unsigned Operand0, Operand1;
701 
702 public:
703   CommutingState() : TentativelyCommuting(false), Declined(false) {}
704 
705   /// Stackification for an operand was not successful due to ordering
706   /// constraints. If possible, and if we haven't already tried it and declined
707   /// it, commute Insert's operands and prepare to revisit it.
708   void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
709                     const WebAssemblyInstrInfo *TII) {
710     if (TentativelyCommuting) {
711       assert(!Declined &&
712              "Don't decline commuting until you've finished trying it");
713       // Commuting didn't help. Revert it.
714       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
715       TentativelyCommuting = false;
716       Declined = true;
717     } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
718       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
719       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
720       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
721         // Tentatively commute the operands and try again.
722         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
723         TreeWalker.ResetTopOperands(Insert);
724         TentativelyCommuting = true;
725         Declined = false;
726       }
727     }
728   }
729 
730   /// Stackification for some operand was successful. Reset to the default
731   /// state.
732   void Reset() {
733     TentativelyCommuting = false;
734     Declined = false;
735   }
736 };
737 } // end anonymous namespace
738 
739 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
740   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
741                        "********** Function: "
742                     << MF.getName() << '\n');
743 
744   bool Changed = false;
745   MachineRegisterInfo &MRI = MF.getRegInfo();
746   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
747   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
748   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
749   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
750   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
751   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
752 
753   // Disable the TEE optimization if we aren't doing direct wasm object
754   // emission, because lowering TEE to TEE_LOCAL is done in the ExplicitLocals
755   // pass, which is also disabled.
756   bool UseTee = true;
757   if (MF.getSubtarget<WebAssemblySubtarget>()
758         .getTargetTriple().isOSBinFormatELF())
759     UseTee = false;
760 
761   // Walk the instructions from the bottom up. Currently we don't look past
762   // block boundaries, and the blocks aren't ordered so the block visitation
763   // order isn't significant, but we may want to change this in the future.
764   for (MachineBasicBlock &MBB : MF) {
765     // Don't use a range-based for loop, because we modify the list as we're
766     // iterating over it and the end iterator may change.
767     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
768       MachineInstr *Insert = &*MII;
769       // Don't nest anything inside an inline asm, because we don't have
770       // constraints for $push inputs.
771       if (Insert->getOpcode() == TargetOpcode::INLINEASM)
772         continue;
773 
774       // Ignore debugging intrinsics.
775       if (Insert->getOpcode() == TargetOpcode::DBG_VALUE)
776         continue;
777 
778       // Iterate through the inputs in reverse order, since we'll be pulling
779       // operands off the stack in LIFO order.
780       CommutingState Commuting;
781       TreeWalkerState TreeWalker(Insert);
782       while (!TreeWalker.Done()) {
783         MachineOperand &Op = TreeWalker.Pop();
784 
785         // We're only interested in explicit virtual register operands.
786         if (!Op.isReg())
787           continue;
788 
789         unsigned Reg = Op.getReg();
790         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
791         assert(!Op.isImplicit() &&
792                "explicit_uses() should only iterate over explicit operands");
793         if (TargetRegisterInfo::isPhysicalRegister(Reg))
794           continue;
795 
796         // Identify the definition for this register at this point.
797         MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS);
798         if (!Def)
799           continue;
800 
801         // Don't nest an INLINE_ASM def into anything, because we don't have
802         // constraints for $pop outputs.
803         if (Def->getOpcode() == TargetOpcode::INLINEASM)
804           continue;
805 
806         // Argument instructions represent live-in registers and not real
807         // instructions.
808         if (WebAssembly::isArgument(*Def))
809           continue;
810 
811         // Decide which strategy to take. Prefer to move a single-use value
812         // over cloning it, and prefer cloning over introducing a tee.
813         // For moving, we require the def to be in the same block as the use;
814         // this makes things simpler (LiveIntervals' handleMove function only
815         // supports intra-block moves) and it's MachineSink's job to catch all
816         // the sinking opportunities anyway.
817         bool SameBlock = Def->getParent() == &MBB;
818         bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) &&
819                        !TreeWalker.IsOnStack(Reg);
820         if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) {
821           Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
822         } else if (ShouldRematerialize(*Def, AA, TII)) {
823           Insert =
824               RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
825                                     LIS, MFI, MRI, TII, TRI);
826         } else if (UseTee && CanMove &&
827                    OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
828           Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
829                                          MRI, TII);
830         } else {
831           // We failed to stackify the operand. If the problem was ordering
832           // constraints, Commuting may be able to help.
833           if (!CanMove && SameBlock)
834             Commuting.MaybeCommute(Insert, TreeWalker, TII);
835           // Proceed to the next operand.
836           continue;
837         }
838 
839         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
840         // to a constant 0 so that the def is explicit, and the push/pop
841         // correspondence is maintained.
842         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
843           ConvertImplicitDefToConstZero(Insert, MRI, TII, MF);
844 
845         // We stackified an operand. Add the defining instruction's operands to
846         // the worklist stack now to continue to build an ever deeper tree.
847         Commuting.Reset();
848         TreeWalker.PushOperands(Insert);
849       }
850 
851       // If we stackified any operands, skip over the tree to start looking for
852       // the next instruction we can build a tree on.
853       if (Insert != &*MII) {
854         ImposeStackOrdering(&*MII);
855         MII = MachineBasicBlock::iterator(Insert).getReverse();
856         Changed = true;
857       }
858     }
859   }
860 
861   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
862   // that it never looks like a use-before-def.
863   if (Changed) {
864     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
865     for (MachineBasicBlock &MBB : MF)
866       MBB.addLiveIn(WebAssembly::VALUE_STACK);
867   }
868 
869 #ifndef NDEBUG
870   // Verify that pushes and pops are performed in LIFO order.
871   SmallVector<unsigned, 0> Stack;
872   for (MachineBasicBlock &MBB : MF) {
873     for (MachineInstr &MI : MBB) {
874       if (MI.isDebugInstr())
875         continue;
876       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
877         if (!MO.isReg())
878           continue;
879         unsigned Reg = MO.getReg();
880 
881         if (MFI.isVRegStackified(Reg)) {
882           if (MO.isDef())
883             Stack.push_back(Reg);
884           else
885             assert(Stack.pop_back_val() == Reg &&
886                    "Register stack pop should be paired with a push");
887         }
888       }
889     }
890     // TODO: Generalize this code to support keeping values on the stack across
891     // basic block boundaries.
892     assert(Stack.empty() &&
893            "Register stack pushes and pops should be balanced");
894   }
895 #endif
896 
897   return Changed;
898 }
899