1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a register stacking pass. 11 /// 12 /// This pass reorders instructions to put register uses and defs in an order 13 /// such that they form single-use expression trees. Registers fitting this form 14 /// are then marked as "stackified", meaning references to them are replaced by 15 /// "push" and "pop" from the value stack. 16 /// 17 /// This is primarily a code size optimization, since temporary values on the 18 /// value stack don't need to be named. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 23 #include "WebAssembly.h" 24 #include "WebAssemblyDebugValueManager.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void ImposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 unsigned TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 124 MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32)); 125 MI->addOperand(MachineOperand::CreateReg(TempReg, false)); 126 MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 127 TII->get(WebAssembly::CONST_I32), TempReg) 128 .addImm(0); 129 LIS.InsertMachineInstrInMaps(*Const); 130 } else { 131 llvm_unreachable("Unexpected reg class"); 132 } 133 } 134 135 // Determine whether a call to the callee referenced by 136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 137 // effects. 138 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 139 bool &Write, bool &Effects, bool &StackPointer) { 140 // All calls can use the stack pointer. 141 StackPointer = true; 142 143 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 144 if (MO.isGlobal()) { 145 const Constant *GV = MO.getGlobal(); 146 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 147 if (!GA->isInterposable()) 148 GV = GA->getAliasee(); 149 150 if (const Function *F = dyn_cast<Function>(GV)) { 151 if (!F->doesNotThrow()) 152 Effects = true; 153 if (F->doesNotAccessMemory()) 154 return; 155 if (F->onlyReadsMemory()) { 156 Read = true; 157 return; 158 } 159 } 160 } 161 162 // Assume the worst. 163 Write = true; 164 Read = true; 165 Effects = true; 166 } 167 168 // Determine whether MI reads memory, writes memory, has side effects, 169 // and/or uses the stack pointer value. 170 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 171 bool &Write, bool &Effects, bool &StackPointer) { 172 assert(!MI.isTerminator()); 173 174 if (MI.isDebugInstr() || MI.isPosition()) 175 return; 176 177 // Check for loads. 178 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 179 Read = true; 180 181 // Check for stores. 182 if (MI.mayStore()) { 183 Write = true; 184 } else if (MI.hasOrderedMemoryRef()) { 185 switch (MI.getOpcode()) { 186 case WebAssembly::DIV_S_I32: 187 case WebAssembly::DIV_S_I64: 188 case WebAssembly::REM_S_I32: 189 case WebAssembly::REM_S_I64: 190 case WebAssembly::DIV_U_I32: 191 case WebAssembly::DIV_U_I64: 192 case WebAssembly::REM_U_I32: 193 case WebAssembly::REM_U_I64: 194 case WebAssembly::I32_TRUNC_S_F32: 195 case WebAssembly::I64_TRUNC_S_F32: 196 case WebAssembly::I32_TRUNC_S_F64: 197 case WebAssembly::I64_TRUNC_S_F64: 198 case WebAssembly::I32_TRUNC_U_F32: 199 case WebAssembly::I64_TRUNC_U_F32: 200 case WebAssembly::I32_TRUNC_U_F64: 201 case WebAssembly::I64_TRUNC_U_F64: 202 // These instruction have hasUnmodeledSideEffects() returning true 203 // because they trap on overflow and invalid so they can't be arbitrarily 204 // moved, however hasOrderedMemoryRef() interprets this plus their lack 205 // of memoperands as having a potential unknown memory reference. 206 break; 207 default: 208 // Record volatile accesses, unless it's a call, as calls are handled 209 // specially below. 210 if (!MI.isCall()) { 211 Write = true; 212 Effects = true; 213 } 214 break; 215 } 216 } 217 218 // Check for side effects. 219 if (MI.hasUnmodeledSideEffects()) { 220 switch (MI.getOpcode()) { 221 case WebAssembly::DIV_S_I32: 222 case WebAssembly::DIV_S_I64: 223 case WebAssembly::REM_S_I32: 224 case WebAssembly::REM_S_I64: 225 case WebAssembly::DIV_U_I32: 226 case WebAssembly::DIV_U_I64: 227 case WebAssembly::REM_U_I32: 228 case WebAssembly::REM_U_I64: 229 case WebAssembly::I32_TRUNC_S_F32: 230 case WebAssembly::I64_TRUNC_S_F32: 231 case WebAssembly::I32_TRUNC_S_F64: 232 case WebAssembly::I64_TRUNC_S_F64: 233 case WebAssembly::I32_TRUNC_U_F32: 234 case WebAssembly::I64_TRUNC_U_F32: 235 case WebAssembly::I32_TRUNC_U_F64: 236 case WebAssembly::I64_TRUNC_U_F64: 237 // These instructions have hasUnmodeledSideEffects() returning true 238 // because they trap on overflow and invalid so they can't be arbitrarily 239 // moved, however in the specific case of register stackifying, it is safe 240 // to move them because overflow and invalid are Undefined Behavior. 241 break; 242 default: 243 Effects = true; 244 break; 245 } 246 } 247 248 // Check for writes to __stack_pointer global. 249 if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 && 250 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0) 251 StackPointer = true; 252 253 // Analyze calls. 254 if (MI.isCall()) { 255 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); 256 QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 257 } 258 } 259 260 // Test whether Def is safe and profitable to rematerialize. 261 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 262 const WebAssemblyInstrInfo *TII) { 263 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 264 } 265 266 // Identify the definition for this register at this point. This is a 267 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 268 // LiveIntervals to handle complex cases. 269 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 270 const MachineRegisterInfo &MRI, 271 const LiveIntervals &LIS) { 272 // Most registers are in SSA form here so we try a quick MRI query first. 273 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 274 return Def; 275 276 // MRI doesn't know what the Def is. Try asking LIS. 277 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 278 LIS.getInstructionIndex(*Insert))) 279 return LIS.getInstructionFromIndex(ValNo->def); 280 281 return nullptr; 282 } 283 284 // Test whether Reg, as defined at Def, has exactly one use. This is a 285 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 286 // to handle complex cases. 287 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 288 MachineDominatorTree &MDT, LiveIntervals &LIS) { 289 // Most registers are in SSA form here so we try a quick MRI query first. 290 if (MRI.hasOneUse(Reg)) 291 return true; 292 293 bool HasOne = false; 294 const LiveInterval &LI = LIS.getInterval(Reg); 295 const VNInfo *DefVNI = 296 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 297 assert(DefVNI); 298 for (auto &I : MRI.use_nodbg_operands(Reg)) { 299 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 300 if (Result.valueIn() == DefVNI) { 301 if (!Result.isKill()) 302 return false; 303 if (HasOne) 304 return false; 305 HasOne = true; 306 } 307 } 308 return HasOne; 309 } 310 311 // Test whether it's safe to move Def to just before Insert. 312 // TODO: Compute memory dependencies in a way that doesn't require always 313 // walking the block. 314 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 315 // more precise. 316 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 317 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 318 assert(Def->getParent() == Insert->getParent()); 319 320 // Check for register dependencies. 321 SmallVector<unsigned, 4> MutableRegisters; 322 for (const MachineOperand &MO : Def->operands()) { 323 if (!MO.isReg() || MO.isUndef()) 324 continue; 325 unsigned Reg = MO.getReg(); 326 327 // If the register is dead here and at Insert, ignore it. 328 if (MO.isDead() && Insert->definesRegister(Reg) && 329 !Insert->readsRegister(Reg)) 330 continue; 331 332 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 333 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 334 // from moving down, and we've already checked for that. 335 if (Reg == WebAssembly::ARGUMENTS) 336 continue; 337 // If the physical register is never modified, ignore it. 338 if (!MRI.isPhysRegModified(Reg)) 339 continue; 340 // Otherwise, it's a physical register with unknown liveness. 341 return false; 342 } 343 344 // If one of the operands isn't in SSA form, it has different values at 345 // different times, and we need to make sure we don't move our use across 346 // a different def. 347 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 348 MutableRegisters.push_back(Reg); 349 } 350 351 bool Read = false, Write = false, Effects = false, StackPointer = false; 352 Query(*Def, AA, Read, Write, Effects, StackPointer); 353 354 // If the instruction does not access memory and has no side effects, it has 355 // no additional dependencies. 356 bool HasMutableRegisters = !MutableRegisters.empty(); 357 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 358 return true; 359 360 // Scan through the intervening instructions between Def and Insert. 361 MachineBasicBlock::const_iterator D(Def), I(Insert); 362 for (--I; I != D; --I) { 363 bool InterveningRead = false; 364 bool InterveningWrite = false; 365 bool InterveningEffects = false; 366 bool InterveningStackPointer = false; 367 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 368 InterveningStackPointer); 369 if (Effects && InterveningEffects) 370 return false; 371 if (Read && InterveningWrite) 372 return false; 373 if (Write && (InterveningRead || InterveningWrite)) 374 return false; 375 if (StackPointer && InterveningStackPointer) 376 return false; 377 378 for (unsigned Reg : MutableRegisters) 379 for (const MachineOperand &MO : I->operands()) 380 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 381 return false; 382 } 383 384 return true; 385 } 386 387 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 388 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 389 const MachineBasicBlock &MBB, 390 const MachineRegisterInfo &MRI, 391 const MachineDominatorTree &MDT, 392 LiveIntervals &LIS, 393 WebAssemblyFunctionInfo &MFI) { 394 const LiveInterval &LI = LIS.getInterval(Reg); 395 396 const MachineInstr *OneUseInst = OneUse.getParent(); 397 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 398 399 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 400 if (&Use == &OneUse) 401 continue; 402 403 const MachineInstr *UseInst = Use.getParent(); 404 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 405 406 if (UseVNI != OneUseVNI) 407 continue; 408 409 if (UseInst == OneUseInst) { 410 // Another use in the same instruction. We need to ensure that the one 411 // selected use happens "before" it. 412 if (&OneUse > &Use) 413 return false; 414 } else { 415 // Test that the use is dominated by the one selected use. 416 while (!MDT.dominates(OneUseInst, UseInst)) { 417 // Actually, dominating is over-conservative. Test that the use would 418 // happen after the one selected use in the stack evaluation order. 419 // 420 // This is needed as a consequence of using implicit local.gets for 421 // uses and implicit local.sets for defs. 422 if (UseInst->getDesc().getNumDefs() == 0) 423 return false; 424 const MachineOperand &MO = UseInst->getOperand(0); 425 if (!MO.isReg()) 426 return false; 427 unsigned DefReg = MO.getReg(); 428 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 429 !MFI.isVRegStackified(DefReg)) 430 return false; 431 assert(MRI.hasOneNonDBGUse(DefReg)); 432 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 433 const MachineInstr *NewUseInst = NewUse.getParent(); 434 if (NewUseInst == OneUseInst) { 435 if (&OneUse > &NewUse) 436 return false; 437 break; 438 } 439 UseInst = NewUseInst; 440 } 441 } 442 } 443 return true; 444 } 445 446 /// Get the appropriate tee opcode for the given register class. 447 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 448 if (RC == &WebAssembly::I32RegClass) 449 return WebAssembly::TEE_I32; 450 if (RC == &WebAssembly::I64RegClass) 451 return WebAssembly::TEE_I64; 452 if (RC == &WebAssembly::F32RegClass) 453 return WebAssembly::TEE_F32; 454 if (RC == &WebAssembly::F64RegClass) 455 return WebAssembly::TEE_F64; 456 if (RC == &WebAssembly::V128RegClass) 457 return WebAssembly::TEE_V128; 458 llvm_unreachable("Unexpected register class"); 459 } 460 461 // Shrink LI to its uses, cleaning up LI. 462 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 463 if (LIS.shrinkToUses(&LI)) { 464 SmallVector<LiveInterval *, 4> SplitLIs; 465 LIS.splitSeparateComponents(LI, SplitLIs); 466 } 467 } 468 469 /// A single-use def in the same block with no intervening memory or register 470 /// dependencies; move the def down and nest it with the current instruction. 471 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, 472 MachineInstr *Def, MachineBasicBlock &MBB, 473 MachineInstr *Insert, LiveIntervals &LIS, 474 WebAssemblyFunctionInfo &MFI, 475 MachineRegisterInfo &MRI) { 476 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 477 478 WebAssemblyDebugValueManager DefDIs(Def); 479 MBB.splice(Insert, &MBB, Def); 480 DefDIs.move(Insert); 481 LIS.handleMove(*Def); 482 483 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 484 // No one else is using this register for anything so we can just stackify 485 // it in place. 486 MFI.stackifyVReg(Reg); 487 } else { 488 // The register may have unrelated uses or defs; create a new register for 489 // just our one def and use so that we can stackify it. 490 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 491 Def->getOperand(0).setReg(NewReg); 492 Op.setReg(NewReg); 493 494 // Tell LiveIntervals about the new register. 495 LIS.createAndComputeVirtRegInterval(NewReg); 496 497 // Tell LiveIntervals about the changes to the old register. 498 LiveInterval &LI = LIS.getInterval(Reg); 499 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 500 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 501 /*RemoveDeadValNo=*/true); 502 503 MFI.stackifyVReg(NewReg); 504 505 DefDIs.updateReg(NewReg); 506 507 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 508 } 509 510 ImposeStackOrdering(Def); 511 return Def; 512 } 513 514 /// A trivially cloneable instruction; clone it and nest the new copy with the 515 /// current instruction. 516 static MachineInstr *RematerializeCheapDef( 517 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 518 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 519 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 520 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 521 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 522 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 523 524 WebAssemblyDebugValueManager DefDIs(&Def); 525 526 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 527 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 528 Op.setReg(NewReg); 529 MachineInstr *Clone = &*std::prev(Insert); 530 LIS.InsertMachineInstrInMaps(*Clone); 531 LIS.createAndComputeVirtRegInterval(NewReg); 532 MFI.stackifyVReg(NewReg); 533 ImposeStackOrdering(Clone); 534 535 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 536 537 // Shrink the interval. 538 bool IsDead = MRI.use_empty(Reg); 539 if (!IsDead) { 540 LiveInterval &LI = LIS.getInterval(Reg); 541 ShrinkToUses(LI, LIS); 542 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 543 } 544 545 // If that was the last use of the original, delete the original. 546 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 547 if (IsDead) { 548 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 549 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 550 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 551 LIS.removeInterval(Reg); 552 LIS.RemoveMachineInstrFromMaps(Def); 553 Def.eraseFromParent(); 554 555 DefDIs.move(&*Insert); 556 DefDIs.updateReg(NewReg); 557 } else { 558 DefDIs.clone(&*Insert, NewReg); 559 } 560 561 return Clone; 562 } 563 564 /// A multiple-use def in the same block with no intervening memory or register 565 /// dependencies; move the def down, nest it with the current instruction, and 566 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 567 /// this: 568 /// 569 /// Reg = INST ... // Def 570 /// INST ..., Reg, ... // Insert 571 /// INST ..., Reg, ... 572 /// INST ..., Reg, ... 573 /// 574 /// to this: 575 /// 576 /// DefReg = INST ... // Def (to become the new Insert) 577 /// TeeReg, Reg = TEE_... DefReg 578 /// INST ..., TeeReg, ... // Insert 579 /// INST ..., Reg, ... 580 /// INST ..., Reg, ... 581 /// 582 /// with DefReg and TeeReg stackified. This eliminates a local.get from the 583 /// resulting code. 584 static MachineInstr *MoveAndTeeForMultiUse( 585 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 586 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 587 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 588 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 589 590 WebAssemblyDebugValueManager DefDIs(Def); 591 592 // Move Def into place. 593 MBB.splice(Insert, &MBB, Def); 594 LIS.handleMove(*Def); 595 596 // Create the Tee and attach the registers. 597 const auto *RegClass = MRI.getRegClass(Reg); 598 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 599 unsigned DefReg = MRI.createVirtualRegister(RegClass); 600 MachineOperand &DefMO = Def->getOperand(0); 601 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 602 TII->get(GetTeeOpcode(RegClass)), TeeReg) 603 .addReg(Reg, RegState::Define) 604 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 605 Op.setReg(TeeReg); 606 DefMO.setReg(DefReg); 607 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 608 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 609 610 DefDIs.move(Insert); 611 612 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 613 LiveInterval &LI = LIS.getInterval(Reg); 614 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 615 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 616 I->start = TeeIdx; 617 ValNo->def = TeeIdx; 618 ShrinkToUses(LI, LIS); 619 620 // Finish stackifying the new regs. 621 LIS.createAndComputeVirtRegInterval(TeeReg); 622 LIS.createAndComputeVirtRegInterval(DefReg); 623 MFI.stackifyVReg(DefReg); 624 MFI.stackifyVReg(TeeReg); 625 ImposeStackOrdering(Def); 626 ImposeStackOrdering(Tee); 627 628 DefDIs.clone(Tee, DefReg); 629 DefDIs.clone(Insert, TeeReg); 630 631 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 632 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 633 return Def; 634 } 635 636 namespace { 637 /// A stack for walking the tree of instructions being built, visiting the 638 /// MachineOperands in DFS order. 639 class TreeWalkerState { 640 typedef MachineInstr::mop_iterator mop_iterator; 641 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 642 typedef iterator_range<mop_reverse_iterator> RangeTy; 643 SmallVector<RangeTy, 4> Worklist; 644 645 public: 646 explicit TreeWalkerState(MachineInstr *Insert) { 647 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 648 if (Range.begin() != Range.end()) 649 Worklist.push_back(reverse(Range)); 650 } 651 652 bool Done() const { return Worklist.empty(); } 653 654 MachineOperand &Pop() { 655 RangeTy &Range = Worklist.back(); 656 MachineOperand &Op = *Range.begin(); 657 Range = drop_begin(Range, 1); 658 if (Range.begin() == Range.end()) 659 Worklist.pop_back(); 660 assert((Worklist.empty() || 661 Worklist.back().begin() != Worklist.back().end()) && 662 "Empty ranges shouldn't remain in the worklist"); 663 return Op; 664 } 665 666 /// Push Instr's operands onto the stack to be visited. 667 void PushOperands(MachineInstr *Instr) { 668 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 669 if (Range.begin() != Range.end()) 670 Worklist.push_back(reverse(Range)); 671 } 672 673 /// Some of Instr's operands are on the top of the stack; remove them and 674 /// re-insert them starting from the beginning (because we've commuted them). 675 void ResetTopOperands(MachineInstr *Instr) { 676 assert(HasRemainingOperands(Instr) && 677 "Reseting operands should only be done when the instruction has " 678 "an operand still on the stack"); 679 Worklist.back() = reverse(Instr->explicit_uses()); 680 } 681 682 /// Test whether Instr has operands remaining to be visited at the top of 683 /// the stack. 684 bool HasRemainingOperands(const MachineInstr *Instr) const { 685 if (Worklist.empty()) 686 return false; 687 const RangeTy &Range = Worklist.back(); 688 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 689 } 690 691 /// Test whether the given register is present on the stack, indicating an 692 /// operand in the tree that we haven't visited yet. Moving a definition of 693 /// Reg to a point in the tree after that would change its value. 694 /// 695 /// This is needed as a consequence of using implicit local.gets for 696 /// uses and implicit local.sets for defs. 697 bool IsOnStack(unsigned Reg) const { 698 for (const RangeTy &Range : Worklist) 699 for (const MachineOperand &MO : Range) 700 if (MO.isReg() && MO.getReg() == Reg) 701 return true; 702 return false; 703 } 704 }; 705 706 /// State to keep track of whether commuting is in flight or whether it's been 707 /// tried for the current instruction and didn't work. 708 class CommutingState { 709 /// There are effectively three states: the initial state where we haven't 710 /// started commuting anything and we don't know anything yet, the tentative 711 /// state where we've commuted the operands of the current instruction and are 712 /// revisiting it, and the declined state where we've reverted the operands 713 /// back to their original order and will no longer commute it further. 714 bool TentativelyCommuting; 715 bool Declined; 716 717 /// During the tentative state, these hold the operand indices of the commuted 718 /// operands. 719 unsigned Operand0, Operand1; 720 721 public: 722 CommutingState() : TentativelyCommuting(false), Declined(false) {} 723 724 /// Stackification for an operand was not successful due to ordering 725 /// constraints. If possible, and if we haven't already tried it and declined 726 /// it, commute Insert's operands and prepare to revisit it. 727 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 728 const WebAssemblyInstrInfo *TII) { 729 if (TentativelyCommuting) { 730 assert(!Declined && 731 "Don't decline commuting until you've finished trying it"); 732 // Commuting didn't help. Revert it. 733 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 734 TentativelyCommuting = false; 735 Declined = true; 736 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 737 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 738 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 739 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 740 // Tentatively commute the operands and try again. 741 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 742 TreeWalker.ResetTopOperands(Insert); 743 TentativelyCommuting = true; 744 Declined = false; 745 } 746 } 747 } 748 749 /// Stackification for some operand was successful. Reset to the default 750 /// state. 751 void Reset() { 752 TentativelyCommuting = false; 753 Declined = false; 754 } 755 }; 756 } // end anonymous namespace 757 758 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 759 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 760 "********** Function: " 761 << MF.getName() << '\n'); 762 763 bool Changed = false; 764 MachineRegisterInfo &MRI = MF.getRegInfo(); 765 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 766 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 767 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 768 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 769 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 770 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 771 772 // Walk the instructions from the bottom up. Currently we don't look past 773 // block boundaries, and the blocks aren't ordered so the block visitation 774 // order isn't significant, but we may want to change this in the future. 775 for (MachineBasicBlock &MBB : MF) { 776 // Don't use a range-based for loop, because we modify the list as we're 777 // iterating over it and the end iterator may change. 778 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 779 MachineInstr *Insert = &*MII; 780 // Don't nest anything inside an inline asm, because we don't have 781 // constraints for $push inputs. 782 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 783 continue; 784 785 // Ignore debugging intrinsics. 786 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 787 continue; 788 789 // Iterate through the inputs in reverse order, since we'll be pulling 790 // operands off the stack in LIFO order. 791 CommutingState Commuting; 792 TreeWalkerState TreeWalker(Insert); 793 while (!TreeWalker.Done()) { 794 MachineOperand &Op = TreeWalker.Pop(); 795 796 // We're only interested in explicit virtual register operands. 797 if (!Op.isReg()) 798 continue; 799 800 unsigned Reg = Op.getReg(); 801 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 802 assert(!Op.isImplicit() && 803 "explicit_uses() should only iterate over explicit operands"); 804 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 805 continue; 806 807 // Identify the definition for this register at this point. 808 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 809 if (!Def) 810 continue; 811 812 // Don't nest an INLINE_ASM def into anything, because we don't have 813 // constraints for $pop outputs. 814 if (Def->getOpcode() == TargetOpcode::INLINEASM) 815 continue; 816 817 // Argument instructions represent live-in registers and not real 818 // instructions. 819 if (WebAssembly::isArgument(*Def)) 820 continue; 821 822 // Decide which strategy to take. Prefer to move a single-use value 823 // over cloning it, and prefer cloning over introducing a tee. 824 // For moving, we require the def to be in the same block as the use; 825 // this makes things simpler (LiveIntervals' handleMove function only 826 // supports intra-block moves) and it's MachineSink's job to catch all 827 // the sinking opportunities anyway. 828 bool SameBlock = Def->getParent() == &MBB; 829 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 830 !TreeWalker.IsOnStack(Reg); 831 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 832 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 833 } else if (ShouldRematerialize(*Def, AA, TII)) { 834 Insert = 835 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 836 LIS, MFI, MRI, TII, TRI); 837 } else if (CanMove && 838 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 839 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 840 MRI, TII); 841 } else { 842 // We failed to stackify the operand. If the problem was ordering 843 // constraints, Commuting may be able to help. 844 if (!CanMove && SameBlock) 845 Commuting.MaybeCommute(Insert, TreeWalker, TII); 846 // Proceed to the next operand. 847 continue; 848 } 849 850 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 851 // to a constant 0 so that the def is explicit, and the push/pop 852 // correspondence is maintained. 853 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 854 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 855 856 // We stackified an operand. Add the defining instruction's operands to 857 // the worklist stack now to continue to build an ever deeper tree. 858 Commuting.Reset(); 859 TreeWalker.PushOperands(Insert); 860 } 861 862 // If we stackified any operands, skip over the tree to start looking for 863 // the next instruction we can build a tree on. 864 if (Insert != &*MII) { 865 ImposeStackOrdering(&*MII); 866 MII = MachineBasicBlock::iterator(Insert).getReverse(); 867 Changed = true; 868 } 869 } 870 } 871 872 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 873 // that it never looks like a use-before-def. 874 if (Changed) { 875 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 876 for (MachineBasicBlock &MBB : MF) 877 MBB.addLiveIn(WebAssembly::VALUE_STACK); 878 } 879 880 #ifndef NDEBUG 881 // Verify that pushes and pops are performed in LIFO order. 882 SmallVector<unsigned, 0> Stack; 883 for (MachineBasicBlock &MBB : MF) { 884 for (MachineInstr &MI : MBB) { 885 if (MI.isDebugInstr()) 886 continue; 887 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 888 if (!MO.isReg()) 889 continue; 890 unsigned Reg = MO.getReg(); 891 892 if (MFI.isVRegStackified(Reg)) { 893 if (MO.isDef()) 894 Stack.push_back(Reg); 895 else 896 assert(Stack.pop_back_val() == Reg && 897 "Register stack pop should be paired with a push"); 898 } 899 } 900 } 901 // TODO: Generalize this code to support keeping values on the stack across 902 // basic block boundaries. 903 assert(Stack.empty() && 904 "Register stack pushes and pops should be balanced"); 905 } 906 #endif 907 908 return Changed; 909 } 910