1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-reg-stackify"
42 
43 namespace {
44 class WebAssemblyRegStackify final : public MachineFunctionPass {
45   StringRef getPassName() const override {
46     return "WebAssembly Register Stackify";
47   }
48 
49   void getAnalysisUsage(AnalysisUsage &AU) const override {
50     AU.setPreservesCFG();
51     AU.addRequired<AAResultsWrapperPass>();
52     AU.addRequired<MachineDominatorTree>();
53     AU.addRequired<LiveIntervals>();
54     AU.addPreserved<MachineBlockFrequencyInfo>();
55     AU.addPreserved<SlotIndexes>();
56     AU.addPreserved<LiveIntervals>();
57     AU.addPreservedID(LiveVariablesID);
58     AU.addPreserved<MachineDominatorTree>();
59     MachineFunctionPass::getAnalysisUsage(AU);
60   }
61 
62   bool runOnMachineFunction(MachineFunction &MF) override;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
67 };
68 } // end anonymous namespace
69 
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72                 "Reorder instructions to use the WebAssembly value stack",
73                 false, false)
74 
75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76   return new WebAssemblyRegStackify();
77 }
78 
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
82 static void ImposeStackOrdering(MachineInstr *MI) {
83   // Write the opaque VALUE_STACK register.
84   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
85     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86                                              /*isDef=*/true,
87                                              /*isImp=*/true));
88 
89   // Also read the opaque VALUE_STACK register.
90   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
91     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92                                              /*isDef=*/false,
93                                              /*isImp=*/true));
94 }
95 
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
98 static void ConvertImplicitDefToConstZero(MachineInstr *MI,
99                                           MachineRegisterInfo &MRI,
100                                           const TargetInstrInfo *TII,
101                                           MachineFunction &MF,
102                                           LiveIntervals &LIS) {
103   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
104 
105   const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106   if (RegClass == &WebAssembly::I32RegClass) {
107     MI->setDesc(TII->get(WebAssembly::CONST_I32));
108     MI->addOperand(MachineOperand::CreateImm(0));
109   } else if (RegClass == &WebAssembly::I64RegClass) {
110     MI->setDesc(TII->get(WebAssembly::CONST_I64));
111     MI->addOperand(MachineOperand::CreateImm(0));
112   } else if (RegClass == &WebAssembly::F32RegClass) {
113     MI->setDesc(TII->get(WebAssembly::CONST_F32));
114     ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue(
115         Type::getFloatTy(MF.getFunction().getContext())));
116     MI->addOperand(MachineOperand::CreateFPImm(Val));
117   } else if (RegClass == &WebAssembly::F64RegClass) {
118     MI->setDesc(TII->get(WebAssembly::CONST_F64));
119     ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue(
120         Type::getDoubleTy(MF.getFunction().getContext())));
121     MI->addOperand(MachineOperand::CreateFPImm(Val));
122   } else if (RegClass == &WebAssembly::V128RegClass) {
123     unsigned TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
124     MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32));
125     MI->addOperand(MachineOperand::CreateReg(TempReg, false));
126     MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
127                                   TII->get(WebAssembly::CONST_I32), TempReg)
128                               .addImm(0);
129     LIS.InsertMachineInstrInMaps(*Const);
130   } else {
131     llvm_unreachable("Unexpected reg class");
132   }
133 }
134 
135 // Determine whether a call to the callee referenced by
136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
137 // effects.
138 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
139                         bool &Write, bool &Effects, bool &StackPointer) {
140   // All calls can use the stack pointer.
141   StackPointer = true;
142 
143   const MachineOperand &MO = MI.getOperand(CalleeOpNo);
144   if (MO.isGlobal()) {
145     const Constant *GV = MO.getGlobal();
146     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
147       if (!GA->isInterposable())
148         GV = GA->getAliasee();
149 
150     if (const Function *F = dyn_cast<Function>(GV)) {
151       if (!F->doesNotThrow())
152         Effects = true;
153       if (F->doesNotAccessMemory())
154         return;
155       if (F->onlyReadsMemory()) {
156         Read = true;
157         return;
158       }
159     }
160   }
161 
162   // Assume the worst.
163   Write = true;
164   Read = true;
165   Effects = true;
166 }
167 
168 // Determine whether MI reads memory, writes memory, has side effects,
169 // and/or uses the stack pointer value.
170 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
171                   bool &Write, bool &Effects, bool &StackPointer) {
172   assert(!MI.isTerminator());
173 
174   if (MI.isDebugInstr() || MI.isPosition())
175     return;
176 
177   // Check for loads.
178   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
179     Read = true;
180 
181   // Check for stores.
182   if (MI.mayStore()) {
183     Write = true;
184   } else if (MI.hasOrderedMemoryRef()) {
185     switch (MI.getOpcode()) {
186     case WebAssembly::DIV_S_I32:
187     case WebAssembly::DIV_S_I64:
188     case WebAssembly::REM_S_I32:
189     case WebAssembly::REM_S_I64:
190     case WebAssembly::DIV_U_I32:
191     case WebAssembly::DIV_U_I64:
192     case WebAssembly::REM_U_I32:
193     case WebAssembly::REM_U_I64:
194     case WebAssembly::I32_TRUNC_S_F32:
195     case WebAssembly::I64_TRUNC_S_F32:
196     case WebAssembly::I32_TRUNC_S_F64:
197     case WebAssembly::I64_TRUNC_S_F64:
198     case WebAssembly::I32_TRUNC_U_F32:
199     case WebAssembly::I64_TRUNC_U_F32:
200     case WebAssembly::I32_TRUNC_U_F64:
201     case WebAssembly::I64_TRUNC_U_F64:
202       // These instruction have hasUnmodeledSideEffects() returning true
203       // because they trap on overflow and invalid so they can't be arbitrarily
204       // moved, however hasOrderedMemoryRef() interprets this plus their lack
205       // of memoperands as having a potential unknown memory reference.
206       break;
207     default:
208       // Record volatile accesses, unless it's a call, as calls are handled
209       // specially below.
210       if (!MI.isCall()) {
211         Write = true;
212         Effects = true;
213       }
214       break;
215     }
216   }
217 
218   // Check for side effects.
219   if (MI.hasUnmodeledSideEffects()) {
220     switch (MI.getOpcode()) {
221     case WebAssembly::DIV_S_I32:
222     case WebAssembly::DIV_S_I64:
223     case WebAssembly::REM_S_I32:
224     case WebAssembly::REM_S_I64:
225     case WebAssembly::DIV_U_I32:
226     case WebAssembly::DIV_U_I64:
227     case WebAssembly::REM_U_I32:
228     case WebAssembly::REM_U_I64:
229     case WebAssembly::I32_TRUNC_S_F32:
230     case WebAssembly::I64_TRUNC_S_F32:
231     case WebAssembly::I32_TRUNC_S_F64:
232     case WebAssembly::I64_TRUNC_S_F64:
233     case WebAssembly::I32_TRUNC_U_F32:
234     case WebAssembly::I64_TRUNC_U_F32:
235     case WebAssembly::I32_TRUNC_U_F64:
236     case WebAssembly::I64_TRUNC_U_F64:
237       // These instructions have hasUnmodeledSideEffects() returning true
238       // because they trap on overflow and invalid so they can't be arbitrarily
239       // moved, however in the specific case of register stackifying, it is safe
240       // to move them because overflow and invalid are Undefined Behavior.
241       break;
242     default:
243       Effects = true;
244       break;
245     }
246   }
247 
248   // Check for writes to __stack_pointer global.
249   if (MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 &&
250       strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
251     StackPointer = true;
252 
253   // Analyze calls.
254   if (MI.isCall()) {
255     unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI);
256     QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer);
257   }
258 }
259 
260 // Test whether Def is safe and profitable to rematerialize.
261 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
262                                 const WebAssemblyInstrInfo *TII) {
263   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
264 }
265 
266 // Identify the definition for this register at this point. This is a
267 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
268 // LiveIntervals to handle complex cases.
269 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert,
270                                 const MachineRegisterInfo &MRI,
271                                 const LiveIntervals &LIS) {
272   // Most registers are in SSA form here so we try a quick MRI query first.
273   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
274     return Def;
275 
276   // MRI doesn't know what the Def is. Try asking LIS.
277   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
278           LIS.getInstructionIndex(*Insert)))
279     return LIS.getInstructionFromIndex(ValNo->def);
280 
281   return nullptr;
282 }
283 
284 // Test whether Reg, as defined at Def, has exactly one use. This is a
285 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
286 // to handle complex cases.
287 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
288                       MachineDominatorTree &MDT, LiveIntervals &LIS) {
289   // Most registers are in SSA form here so we try a quick MRI query first.
290   if (MRI.hasOneUse(Reg))
291     return true;
292 
293   bool HasOne = false;
294   const LiveInterval &LI = LIS.getInterval(Reg);
295   const VNInfo *DefVNI =
296       LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
297   assert(DefVNI);
298   for (auto &I : MRI.use_nodbg_operands(Reg)) {
299     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
300     if (Result.valueIn() == DefVNI) {
301       if (!Result.isKill())
302         return false;
303       if (HasOne)
304         return false;
305       HasOne = true;
306     }
307   }
308   return HasOne;
309 }
310 
311 // Test whether it's safe to move Def to just before Insert.
312 // TODO: Compute memory dependencies in a way that doesn't require always
313 // walking the block.
314 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
315 // more precise.
316 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
317                          AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
318   assert(Def->getParent() == Insert->getParent());
319 
320   // Check for register dependencies.
321   SmallVector<unsigned, 4> MutableRegisters;
322   for (const MachineOperand &MO : Def->operands()) {
323     if (!MO.isReg() || MO.isUndef())
324       continue;
325     unsigned Reg = MO.getReg();
326 
327     // If the register is dead here and at Insert, ignore it.
328     if (MO.isDead() && Insert->definesRegister(Reg) &&
329         !Insert->readsRegister(Reg))
330       continue;
331 
332     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
333       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
334       // from moving down, and we've already checked for that.
335       if (Reg == WebAssembly::ARGUMENTS)
336         continue;
337       // If the physical register is never modified, ignore it.
338       if (!MRI.isPhysRegModified(Reg))
339         continue;
340       // Otherwise, it's a physical register with unknown liveness.
341       return false;
342     }
343 
344     // If one of the operands isn't in SSA form, it has different values at
345     // different times, and we need to make sure we don't move our use across
346     // a different def.
347     if (!MO.isDef() && !MRI.hasOneDef(Reg))
348       MutableRegisters.push_back(Reg);
349   }
350 
351   bool Read = false, Write = false, Effects = false, StackPointer = false;
352   Query(*Def, AA, Read, Write, Effects, StackPointer);
353 
354   // If the instruction does not access memory and has no side effects, it has
355   // no additional dependencies.
356   bool HasMutableRegisters = !MutableRegisters.empty();
357   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
358     return true;
359 
360   // Scan through the intervening instructions between Def and Insert.
361   MachineBasicBlock::const_iterator D(Def), I(Insert);
362   for (--I; I != D; --I) {
363     bool InterveningRead = false;
364     bool InterveningWrite = false;
365     bool InterveningEffects = false;
366     bool InterveningStackPointer = false;
367     Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
368           InterveningStackPointer);
369     if (Effects && InterveningEffects)
370       return false;
371     if (Read && InterveningWrite)
372       return false;
373     if (Write && (InterveningRead || InterveningWrite))
374       return false;
375     if (StackPointer && InterveningStackPointer)
376       return false;
377 
378     for (unsigned Reg : MutableRegisters)
379       for (const MachineOperand &MO : I->operands())
380         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
381           return false;
382   }
383 
384   return true;
385 }
386 
387 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
388 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
389                                      const MachineBasicBlock &MBB,
390                                      const MachineRegisterInfo &MRI,
391                                      const MachineDominatorTree &MDT,
392                                      LiveIntervals &LIS,
393                                      WebAssemblyFunctionInfo &MFI) {
394   const LiveInterval &LI = LIS.getInterval(Reg);
395 
396   const MachineInstr *OneUseInst = OneUse.getParent();
397   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
398 
399   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
400     if (&Use == &OneUse)
401       continue;
402 
403     const MachineInstr *UseInst = Use.getParent();
404     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
405 
406     if (UseVNI != OneUseVNI)
407       continue;
408 
409     if (UseInst == OneUseInst) {
410       // Another use in the same instruction. We need to ensure that the one
411       // selected use happens "before" it.
412       if (&OneUse > &Use)
413         return false;
414     } else {
415       // Test that the use is dominated by the one selected use.
416       while (!MDT.dominates(OneUseInst, UseInst)) {
417         // Actually, dominating is over-conservative. Test that the use would
418         // happen after the one selected use in the stack evaluation order.
419         //
420         // This is needed as a consequence of using implicit local.gets for
421         // uses and implicit local.sets for defs.
422         if (UseInst->getDesc().getNumDefs() == 0)
423           return false;
424         const MachineOperand &MO = UseInst->getOperand(0);
425         if (!MO.isReg())
426           return false;
427         unsigned DefReg = MO.getReg();
428         if (!TargetRegisterInfo::isVirtualRegister(DefReg) ||
429             !MFI.isVRegStackified(DefReg))
430           return false;
431         assert(MRI.hasOneNonDBGUse(DefReg));
432         const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
433         const MachineInstr *NewUseInst = NewUse.getParent();
434         if (NewUseInst == OneUseInst) {
435           if (&OneUse > &NewUse)
436             return false;
437           break;
438         }
439         UseInst = NewUseInst;
440       }
441     }
442   }
443   return true;
444 }
445 
446 /// Get the appropriate tee opcode for the given register class.
447 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) {
448   if (RC == &WebAssembly::I32RegClass)
449     return WebAssembly::TEE_I32;
450   if (RC == &WebAssembly::I64RegClass)
451     return WebAssembly::TEE_I64;
452   if (RC == &WebAssembly::F32RegClass)
453     return WebAssembly::TEE_F32;
454   if (RC == &WebAssembly::F64RegClass)
455     return WebAssembly::TEE_F64;
456   if (RC == &WebAssembly::V128RegClass)
457     return WebAssembly::TEE_V128;
458   llvm_unreachable("Unexpected register class");
459 }
460 
461 // Shrink LI to its uses, cleaning up LI.
462 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
463   if (LIS.shrinkToUses(&LI)) {
464     SmallVector<LiveInterval *, 4> SplitLIs;
465     LIS.splitSeparateComponents(LI, SplitLIs);
466   }
467 }
468 
469 /// A single-use def in the same block with no intervening memory or register
470 /// dependencies; move the def down and nest it with the current instruction.
471 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op,
472                                       MachineInstr *Def, MachineBasicBlock &MBB,
473                                       MachineInstr *Insert, LiveIntervals &LIS,
474                                       WebAssemblyFunctionInfo &MFI,
475                                       MachineRegisterInfo &MRI) {
476   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
477 
478   WebAssemblyDebugValueManager DefDIs(Def);
479   MBB.splice(Insert, &MBB, Def);
480   DefDIs.move(Insert);
481   LIS.handleMove(*Def);
482 
483   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
484     // No one else is using this register for anything so we can just stackify
485     // it in place.
486     MFI.stackifyVReg(Reg);
487   } else {
488     // The register may have unrelated uses or defs; create a new register for
489     // just our one def and use so that we can stackify it.
490     unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
491     Def->getOperand(0).setReg(NewReg);
492     Op.setReg(NewReg);
493 
494     // Tell LiveIntervals about the new register.
495     LIS.createAndComputeVirtRegInterval(NewReg);
496 
497     // Tell LiveIntervals about the changes to the old register.
498     LiveInterval &LI = LIS.getInterval(Reg);
499     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
500                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
501                      /*RemoveDeadValNo=*/true);
502 
503     MFI.stackifyVReg(NewReg);
504 
505     DefDIs.updateReg(NewReg);
506 
507     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
508   }
509 
510   ImposeStackOrdering(Def);
511   return Def;
512 }
513 
514 /// A trivially cloneable instruction; clone it and nest the new copy with the
515 /// current instruction.
516 static MachineInstr *RematerializeCheapDef(
517     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
518     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
519     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
520     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
521   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
522   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
523 
524   WebAssemblyDebugValueManager DefDIs(&Def);
525 
526   unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
527   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
528   Op.setReg(NewReg);
529   MachineInstr *Clone = &*std::prev(Insert);
530   LIS.InsertMachineInstrInMaps(*Clone);
531   LIS.createAndComputeVirtRegInterval(NewReg);
532   MFI.stackifyVReg(NewReg);
533   ImposeStackOrdering(Clone);
534 
535   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
536 
537   // Shrink the interval.
538   bool IsDead = MRI.use_empty(Reg);
539   if (!IsDead) {
540     LiveInterval &LI = LIS.getInterval(Reg);
541     ShrinkToUses(LI, LIS);
542     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
543   }
544 
545   // If that was the last use of the original, delete the original.
546   // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
547   if (IsDead) {
548     LLVM_DEBUG(dbgs() << " - Deleting original\n");
549     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
550     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
551     LIS.removeInterval(Reg);
552     LIS.RemoveMachineInstrFromMaps(Def);
553     Def.eraseFromParent();
554 
555     DefDIs.move(&*Insert);
556     DefDIs.updateReg(NewReg);
557   } else {
558     DefDIs.clone(&*Insert, NewReg);
559   }
560 
561   return Clone;
562 }
563 
564 /// A multiple-use def in the same block with no intervening memory or register
565 /// dependencies; move the def down, nest it with the current instruction, and
566 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
567 /// this:
568 ///
569 ///    Reg = INST ...        // Def
570 ///    INST ..., Reg, ...    // Insert
571 ///    INST ..., Reg, ...
572 ///    INST ..., Reg, ...
573 ///
574 /// to this:
575 ///
576 ///    DefReg = INST ...     // Def (to become the new Insert)
577 ///    TeeReg, Reg = TEE_... DefReg
578 ///    INST ..., TeeReg, ... // Insert
579 ///    INST ..., Reg, ...
580 ///    INST ..., Reg, ...
581 ///
582 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
583 /// resulting code.
584 static MachineInstr *MoveAndTeeForMultiUse(
585     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
586     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
587     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
588   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
589 
590   WebAssemblyDebugValueManager DefDIs(Def);
591 
592   // Move Def into place.
593   MBB.splice(Insert, &MBB, Def);
594   LIS.handleMove(*Def);
595 
596   // Create the Tee and attach the registers.
597   const auto *RegClass = MRI.getRegClass(Reg);
598   unsigned TeeReg = MRI.createVirtualRegister(RegClass);
599   unsigned DefReg = MRI.createVirtualRegister(RegClass);
600   MachineOperand &DefMO = Def->getOperand(0);
601   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
602                               TII->get(GetTeeOpcode(RegClass)), TeeReg)
603                           .addReg(Reg, RegState::Define)
604                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
605   Op.setReg(TeeReg);
606   DefMO.setReg(DefReg);
607   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
608   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
609 
610   DefDIs.move(Insert);
611 
612   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
613   LiveInterval &LI = LIS.getInterval(Reg);
614   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
615   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
616   I->start = TeeIdx;
617   ValNo->def = TeeIdx;
618   ShrinkToUses(LI, LIS);
619 
620   // Finish stackifying the new regs.
621   LIS.createAndComputeVirtRegInterval(TeeReg);
622   LIS.createAndComputeVirtRegInterval(DefReg);
623   MFI.stackifyVReg(DefReg);
624   MFI.stackifyVReg(TeeReg);
625   ImposeStackOrdering(Def);
626   ImposeStackOrdering(Tee);
627 
628   DefDIs.clone(Tee, DefReg);
629   DefDIs.clone(Insert, TeeReg);
630 
631   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
632   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
633   return Def;
634 }
635 
636 namespace {
637 /// A stack for walking the tree of instructions being built, visiting the
638 /// MachineOperands in DFS order.
639 class TreeWalkerState {
640   typedef MachineInstr::mop_iterator mop_iterator;
641   typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
642   typedef iterator_range<mop_reverse_iterator> RangeTy;
643   SmallVector<RangeTy, 4> Worklist;
644 
645 public:
646   explicit TreeWalkerState(MachineInstr *Insert) {
647     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
648     if (Range.begin() != Range.end())
649       Worklist.push_back(reverse(Range));
650   }
651 
652   bool Done() const { return Worklist.empty(); }
653 
654   MachineOperand &Pop() {
655     RangeTy &Range = Worklist.back();
656     MachineOperand &Op = *Range.begin();
657     Range = drop_begin(Range, 1);
658     if (Range.begin() == Range.end())
659       Worklist.pop_back();
660     assert((Worklist.empty() ||
661             Worklist.back().begin() != Worklist.back().end()) &&
662            "Empty ranges shouldn't remain in the worklist");
663     return Op;
664   }
665 
666   /// Push Instr's operands onto the stack to be visited.
667   void PushOperands(MachineInstr *Instr) {
668     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
669     if (Range.begin() != Range.end())
670       Worklist.push_back(reverse(Range));
671   }
672 
673   /// Some of Instr's operands are on the top of the stack; remove them and
674   /// re-insert them starting from the beginning (because we've commuted them).
675   void ResetTopOperands(MachineInstr *Instr) {
676     assert(HasRemainingOperands(Instr) &&
677            "Reseting operands should only be done when the instruction has "
678            "an operand still on the stack");
679     Worklist.back() = reverse(Instr->explicit_uses());
680   }
681 
682   /// Test whether Instr has operands remaining to be visited at the top of
683   /// the stack.
684   bool HasRemainingOperands(const MachineInstr *Instr) const {
685     if (Worklist.empty())
686       return false;
687     const RangeTy &Range = Worklist.back();
688     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
689   }
690 
691   /// Test whether the given register is present on the stack, indicating an
692   /// operand in the tree that we haven't visited yet. Moving a definition of
693   /// Reg to a point in the tree after that would change its value.
694   ///
695   /// This is needed as a consequence of using implicit local.gets for
696   /// uses and implicit local.sets for defs.
697   bool IsOnStack(unsigned Reg) const {
698     for (const RangeTy &Range : Worklist)
699       for (const MachineOperand &MO : Range)
700         if (MO.isReg() && MO.getReg() == Reg)
701           return true;
702     return false;
703   }
704 };
705 
706 /// State to keep track of whether commuting is in flight or whether it's been
707 /// tried for the current instruction and didn't work.
708 class CommutingState {
709   /// There are effectively three states: the initial state where we haven't
710   /// started commuting anything and we don't know anything yet, the tentative
711   /// state where we've commuted the operands of the current instruction and are
712   /// revisiting it, and the declined state where we've reverted the operands
713   /// back to their original order and will no longer commute it further.
714   bool TentativelyCommuting;
715   bool Declined;
716 
717   /// During the tentative state, these hold the operand indices of the commuted
718   /// operands.
719   unsigned Operand0, Operand1;
720 
721 public:
722   CommutingState() : TentativelyCommuting(false), Declined(false) {}
723 
724   /// Stackification for an operand was not successful due to ordering
725   /// constraints. If possible, and if we haven't already tried it and declined
726   /// it, commute Insert's operands and prepare to revisit it.
727   void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
728                     const WebAssemblyInstrInfo *TII) {
729     if (TentativelyCommuting) {
730       assert(!Declined &&
731              "Don't decline commuting until you've finished trying it");
732       // Commuting didn't help. Revert it.
733       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
734       TentativelyCommuting = false;
735       Declined = true;
736     } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
737       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
738       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
739       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
740         // Tentatively commute the operands and try again.
741         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
742         TreeWalker.ResetTopOperands(Insert);
743         TentativelyCommuting = true;
744         Declined = false;
745       }
746     }
747   }
748 
749   /// Stackification for some operand was successful. Reset to the default
750   /// state.
751   void Reset() {
752     TentativelyCommuting = false;
753     Declined = false;
754   }
755 };
756 } // end anonymous namespace
757 
758 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
759   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
760                        "********** Function: "
761                     << MF.getName() << '\n');
762 
763   bool Changed = false;
764   MachineRegisterInfo &MRI = MF.getRegInfo();
765   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
766   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
767   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
768   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
769   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
770   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
771 
772   // Walk the instructions from the bottom up. Currently we don't look past
773   // block boundaries, and the blocks aren't ordered so the block visitation
774   // order isn't significant, but we may want to change this in the future.
775   for (MachineBasicBlock &MBB : MF) {
776     // Don't use a range-based for loop, because we modify the list as we're
777     // iterating over it and the end iterator may change.
778     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
779       MachineInstr *Insert = &*MII;
780       // Don't nest anything inside an inline asm, because we don't have
781       // constraints for $push inputs.
782       if (Insert->getOpcode() == TargetOpcode::INLINEASM)
783         continue;
784 
785       // Ignore debugging intrinsics.
786       if (Insert->getOpcode() == TargetOpcode::DBG_VALUE)
787         continue;
788 
789       // Iterate through the inputs in reverse order, since we'll be pulling
790       // operands off the stack in LIFO order.
791       CommutingState Commuting;
792       TreeWalkerState TreeWalker(Insert);
793       while (!TreeWalker.Done()) {
794         MachineOperand &Op = TreeWalker.Pop();
795 
796         // We're only interested in explicit virtual register operands.
797         if (!Op.isReg())
798           continue;
799 
800         unsigned Reg = Op.getReg();
801         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
802         assert(!Op.isImplicit() &&
803                "explicit_uses() should only iterate over explicit operands");
804         if (TargetRegisterInfo::isPhysicalRegister(Reg))
805           continue;
806 
807         // Identify the definition for this register at this point.
808         MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS);
809         if (!Def)
810           continue;
811 
812         // Don't nest an INLINE_ASM def into anything, because we don't have
813         // constraints for $pop outputs.
814         if (Def->getOpcode() == TargetOpcode::INLINEASM)
815           continue;
816 
817         // Argument instructions represent live-in registers and not real
818         // instructions.
819         if (WebAssembly::isArgument(*Def))
820           continue;
821 
822         // Decide which strategy to take. Prefer to move a single-use value
823         // over cloning it, and prefer cloning over introducing a tee.
824         // For moving, we require the def to be in the same block as the use;
825         // this makes things simpler (LiveIntervals' handleMove function only
826         // supports intra-block moves) and it's MachineSink's job to catch all
827         // the sinking opportunities anyway.
828         bool SameBlock = Def->getParent() == &MBB;
829         bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) &&
830                        !TreeWalker.IsOnStack(Reg);
831         if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) {
832           Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
833         } else if (ShouldRematerialize(*Def, AA, TII)) {
834           Insert =
835               RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
836                                     LIS, MFI, MRI, TII, TRI);
837         } else if (CanMove &&
838                    OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
839           Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
840                                          MRI, TII);
841         } else {
842           // We failed to stackify the operand. If the problem was ordering
843           // constraints, Commuting may be able to help.
844           if (!CanMove && SameBlock)
845             Commuting.MaybeCommute(Insert, TreeWalker, TII);
846           // Proceed to the next operand.
847           continue;
848         }
849 
850         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
851         // to a constant 0 so that the def is explicit, and the push/pop
852         // correspondence is maintained.
853         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
854           ConvertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
855 
856         // We stackified an operand. Add the defining instruction's operands to
857         // the worklist stack now to continue to build an ever deeper tree.
858         Commuting.Reset();
859         TreeWalker.PushOperands(Insert);
860       }
861 
862       // If we stackified any operands, skip over the tree to start looking for
863       // the next instruction we can build a tree on.
864       if (Insert != &*MII) {
865         ImposeStackOrdering(&*MII);
866         MII = MachineBasicBlock::iterator(Insert).getReverse();
867         Changed = true;
868       }
869     }
870   }
871 
872   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
873   // that it never looks like a use-before-def.
874   if (Changed) {
875     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
876     for (MachineBasicBlock &MBB : MF)
877       MBB.addLiveIn(WebAssembly::VALUE_STACK);
878   }
879 
880 #ifndef NDEBUG
881   // Verify that pushes and pops are performed in LIFO order.
882   SmallVector<unsigned, 0> Stack;
883   for (MachineBasicBlock &MBB : MF) {
884     for (MachineInstr &MI : MBB) {
885       if (MI.isDebugInstr())
886         continue;
887       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
888         if (!MO.isReg())
889           continue;
890         unsigned Reg = MO.getReg();
891 
892         if (MFI.isVRegStackified(Reg)) {
893           if (MO.isDef())
894             Stack.push_back(Reg);
895           else
896             assert(Stack.pop_back_val() == Reg &&
897                    "Register stack pop should be paired with a push");
898         }
899       }
900     }
901     // TODO: Generalize this code to support keeping values on the stack across
902     // basic block boundaries.
903     assert(Stack.empty() &&
904            "Register stack pushes and pops should be balanced");
905   }
906 #endif
907 
908   return Changed;
909 }
910