1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements a register stacking pass.
12 ///
13 /// This pass reorders instructions to put register uses and defs in an order
14 /// such that they form single-use expression trees. Registers fitting this form
15 /// are then marked as "stackified", meaning references to them are replaced by
16 /// "push" and "pop" from the value stack.
17 ///
18 /// This is primarily a code size optimization, since temporary values on the
19 /// value stack don't need to be named.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
24 #include "WebAssembly.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/Analysis/AliasAnalysis.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "wasm-reg-stackify"
41 
42 namespace {
43 class WebAssemblyRegStackify final : public MachineFunctionPass {
44   StringRef getPassName() const override {
45     return "WebAssembly Register Stackify";
46   }
47 
48   void getAnalysisUsage(AnalysisUsage &AU) const override {
49     AU.setPreservesCFG();
50     AU.addRequired<AAResultsWrapperPass>();
51     AU.addRequired<MachineDominatorTree>();
52     AU.addRequired<LiveIntervals>();
53     AU.addPreserved<MachineBlockFrequencyInfo>();
54     AU.addPreserved<SlotIndexes>();
55     AU.addPreserved<LiveIntervals>();
56     AU.addPreservedID(LiveVariablesID);
57     AU.addPreserved<MachineDominatorTree>();
58     MachineFunctionPass::getAnalysisUsage(AU);
59   }
60 
61   bool runOnMachineFunction(MachineFunction &MF) override;
62 
63 public:
64   static char ID; // Pass identification, replacement for typeid
65   WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
66 };
67 } // end anonymous namespace
68 
69 char WebAssemblyRegStackify::ID = 0;
70 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
71                 "Reorder instructions to use the WebAssembly value stack",
72                 false, false)
73 
74 FunctionPass *llvm::createWebAssemblyRegStackify() {
75   return new WebAssemblyRegStackify();
76 }
77 
78 // Decorate the given instruction with implicit operands that enforce the
79 // expression stack ordering constraints for an instruction which is on
80 // the expression stack.
81 static void ImposeStackOrdering(MachineInstr *MI) {
82   // Write the opaque VALUE_STACK register.
83   if (!MI->definesRegister(WebAssembly::VALUE_STACK))
84     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
85                                              /*isDef=*/true,
86                                              /*isImp=*/true));
87 
88   // Also read the opaque VALUE_STACK register.
89   if (!MI->readsRegister(WebAssembly::VALUE_STACK))
90     MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
91                                              /*isDef=*/false,
92                                              /*isImp=*/true));
93 }
94 
95 // Convert an IMPLICIT_DEF instruction into an instruction which defines
96 // a constant zero value.
97 static void ConvertImplicitDefToConstZero(MachineInstr *MI,
98                                           MachineRegisterInfo &MRI,
99                                           const TargetInstrInfo *TII,
100                                           MachineFunction &MF) {
101   assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
102 
103   const auto *RegClass =
104       MRI.getRegClass(MI->getOperand(0).getReg());
105   if (RegClass == &WebAssembly::I32RegClass) {
106     MI->setDesc(TII->get(WebAssembly::CONST_I32));
107     MI->addOperand(MachineOperand::CreateImm(0));
108   } else if (RegClass == &WebAssembly::I64RegClass) {
109     MI->setDesc(TII->get(WebAssembly::CONST_I64));
110     MI->addOperand(MachineOperand::CreateImm(0));
111   } else if (RegClass == &WebAssembly::F32RegClass) {
112     MI->setDesc(TII->get(WebAssembly::CONST_F32));
113     ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue(
114         Type::getFloatTy(MF.getFunction().getContext())));
115     MI->addOperand(MachineOperand::CreateFPImm(Val));
116   } else if (RegClass == &WebAssembly::F64RegClass) {
117     MI->setDesc(TII->get(WebAssembly::CONST_F64));
118     ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue(
119         Type::getDoubleTy(MF.getFunction().getContext())));
120     MI->addOperand(MachineOperand::CreateFPImm(Val));
121   } else {
122     llvm_unreachable("Unexpected reg class");
123   }
124 }
125 
126 // Determine whether a call to the callee referenced by
127 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
128 // effects.
129 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read,
130                         bool &Write, bool &Effects, bool &StackPointer) {
131   // All calls can use the stack pointer.
132   StackPointer = true;
133 
134   const MachineOperand &MO = MI.getOperand(CalleeOpNo);
135   if (MO.isGlobal()) {
136     const Constant *GV = MO.getGlobal();
137     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
138       if (!GA->isInterposable())
139         GV = GA->getAliasee();
140 
141     if (const Function *F = dyn_cast<Function>(GV)) {
142       if (!F->doesNotThrow())
143         Effects = true;
144       if (F->doesNotAccessMemory())
145         return;
146       if (F->onlyReadsMemory()) {
147         Read = true;
148         return;
149       }
150     }
151   }
152 
153   // Assume the worst.
154   Write = true;
155   Read = true;
156   Effects = true;
157 }
158 
159 // Determine whether MI reads memory, writes memory, has side effects,
160 // and/or uses the stack pointer value.
161 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read,
162                   bool &Write, bool &Effects, bool &StackPointer) {
163   assert(!MI.isTerminator());
164 
165   if (MI.isDebugInstr() || MI.isPosition())
166     return;
167 
168   // Check for loads.
169   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA))
170     Read = true;
171 
172   // Check for stores.
173   if (MI.mayStore()) {
174     Write = true;
175 
176     // Check for stores to __stack_pointer.
177     for (auto MMO : MI.memoperands()) {
178       const MachinePointerInfo &MPI = MMO->getPointerInfo();
179       if (MPI.V.is<const PseudoSourceValue *>()) {
180         auto PSV = MPI.V.get<const PseudoSourceValue *>();
181         if (const ExternalSymbolPseudoSourceValue *EPSV =
182                 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV))
183           if (StringRef(EPSV->getSymbol()) == "__stack_pointer") {
184             StackPointer = true;
185           }
186       }
187     }
188   } else if (MI.hasOrderedMemoryRef()) {
189     switch (MI.getOpcode()) {
190     case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
191     case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
192     case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
193     case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
194     case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
195     case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
196     case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
197     case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
198       // These instruction have hasUnmodeledSideEffects() returning true
199       // because they trap on overflow and invalid so they can't be arbitrarily
200       // moved, however hasOrderedMemoryRef() interprets this plus their lack
201       // of memoperands as having a potential unknown memory reference.
202       break;
203     default:
204       // Record volatile accesses, unless it's a call, as calls are handled
205       // specially below.
206       if (!MI.isCall()) {
207         Write = true;
208         Effects = true;
209       }
210       break;
211     }
212   }
213 
214   // Check for side effects.
215   if (MI.hasUnmodeledSideEffects()) {
216     switch (MI.getOpcode()) {
217     case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64:
218     case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64:
219     case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64:
220     case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64:
221     case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32:
222     case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64:
223     case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32:
224     case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64:
225       // These instructions have hasUnmodeledSideEffects() returning true
226       // because they trap on overflow and invalid so they can't be arbitrarily
227       // moved, however in the specific case of register stackifying, it is safe
228       // to move them because overflow and invalid are Undefined Behavior.
229       break;
230     default:
231       Effects = true;
232       break;
233     }
234   }
235 
236   // Analyze calls.
237   if (MI.isCall()) {
238     unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI);
239     QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer);
240   }
241 }
242 
243 // Test whether Def is safe and profitable to rematerialize.
244 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA,
245                                 const WebAssemblyInstrInfo *TII) {
246   return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA);
247 }
248 
249 // Identify the definition for this register at this point. This is a
250 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
251 // LiveIntervals to handle complex cases.
252 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert,
253                                 const MachineRegisterInfo &MRI,
254                                 const LiveIntervals &LIS)
255 {
256   // Most registers are in SSA form here so we try a quick MRI query first.
257   if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
258     return Def;
259 
260   // MRI doesn't know what the Def is. Try asking LIS.
261   if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
262           LIS.getInstructionIndex(*Insert)))
263     return LIS.getInstructionFromIndex(ValNo->def);
264 
265   return nullptr;
266 }
267 
268 // Test whether Reg, as defined at Def, has exactly one use. This is a
269 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
270 // to handle complex cases.
271 static bool HasOneUse(unsigned Reg, MachineInstr *Def,
272                       MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
273                       LiveIntervals &LIS) {
274   // Most registers are in SSA form here so we try a quick MRI query first.
275   if (MRI.hasOneUse(Reg))
276     return true;
277 
278   bool HasOne = false;
279   const LiveInterval &LI = LIS.getInterval(Reg);
280   const VNInfo *DefVNI = LI.getVNInfoAt(
281       LIS.getInstructionIndex(*Def).getRegSlot());
282   assert(DefVNI);
283   for (auto &I : MRI.use_nodbg_operands(Reg)) {
284     const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
285     if (Result.valueIn() == DefVNI) {
286       if (!Result.isKill())
287         return false;
288       if (HasOne)
289         return false;
290       HasOne = true;
291     }
292   }
293   return HasOne;
294 }
295 
296 // Test whether it's safe to move Def to just before Insert.
297 // TODO: Compute memory dependencies in a way that doesn't require always
298 // walking the block.
299 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
300 // more precise.
301 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert,
302                          AliasAnalysis &AA, const MachineRegisterInfo &MRI) {
303   assert(Def->getParent() == Insert->getParent());
304 
305   // Check for register dependencies.
306   SmallVector<unsigned, 4> MutableRegisters;
307   for (const MachineOperand &MO : Def->operands()) {
308     if (!MO.isReg() || MO.isUndef())
309       continue;
310     unsigned Reg = MO.getReg();
311 
312     // If the register is dead here and at Insert, ignore it.
313     if (MO.isDead() && Insert->definesRegister(Reg) &&
314         !Insert->readsRegister(Reg))
315       continue;
316 
317     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
318       // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
319       // from moving down, and we've already checked for that.
320       if (Reg == WebAssembly::ARGUMENTS)
321         continue;
322       // If the physical register is never modified, ignore it.
323       if (!MRI.isPhysRegModified(Reg))
324         continue;
325       // Otherwise, it's a physical register with unknown liveness.
326       return false;
327     }
328 
329     // If one of the operands isn't in SSA form, it has different values at
330     // different times, and we need to make sure we don't move our use across
331     // a different def.
332     if (!MO.isDef() && !MRI.hasOneDef(Reg))
333       MutableRegisters.push_back(Reg);
334   }
335 
336   bool Read = false, Write = false, Effects = false, StackPointer = false;
337   Query(*Def, AA, Read, Write, Effects, StackPointer);
338 
339   // If the instruction does not access memory and has no side effects, it has
340   // no additional dependencies.
341   bool HasMutableRegisters = !MutableRegisters.empty();
342   if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
343     return true;
344 
345   // Scan through the intervening instructions between Def and Insert.
346   MachineBasicBlock::const_iterator D(Def), I(Insert);
347   for (--I; I != D; --I) {
348     bool InterveningRead = false;
349     bool InterveningWrite = false;
350     bool InterveningEffects = false;
351     bool InterveningStackPointer = false;
352     Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects,
353           InterveningStackPointer);
354     if (Effects && InterveningEffects)
355       return false;
356     if (Read && InterveningWrite)
357       return false;
358     if (Write && (InterveningRead || InterveningWrite))
359       return false;
360     if (StackPointer && InterveningStackPointer)
361       return false;
362 
363     for (unsigned Reg : MutableRegisters)
364       for (const MachineOperand &MO : I->operands())
365         if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
366           return false;
367   }
368 
369   return true;
370 }
371 
372 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
373 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
374                                      const MachineBasicBlock &MBB,
375                                      const MachineRegisterInfo &MRI,
376                                      const MachineDominatorTree &MDT,
377                                      LiveIntervals &LIS,
378                                      WebAssemblyFunctionInfo &MFI) {
379   const LiveInterval &LI = LIS.getInterval(Reg);
380 
381   const MachineInstr *OneUseInst = OneUse.getParent();
382   VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
383 
384   for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
385     if (&Use == &OneUse)
386       continue;
387 
388     const MachineInstr *UseInst = Use.getParent();
389     VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
390 
391     if (UseVNI != OneUseVNI)
392       continue;
393 
394     const MachineInstr *OneUseInst = OneUse.getParent();
395     if (UseInst == OneUseInst) {
396       // Another use in the same instruction. We need to ensure that the one
397       // selected use happens "before" it.
398       if (&OneUse > &Use)
399         return false;
400     } else {
401       // Test that the use is dominated by the one selected use.
402       while (!MDT.dominates(OneUseInst, UseInst)) {
403         // Actually, dominating is over-conservative. Test that the use would
404         // happen after the one selected use in the stack evaluation order.
405         //
406         // This is needed as a consequence of using implicit get_locals for
407         // uses and implicit set_locals for defs.
408         if (UseInst->getDesc().getNumDefs() == 0)
409           return false;
410         const MachineOperand &MO = UseInst->getOperand(0);
411         if (!MO.isReg())
412           return false;
413         unsigned DefReg = MO.getReg();
414         if (!TargetRegisterInfo::isVirtualRegister(DefReg) ||
415             !MFI.isVRegStackified(DefReg))
416           return false;
417         assert(MRI.hasOneUse(DefReg));
418         const MachineOperand &NewUse = *MRI.use_begin(DefReg);
419         const MachineInstr *NewUseInst = NewUse.getParent();
420         if (NewUseInst == OneUseInst) {
421           if (&OneUse > &NewUse)
422             return false;
423           break;
424         }
425         UseInst = NewUseInst;
426       }
427     }
428   }
429   return true;
430 }
431 
432 /// Get the appropriate tee opcode for the given register class.
433 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) {
434   if (RC == &WebAssembly::I32RegClass)
435     return WebAssembly::TEE_I32;
436   if (RC == &WebAssembly::I64RegClass)
437     return WebAssembly::TEE_I64;
438   if (RC == &WebAssembly::F32RegClass)
439     return WebAssembly::TEE_F32;
440   if (RC == &WebAssembly::F64RegClass)
441     return WebAssembly::TEE_F64;
442   if (RC == &WebAssembly::V128RegClass)
443     return WebAssembly::TEE_V128;
444   llvm_unreachable("Unexpected register class");
445 }
446 
447 // Shrink LI to its uses, cleaning up LI.
448 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
449   if (LIS.shrinkToUses(&LI)) {
450     SmallVector<LiveInterval*, 4> SplitLIs;
451     LIS.splitSeparateComponents(LI, SplitLIs);
452   }
453 }
454 
455 /// A single-use def in the same block with no intervening memory or register
456 /// dependencies; move the def down and nest it with the current instruction.
457 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op,
458                                       MachineInstr *Def,
459                                       MachineBasicBlock &MBB,
460                                       MachineInstr *Insert, LiveIntervals &LIS,
461                                       WebAssemblyFunctionInfo &MFI,
462                                       MachineRegisterInfo &MRI) {
463   LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
464 
465   MBB.splice(Insert, &MBB, Def);
466   LIS.handleMove(*Def);
467 
468   if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
469     // No one else is using this register for anything so we can just stackify
470     // it in place.
471     MFI.stackifyVReg(Reg);
472   } else {
473     // The register may have unrelated uses or defs; create a new register for
474     // just our one def and use so that we can stackify it.
475     unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
476     Def->getOperand(0).setReg(NewReg);
477     Op.setReg(NewReg);
478 
479     // Tell LiveIntervals about the new register.
480     LIS.createAndComputeVirtRegInterval(NewReg);
481 
482     // Tell LiveIntervals about the changes to the old register.
483     LiveInterval &LI = LIS.getInterval(Reg);
484     LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
485                      LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
486                      /*RemoveDeadValNo=*/true);
487 
488     MFI.stackifyVReg(NewReg);
489 
490     LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
491   }
492 
493   ImposeStackOrdering(Def);
494   return Def;
495 }
496 
497 /// A trivially cloneable instruction; clone it and nest the new copy with the
498 /// current instruction.
499 static MachineInstr *RematerializeCheapDef(
500     unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
501     MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
502     WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
503     const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
504   LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
505   LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
506 
507   unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
508   TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
509   Op.setReg(NewReg);
510   MachineInstr *Clone = &*std::prev(Insert);
511   LIS.InsertMachineInstrInMaps(*Clone);
512   LIS.createAndComputeVirtRegInterval(NewReg);
513   MFI.stackifyVReg(NewReg);
514   ImposeStackOrdering(Clone);
515 
516   LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
517 
518   // Shrink the interval.
519   bool IsDead = MRI.use_empty(Reg);
520   if (!IsDead) {
521     LiveInterval &LI = LIS.getInterval(Reg);
522     ShrinkToUses(LI, LIS);
523     IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
524   }
525 
526   // If that was the last use of the original, delete the original.
527   if (IsDead) {
528     LLVM_DEBUG(dbgs() << " - Deleting original\n");
529     SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
530     LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx);
531     LIS.removeInterval(Reg);
532     LIS.RemoveMachineInstrFromMaps(Def);
533     Def.eraseFromParent();
534   }
535 
536   return Clone;
537 }
538 
539 /// A multiple-use def in the same block with no intervening memory or register
540 /// dependencies; move the def down, nest it with the current instruction, and
541 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
542 /// this:
543 ///
544 ///    Reg = INST ...        // Def
545 ///    INST ..., Reg, ...    // Insert
546 ///    INST ..., Reg, ...
547 ///    INST ..., Reg, ...
548 ///
549 /// to this:
550 ///
551 ///    DefReg = INST ...     // Def (to become the new Insert)
552 ///    TeeReg, Reg = TEE_... DefReg
553 ///    INST ..., TeeReg, ... // Insert
554 ///    INST ..., Reg, ...
555 ///    INST ..., Reg, ...
556 ///
557 /// with DefReg and TeeReg stackified. This eliminates a get_local from the
558 /// resulting code.
559 static MachineInstr *MoveAndTeeForMultiUse(
560     unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
561     MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
562     MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
563   LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
564 
565   // Move Def into place.
566   MBB.splice(Insert, &MBB, Def);
567   LIS.handleMove(*Def);
568 
569   // Create the Tee and attach the registers.
570   const auto *RegClass = MRI.getRegClass(Reg);
571   unsigned TeeReg = MRI.createVirtualRegister(RegClass);
572   unsigned DefReg = MRI.createVirtualRegister(RegClass);
573   MachineOperand &DefMO = Def->getOperand(0);
574   MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
575                               TII->get(GetTeeOpcode(RegClass)), TeeReg)
576                           .addReg(Reg, RegState::Define)
577                           .addReg(DefReg, getUndefRegState(DefMO.isDead()));
578   Op.setReg(TeeReg);
579   DefMO.setReg(DefReg);
580   SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
581   SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
582 
583   // Tell LiveIntervals we moved the original vreg def from Def to Tee.
584   LiveInterval &LI = LIS.getInterval(Reg);
585   LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
586   VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
587   I->start = TeeIdx;
588   ValNo->def = TeeIdx;
589   ShrinkToUses(LI, LIS);
590 
591   // Finish stackifying the new regs.
592   LIS.createAndComputeVirtRegInterval(TeeReg);
593   LIS.createAndComputeVirtRegInterval(DefReg);
594   MFI.stackifyVReg(DefReg);
595   MFI.stackifyVReg(TeeReg);
596   ImposeStackOrdering(Def);
597   ImposeStackOrdering(Tee);
598 
599   LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
600   LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
601   return Def;
602 }
603 
604 namespace {
605 /// A stack for walking the tree of instructions being built, visiting the
606 /// MachineOperands in DFS order.
607 class TreeWalkerState {
608   typedef MachineInstr::mop_iterator mop_iterator;
609   typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator;
610   typedef iterator_range<mop_reverse_iterator> RangeTy;
611   SmallVector<RangeTy, 4> Worklist;
612 
613 public:
614   explicit TreeWalkerState(MachineInstr *Insert) {
615     const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
616     if (Range.begin() != Range.end())
617       Worklist.push_back(reverse(Range));
618   }
619 
620   bool Done() const { return Worklist.empty(); }
621 
622   MachineOperand &Pop() {
623     RangeTy &Range = Worklist.back();
624     MachineOperand &Op = *Range.begin();
625     Range = drop_begin(Range, 1);
626     if (Range.begin() == Range.end())
627       Worklist.pop_back();
628     assert((Worklist.empty() ||
629             Worklist.back().begin() != Worklist.back().end()) &&
630            "Empty ranges shouldn't remain in the worklist");
631     return Op;
632   }
633 
634   /// Push Instr's operands onto the stack to be visited.
635   void PushOperands(MachineInstr *Instr) {
636     const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
637     if (Range.begin() != Range.end())
638       Worklist.push_back(reverse(Range));
639   }
640 
641   /// Some of Instr's operands are on the top of the stack; remove them and
642   /// re-insert them starting from the beginning (because we've commuted them).
643   void ResetTopOperands(MachineInstr *Instr) {
644     assert(HasRemainingOperands(Instr) &&
645            "Reseting operands should only be done when the instruction has "
646            "an operand still on the stack");
647     Worklist.back() = reverse(Instr->explicit_uses());
648   }
649 
650   /// Test whether Instr has operands remaining to be visited at the top of
651   /// the stack.
652   bool HasRemainingOperands(const MachineInstr *Instr) const {
653     if (Worklist.empty())
654       return false;
655     const RangeTy &Range = Worklist.back();
656     return Range.begin() != Range.end() && Range.begin()->getParent() == Instr;
657   }
658 
659   /// Test whether the given register is present on the stack, indicating an
660   /// operand in the tree that we haven't visited yet. Moving a definition of
661   /// Reg to a point in the tree after that would change its value.
662   ///
663   /// This is needed as a consequence of using implicit get_locals for
664   /// uses and implicit set_locals for defs.
665   bool IsOnStack(unsigned Reg) const {
666     for (const RangeTy &Range : Worklist)
667       for (const MachineOperand &MO : Range)
668         if (MO.isReg() && MO.getReg() == Reg)
669           return true;
670     return false;
671   }
672 };
673 
674 /// State to keep track of whether commuting is in flight or whether it's been
675 /// tried for the current instruction and didn't work.
676 class CommutingState {
677   /// There are effectively three states: the initial state where we haven't
678   /// started commuting anything and we don't know anything yet, the tenative
679   /// state where we've commuted the operands of the current instruction and are
680   /// revisting it, and the declined state where we've reverted the operands
681   /// back to their original order and will no longer commute it further.
682   bool TentativelyCommuting;
683   bool Declined;
684 
685   /// During the tentative state, these hold the operand indices of the commuted
686   /// operands.
687   unsigned Operand0, Operand1;
688 
689 public:
690   CommutingState() : TentativelyCommuting(false), Declined(false) {}
691 
692   /// Stackification for an operand was not successful due to ordering
693   /// constraints. If possible, and if we haven't already tried it and declined
694   /// it, commute Insert's operands and prepare to revisit it.
695   void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
696                     const WebAssemblyInstrInfo *TII) {
697     if (TentativelyCommuting) {
698       assert(!Declined &&
699              "Don't decline commuting until you've finished trying it");
700       // Commuting didn't help. Revert it.
701       TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
702       TentativelyCommuting = false;
703       Declined = true;
704     } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) {
705       Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
706       Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
707       if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
708         // Tentatively commute the operands and try again.
709         TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
710         TreeWalker.ResetTopOperands(Insert);
711         TentativelyCommuting = true;
712         Declined = false;
713       }
714     }
715   }
716 
717   /// Stackification for some operand was successful. Reset to the default
718   /// state.
719   void Reset() {
720     TentativelyCommuting = false;
721     Declined = false;
722   }
723 };
724 } // end anonymous namespace
725 
726 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
727   LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
728                        "********** Function: "
729                     << MF.getName() << '\n');
730 
731   bool Changed = false;
732   MachineRegisterInfo &MRI = MF.getRegInfo();
733   WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
734   const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
735   const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
736   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
737   MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
738   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
739 
740   // Walk the instructions from the bottom up. Currently we don't look past
741   // block boundaries, and the blocks aren't ordered so the block visitation
742   // order isn't significant, but we may want to change this in the future.
743   for (MachineBasicBlock &MBB : MF) {
744     // Don't use a range-based for loop, because we modify the list as we're
745     // iterating over it and the end iterator may change.
746     for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
747       MachineInstr *Insert = &*MII;
748       // Don't nest anything inside an inline asm, because we don't have
749       // constraints for $push inputs.
750       if (Insert->getOpcode() == TargetOpcode::INLINEASM)
751         continue;
752 
753       // Ignore debugging intrinsics.
754       if (Insert->getOpcode() == TargetOpcode::DBG_VALUE)
755         continue;
756 
757       // Iterate through the inputs in reverse order, since we'll be pulling
758       // operands off the stack in LIFO order.
759       CommutingState Commuting;
760       TreeWalkerState TreeWalker(Insert);
761       while (!TreeWalker.Done()) {
762         MachineOperand &Op = TreeWalker.Pop();
763 
764         // We're only interested in explicit virtual register operands.
765         if (!Op.isReg())
766           continue;
767 
768         unsigned Reg = Op.getReg();
769         assert(Op.isUse() && "explicit_uses() should only iterate over uses");
770         assert(!Op.isImplicit() &&
771                "explicit_uses() should only iterate over explicit operands");
772         if (TargetRegisterInfo::isPhysicalRegister(Reg))
773           continue;
774 
775         // Identify the definition for this register at this point.
776         MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS);
777         if (!Def)
778           continue;
779 
780         // Don't nest an INLINE_ASM def into anything, because we don't have
781         // constraints for $pop outputs.
782         if (Def->getOpcode() == TargetOpcode::INLINEASM)
783           continue;
784 
785         // Argument instructions represent live-in registers and not real
786         // instructions.
787         if (WebAssembly::isArgument(*Def))
788           continue;
789 
790         // Decide which strategy to take. Prefer to move a single-use value
791         // over cloning it, and prefer cloning over introducing a tee.
792         // For moving, we require the def to be in the same block as the use;
793         // this makes things simpler (LiveIntervals' handleMove function only
794         // supports intra-block moves) and it's MachineSink's job to catch all
795         // the sinking opportunities anyway.
796         bool SameBlock = Def->getParent() == &MBB;
797         bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) &&
798                        !TreeWalker.IsOnStack(Reg);
799         if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) {
800           Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI);
801         } else if (ShouldRematerialize(*Def, AA, TII)) {
802           Insert =
803               RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(),
804                                     LIS, MFI, MRI, TII, TRI);
805         } else if (CanMove &&
806                    OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) {
807           Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI,
808                                          MRI, TII);
809         } else {
810           // We failed to stackify the operand. If the problem was ordering
811           // constraints, Commuting may be able to help.
812           if (!CanMove && SameBlock)
813             Commuting.MaybeCommute(Insert, TreeWalker, TII);
814           // Proceed to the next operand.
815           continue;
816         }
817 
818         // If the instruction we just stackified is an IMPLICIT_DEF, convert it
819         // to a constant 0 so that the def is explicit, and the push/pop
820         // correspondence is maintained.
821         if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
822           ConvertImplicitDefToConstZero(Insert, MRI, TII, MF);
823 
824         // We stackified an operand. Add the defining instruction's operands to
825         // the worklist stack now to continue to build an ever deeper tree.
826         Commuting.Reset();
827         TreeWalker.PushOperands(Insert);
828       }
829 
830       // If we stackified any operands, skip over the tree to start looking for
831       // the next instruction we can build a tree on.
832       if (Insert != &*MII) {
833         ImposeStackOrdering(&*MII);
834         MII = MachineBasicBlock::iterator(Insert).getReverse();
835         Changed = true;
836       }
837     }
838   }
839 
840   // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
841   // that it never looks like a use-before-def.
842   if (Changed) {
843     MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
844     for (MachineBasicBlock &MBB : MF)
845       MBB.addLiveIn(WebAssembly::VALUE_STACK);
846   }
847 
848 #ifndef NDEBUG
849   // Verify that pushes and pops are performed in LIFO order.
850   SmallVector<unsigned, 0> Stack;
851   for (MachineBasicBlock &MBB : MF) {
852     for (MachineInstr &MI : MBB) {
853       if (MI.isDebugInstr())
854         continue;
855       for (MachineOperand &MO : reverse(MI.explicit_operands())) {
856         if (!MO.isReg())
857           continue;
858         unsigned Reg = MO.getReg();
859 
860         if (MFI.isVRegStackified(Reg)) {
861           if (MO.isDef())
862             Stack.push_back(Reg);
863           else
864             assert(Stack.pop_back_val() == Reg &&
865                    "Register stack pop should be paired with a push");
866         }
867       }
868     }
869     // TODO: Generalize this code to support keeping values on the stack across
870     // basic block boundaries.
871     assert(Stack.empty() &&
872            "Register stack pushes and pops should be balanced");
873   }
874 #endif
875 
876   return Changed;
877 }
878