1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// expression don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-reg-stackify" 39 40 namespace { 41 class WebAssemblyRegStackify final : public MachineFunctionPass { 42 const char *getPassName() const override { 43 return "WebAssembly Register Stackify"; 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.setPreservesCFG(); 48 AU.addRequired<AAResultsWrapperPass>(); 49 AU.addRequired<MachineDominatorTree>(); 50 AU.addRequired<LiveIntervals>(); 51 AU.addPreserved<MachineBlockFrequencyInfo>(); 52 AU.addPreserved<SlotIndexes>(); 53 AU.addPreserved<LiveIntervals>(); 54 AU.addPreservedID(LiveVariablesID); 55 AU.addPreserved<MachineDominatorTree>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 64 }; 65 } // end anonymous namespace 66 67 char WebAssemblyRegStackify::ID = 0; 68 FunctionPass *llvm::createWebAssemblyRegStackify() { 69 return new WebAssemblyRegStackify(); 70 } 71 72 // Decorate the given instruction with implicit operands that enforce the 73 // expression stack ordering constraints for an instruction which is on 74 // the expression stack. 75 static void ImposeStackOrdering(MachineInstr *MI) { 76 // Write the opaque EXPR_STACK register. 77 if (!MI->definesRegister(WebAssembly::EXPR_STACK)) 78 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 79 /*isDef=*/true, 80 /*isImp=*/true)); 81 82 // Also read the opaque EXPR_STACK register. 83 if (!MI->readsRegister(WebAssembly::EXPR_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 85 /*isDef=*/false, 86 /*isImp=*/true)); 87 } 88 89 // Determine whether a call to the callee referenced by 90 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 91 // effects. 92 static void QueryCallee(const MachineInstr *MI, unsigned CalleeOpNo, 93 bool &Read, bool &Write, bool &Effects, 94 bool &StackPointer) { 95 // All calls can use the stack pointer. 96 StackPointer = true; 97 98 const MachineOperand &MO = MI->getOperand(CalleeOpNo); 99 if (MO.isGlobal()) { 100 const Constant *GV = MO.getGlobal(); 101 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 102 if (!GA->isInterposable()) 103 GV = GA->getAliasee(); 104 105 if (const Function *F = dyn_cast<Function>(GV)) { 106 if (!F->doesNotThrow()) 107 Effects = true; 108 if (F->doesNotAccessMemory()) 109 return; 110 if (F->onlyReadsMemory()) { 111 Read = true; 112 return; 113 } 114 } 115 } 116 117 // Assume the worst. 118 Write = true; 119 Read = true; 120 Effects = true; 121 } 122 123 // Determine whether MI reads memory, writes memory, has side effects, 124 // and/or uses the __stack_pointer value. 125 static void Query(const MachineInstr *MI, AliasAnalysis &AA, 126 bool &Read, bool &Write, bool &Effects, bool &StackPointer) { 127 assert(!MI->isPosition()); 128 assert(!MI->isTerminator()); 129 130 if (MI->isDebugValue()) 131 return; 132 133 // Check for loads. 134 if (MI->mayLoad() && !MI->isInvariantLoad(&AA)) 135 Read = true; 136 137 // Check for stores. 138 if (MI->mayStore()) { 139 Write = true; 140 141 // Check for stores to __stack_pointer. 142 for (auto MMO : MI->memoperands()) { 143 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 144 if (MPI.V.is<const PseudoSourceValue *>()) { 145 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 146 if (const ExternalSymbolPseudoSourceValue *EPSV = 147 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 148 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") 149 StackPointer = true; 150 } 151 } 152 } else if (MI->hasOrderedMemoryRef()) { 153 switch (MI->getOpcode()) { 154 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 155 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 156 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 157 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 158 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 159 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 160 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 161 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 162 // These instruction have hasUnmodeledSideEffects() returning true 163 // because they trap on overflow and invalid so they can't be arbitrarily 164 // moved, however hasOrderedMemoryRef() interprets this plus their lack 165 // of memoperands as having a potential unknown memory reference. 166 break; 167 default: 168 // Record volatile accesses, unless it's a call, as calls are handled 169 // specially below. 170 if (!MI->isCall()) { 171 Write = true; 172 Effects = true; 173 } 174 break; 175 } 176 } 177 178 // Check for side effects. 179 if (MI->hasUnmodeledSideEffects()) { 180 switch (MI->getOpcode()) { 181 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 182 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 183 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 184 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 185 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 186 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 187 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 188 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 189 // These instructions have hasUnmodeledSideEffects() returning true 190 // because they trap on overflow and invalid so they can't be arbitrarily 191 // moved, however in the specific case of register stackifying, it is safe 192 // to move them because overflow and invalid are Undefined Behavior. 193 break; 194 default: 195 Effects = true; 196 break; 197 } 198 } 199 200 // Analyze calls. 201 if (MI->isCall()) { 202 switch (MI->getOpcode()) { 203 case WebAssembly::CALL_VOID: 204 case WebAssembly::CALL_INDIRECT_VOID: 205 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 206 break; 207 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 208 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 209 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 210 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 211 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 212 break; 213 default: 214 llvm_unreachable("unexpected call opcode"); 215 } 216 } 217 } 218 219 // Test whether Def is safe and profitable to rematerialize. 220 static bool ShouldRematerialize(const MachineInstr *Def, AliasAnalysis &AA, 221 const WebAssemblyInstrInfo *TII) { 222 return Def->isAsCheapAsAMove() && 223 TII->isTriviallyReMaterializable(Def, &AA); 224 } 225 226 // Identify the definition for this register at this point. This is a 227 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 228 // LiveIntervals to handle complex cases. 229 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 230 const MachineRegisterInfo &MRI, 231 const LiveIntervals &LIS) 232 { 233 // Most registers are in SSA form here so we try a quick MRI query first. 234 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 235 return Def; 236 237 // MRI doesn't know what the Def is. Try asking LIS. 238 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 239 LIS.getInstructionIndex(*Insert))) 240 return LIS.getInstructionFromIndex(ValNo->def); 241 242 return nullptr; 243 } 244 245 // Test whether Reg, as defined at Def, has exactly one use. This is a 246 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 247 // to handle complex cases. 248 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 249 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 250 LiveIntervals &LIS) { 251 // Most registers are in SSA form here so we try a quick MRI query first. 252 if (MRI.hasOneUse(Reg)) 253 return true; 254 255 bool HasOne = false; 256 const LiveInterval &LI = LIS.getInterval(Reg); 257 const VNInfo *DefVNI = LI.getVNInfoAt( 258 LIS.getInstructionIndex(*Def).getRegSlot()); 259 assert(DefVNI); 260 for (auto I : MRI.use_nodbg_operands(Reg)) { 261 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 262 if (Result.valueIn() == DefVNI) { 263 if (!Result.isKill()) 264 return false; 265 if (HasOne) 266 return false; 267 HasOne = true; 268 } 269 } 270 return HasOne; 271 } 272 273 // Test whether it's safe to move Def to just before Insert. 274 // TODO: Compute memory dependencies in a way that doesn't require always 275 // walking the block. 276 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 277 // more precise. 278 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 279 AliasAnalysis &AA, const LiveIntervals &LIS, 280 const MachineRegisterInfo &MRI) { 281 assert(Def->getParent() == Insert->getParent()); 282 283 // Check for register dependencies. 284 for (const MachineOperand &MO : Def->operands()) { 285 if (!MO.isReg() || MO.isUndef()) 286 continue; 287 unsigned Reg = MO.getReg(); 288 289 // If the register is dead here and at Insert, ignore it. 290 if (MO.isDead() && Insert->definesRegister(Reg) && 291 !Insert->readsRegister(Reg)) 292 continue; 293 294 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 295 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 296 // from moving down, and we've already checked for that. 297 if (Reg == WebAssembly::ARGUMENTS) 298 continue; 299 // If the physical register is never modified, ignore it. 300 if (!MRI.isPhysRegModified(Reg)) 301 continue; 302 // Otherwise, it's a physical register with unknown liveness. 303 return false; 304 } 305 306 // Ask LiveIntervals whether moving this virtual register use or def to 307 // Insert will change which value numbers are seen. 308 // 309 // If the operand is a use of a register that is also defined in the same 310 // instruction, test that the newly defined value reaches the insert point, 311 // since the operand will be moving along with the def. 312 const LiveInterval &LI = LIS.getInterval(Reg); 313 VNInfo *DefVNI = 314 (MO.isDef() || Def->definesRegister(Reg)) ? 315 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) : 316 LI.getVNInfoBefore(LIS.getInstructionIndex(*Def)); 317 assert(DefVNI && "Instruction input missing value number"); 318 VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert)); 319 if (InsVNI && DefVNI != InsVNI) 320 return false; 321 } 322 323 bool Read = false, Write = false, Effects = false, StackPointer = false; 324 Query(Def, AA, Read, Write, Effects, StackPointer); 325 326 // If the instruction does not access memory and has no side effects, it has 327 // no additional dependencies. 328 if (!Read && !Write && !Effects && !StackPointer) 329 return true; 330 331 // Scan through the intervening instructions between Def and Insert. 332 MachineBasicBlock::const_iterator D(Def), I(Insert); 333 for (--I; I != D; --I) { 334 bool InterveningRead = false; 335 bool InterveningWrite = false; 336 bool InterveningEffects = false; 337 bool InterveningStackPointer = false; 338 Query(I, AA, InterveningRead, InterveningWrite, InterveningEffects, 339 InterveningStackPointer); 340 if (Effects && InterveningEffects) 341 return false; 342 if (Read && InterveningWrite) 343 return false; 344 if (Write && (InterveningRead || InterveningWrite)) 345 return false; 346 if (StackPointer && InterveningStackPointer) 347 return false; 348 } 349 350 return true; 351 } 352 353 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 354 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 355 const MachineBasicBlock &MBB, 356 const MachineRegisterInfo &MRI, 357 const MachineDominatorTree &MDT, 358 LiveIntervals &LIS, 359 WebAssemblyFunctionInfo &MFI) { 360 const LiveInterval &LI = LIS.getInterval(Reg); 361 362 const MachineInstr *OneUseInst = OneUse.getParent(); 363 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 364 365 for (const MachineOperand &Use : MRI.use_operands(Reg)) { 366 if (&Use == &OneUse) 367 continue; 368 369 const MachineInstr *UseInst = Use.getParent(); 370 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 371 372 if (UseVNI != OneUseVNI) 373 continue; 374 375 const MachineInstr *OneUseInst = OneUse.getParent(); 376 if (UseInst == OneUseInst) { 377 // Another use in the same instruction. We need to ensure that the one 378 // selected use happens "before" it. 379 if (&OneUse > &Use) 380 return false; 381 } else { 382 // Test that the use is dominated by the one selected use. 383 while (!MDT.dominates(OneUseInst, UseInst)) { 384 // Actually, dominating is over-conservative. Test that the use would 385 // happen after the one selected use in the stack evaluation order. 386 // 387 // This is needed as a consequence of using implicit get_locals for 388 // uses and implicit set_locals for defs. 389 if (UseInst->getDesc().getNumDefs() == 0) 390 return false; 391 const MachineOperand &MO = UseInst->getOperand(0); 392 if (!MO.isReg()) 393 return false; 394 unsigned DefReg = MO.getReg(); 395 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 396 !MFI.isVRegStackified(DefReg)) 397 return false; 398 assert(MRI.hasOneUse(DefReg)); 399 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 400 const MachineInstr *NewUseInst = NewUse.getParent(); 401 if (NewUseInst == OneUseInst) { 402 if (&OneUse > &NewUse) 403 return false; 404 break; 405 } 406 UseInst = NewUseInst; 407 } 408 } 409 } 410 return true; 411 } 412 413 /// Get the appropriate tee_local opcode for the given register class. 414 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) { 415 if (RC == &WebAssembly::I32RegClass) 416 return WebAssembly::TEE_LOCAL_I32; 417 if (RC == &WebAssembly::I64RegClass) 418 return WebAssembly::TEE_LOCAL_I64; 419 if (RC == &WebAssembly::F32RegClass) 420 return WebAssembly::TEE_LOCAL_F32; 421 if (RC == &WebAssembly::F64RegClass) 422 return WebAssembly::TEE_LOCAL_F64; 423 llvm_unreachable("Unexpected register class"); 424 } 425 426 // Shrink LI to its uses, cleaning up LI. 427 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 428 if (LIS.shrinkToUses(&LI)) { 429 SmallVector<LiveInterval*, 4> SplitLIs; 430 LIS.splitSeparateComponents(LI, SplitLIs); 431 } 432 } 433 434 /// A single-use def in the same block with no intervening memory or register 435 /// dependencies; move the def down and nest it with the current instruction. 436 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 437 MachineInstr *Def, 438 MachineBasicBlock &MBB, 439 MachineInstr *Insert, LiveIntervals &LIS, 440 WebAssemblyFunctionInfo &MFI, 441 MachineRegisterInfo &MRI) { 442 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 443 444 MBB.splice(Insert, &MBB, Def); 445 LIS.handleMove(*Def); 446 447 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 448 // No one else is using this register for anything so we can just stackify 449 // it in place. 450 MFI.stackifyVReg(Reg); 451 } else { 452 // The register may have unrelated uses or defs; create a new register for 453 // just our one def and use so that we can stackify it. 454 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 455 Def->getOperand(0).setReg(NewReg); 456 Op.setReg(NewReg); 457 458 // Tell LiveIntervals about the new register. 459 LIS.createAndComputeVirtRegInterval(NewReg); 460 461 // Tell LiveIntervals about the changes to the old register. 462 LiveInterval &LI = LIS.getInterval(Reg); 463 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 464 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 465 /*RemoveDeadValNo=*/true); 466 467 MFI.stackifyVReg(NewReg); 468 469 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 470 } 471 472 ImposeStackOrdering(Def); 473 return Def; 474 } 475 476 /// A trivially cloneable instruction; clone it and nest the new copy with the 477 /// current instruction. 478 static MachineInstr * 479 RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def, 480 MachineBasicBlock &MBB, MachineInstr *Insert, 481 LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 482 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII, 483 const WebAssemblyRegisterInfo *TRI) { 484 DEBUG(dbgs() << "Rematerializing cheap def: "; Def->dump()); 485 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 486 487 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 488 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 489 Op.setReg(NewReg); 490 MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert)); 491 LIS.InsertMachineInstrInMaps(*Clone); 492 LIS.createAndComputeVirtRegInterval(NewReg); 493 MFI.stackifyVReg(NewReg); 494 ImposeStackOrdering(Clone); 495 496 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 497 498 // Shrink the interval. 499 bool IsDead = MRI.use_empty(Reg); 500 if (!IsDead) { 501 LiveInterval &LI = LIS.getInterval(Reg); 502 ShrinkToUses(LI, LIS); 503 IsDead = !LI.liveAt(LIS.getInstructionIndex(*Def).getDeadSlot()); 504 } 505 506 // If that was the last use of the original, delete the original. 507 if (IsDead) { 508 DEBUG(dbgs() << " - Deleting original\n"); 509 SlotIndex Idx = LIS.getInstructionIndex(*Def).getRegSlot(); 510 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 511 LIS.removeInterval(Reg); 512 LIS.RemoveMachineInstrFromMaps(*Def); 513 Def->eraseFromParent(); 514 } 515 516 return Clone; 517 } 518 519 /// A multiple-use def in the same block with no intervening memory or register 520 /// dependencies; move the def down, nest it with the current instruction, and 521 /// insert a tee_local to satisfy the rest of the uses. As an illustration, 522 /// rewrite this: 523 /// 524 /// Reg = INST ... // Def 525 /// INST ..., Reg, ... // Insert 526 /// INST ..., Reg, ... 527 /// INST ..., Reg, ... 528 /// 529 /// to this: 530 /// 531 /// DefReg = INST ... // Def (to become the new Insert) 532 /// TeeReg, Reg = TEE_LOCAL_... DefReg 533 /// INST ..., TeeReg, ... // Insert 534 /// INST ..., Reg, ... 535 /// INST ..., Reg, ... 536 /// 537 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 538 /// resulting code. 539 static MachineInstr *MoveAndTeeForMultiUse( 540 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 541 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 542 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 543 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 544 545 // Move Def into place. 546 MBB.splice(Insert, &MBB, Def); 547 LIS.handleMove(*Def); 548 549 // Create the Tee and attach the registers. 550 const auto *RegClass = MRI.getRegClass(Reg); 551 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 552 unsigned DefReg = MRI.createVirtualRegister(RegClass); 553 MachineOperand &DefMO = Def->getOperand(0); 554 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 555 TII->get(GetTeeLocalOpcode(RegClass)), TeeReg) 556 .addReg(Reg, RegState::Define) 557 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 558 Op.setReg(TeeReg); 559 DefMO.setReg(DefReg); 560 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 561 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 562 563 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 564 LiveInterval &LI = LIS.getInterval(Reg); 565 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 566 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 567 I->start = TeeIdx; 568 ValNo->def = TeeIdx; 569 ShrinkToUses(LI, LIS); 570 571 // Finish stackifying the new regs. 572 LIS.createAndComputeVirtRegInterval(TeeReg); 573 LIS.createAndComputeVirtRegInterval(DefReg); 574 MFI.stackifyVReg(DefReg); 575 MFI.stackifyVReg(TeeReg); 576 ImposeStackOrdering(Def); 577 ImposeStackOrdering(Tee); 578 579 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 580 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 581 return Def; 582 } 583 584 namespace { 585 /// A stack for walking the tree of instructions being built, visiting the 586 /// MachineOperands in DFS order. 587 class TreeWalkerState { 588 typedef MachineInstr::mop_iterator mop_iterator; 589 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 590 typedef iterator_range<mop_reverse_iterator> RangeTy; 591 SmallVector<RangeTy, 4> Worklist; 592 593 public: 594 explicit TreeWalkerState(MachineInstr *Insert) { 595 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 596 if (Range.begin() != Range.end()) 597 Worklist.push_back(reverse(Range)); 598 } 599 600 bool Done() const { return Worklist.empty(); } 601 602 MachineOperand &Pop() { 603 RangeTy &Range = Worklist.back(); 604 MachineOperand &Op = *Range.begin(); 605 Range = drop_begin(Range, 1); 606 if (Range.begin() == Range.end()) 607 Worklist.pop_back(); 608 assert((Worklist.empty() || 609 Worklist.back().begin() != Worklist.back().end()) && 610 "Empty ranges shouldn't remain in the worklist"); 611 return Op; 612 } 613 614 /// Push Instr's operands onto the stack to be visited. 615 void PushOperands(MachineInstr *Instr) { 616 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 617 if (Range.begin() != Range.end()) 618 Worklist.push_back(reverse(Range)); 619 } 620 621 /// Some of Instr's operands are on the top of the stack; remove them and 622 /// re-insert them starting from the beginning (because we've commuted them). 623 void ResetTopOperands(MachineInstr *Instr) { 624 assert(HasRemainingOperands(Instr) && 625 "Reseting operands should only be done when the instruction has " 626 "an operand still on the stack"); 627 Worklist.back() = reverse(Instr->explicit_uses()); 628 } 629 630 /// Test whether Instr has operands remaining to be visited at the top of 631 /// the stack. 632 bool HasRemainingOperands(const MachineInstr *Instr) const { 633 if (Worklist.empty()) 634 return false; 635 const RangeTy &Range = Worklist.back(); 636 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 637 } 638 639 /// Test whether the given register is present on the stack, indicating an 640 /// operand in the tree that we haven't visited yet. Moving a definition of 641 /// Reg to a point in the tree after that would change its value. 642 /// 643 /// This is needed as a consequence of using implicit get_locals for 644 /// uses and implicit set_locals for defs. 645 bool IsOnStack(unsigned Reg) const { 646 for (const RangeTy &Range : Worklist) 647 for (const MachineOperand &MO : Range) 648 if (MO.isReg() && MO.getReg() == Reg) 649 return true; 650 return false; 651 } 652 }; 653 654 /// State to keep track of whether commuting is in flight or whether it's been 655 /// tried for the current instruction and didn't work. 656 class CommutingState { 657 /// There are effectively three states: the initial state where we haven't 658 /// started commuting anything and we don't know anything yet, the tenative 659 /// state where we've commuted the operands of the current instruction and are 660 /// revisting it, and the declined state where we've reverted the operands 661 /// back to their original order and will no longer commute it further. 662 bool TentativelyCommuting; 663 bool Declined; 664 665 /// During the tentative state, these hold the operand indices of the commuted 666 /// operands. 667 unsigned Operand0, Operand1; 668 669 public: 670 CommutingState() : TentativelyCommuting(false), Declined(false) {} 671 672 /// Stackification for an operand was not successful due to ordering 673 /// constraints. If possible, and if we haven't already tried it and declined 674 /// it, commute Insert's operands and prepare to revisit it. 675 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 676 const WebAssemblyInstrInfo *TII) { 677 if (TentativelyCommuting) { 678 assert(!Declined && 679 "Don't decline commuting until you've finished trying it"); 680 // Commuting didn't help. Revert it. 681 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 682 TentativelyCommuting = false; 683 Declined = true; 684 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 685 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 686 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 687 if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) { 688 // Tentatively commute the operands and try again. 689 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 690 TreeWalker.ResetTopOperands(Insert); 691 TentativelyCommuting = true; 692 Declined = false; 693 } 694 } 695 } 696 697 /// Stackification for some operand was successful. Reset to the default 698 /// state. 699 void Reset() { 700 TentativelyCommuting = false; 701 Declined = false; 702 } 703 }; 704 } // end anonymous namespace 705 706 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 707 DEBUG(dbgs() << "********** Register Stackifying **********\n" 708 "********** Function: " 709 << MF.getName() << '\n'); 710 711 bool Changed = false; 712 MachineRegisterInfo &MRI = MF.getRegInfo(); 713 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 714 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 715 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 716 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 717 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 718 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 719 720 // Walk the instructions from the bottom up. Currently we don't look past 721 // block boundaries, and the blocks aren't ordered so the block visitation 722 // order isn't significant, but we may want to change this in the future. 723 for (MachineBasicBlock &MBB : MF) { 724 // Don't use a range-based for loop, because we modify the list as we're 725 // iterating over it and the end iterator may change. 726 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 727 MachineInstr *Insert = &*MII; 728 // Don't nest anything inside an inline asm, because we don't have 729 // constraints for $push inputs. 730 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 731 continue; 732 733 // Ignore debugging intrinsics. 734 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 735 continue; 736 737 // Iterate through the inputs in reverse order, since we'll be pulling 738 // operands off the stack in LIFO order. 739 CommutingState Commuting; 740 TreeWalkerState TreeWalker(Insert); 741 while (!TreeWalker.Done()) { 742 MachineOperand &Op = TreeWalker.Pop(); 743 744 // We're only interested in explicit virtual register operands. 745 if (!Op.isReg()) 746 continue; 747 748 unsigned Reg = Op.getReg(); 749 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 750 assert(!Op.isImplicit() && 751 "explicit_uses() should only iterate over explicit operands"); 752 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 753 continue; 754 755 // Identify the definition for this register at this point. Most 756 // registers are in SSA form here so we try a quick MRI query first. 757 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 758 if (!Def) 759 continue; 760 761 // Don't nest an INLINE_ASM def into anything, because we don't have 762 // constraints for $pop outputs. 763 if (Def->getOpcode() == TargetOpcode::INLINEASM) 764 continue; 765 766 // Argument instructions represent live-in registers and not real 767 // instructions. 768 if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || 769 Def->getOpcode() == WebAssembly::ARGUMENT_I64 || 770 Def->getOpcode() == WebAssembly::ARGUMENT_F32 || 771 Def->getOpcode() == WebAssembly::ARGUMENT_F64) 772 continue; 773 774 // Decide which strategy to take. Prefer to move a single-use value 775 // over cloning it, and prefer cloning over introducing a tee_local. 776 // For moving, we require the def to be in the same block as the use; 777 // this makes things simpler (LiveIntervals' handleMove function only 778 // supports intra-block moves) and it's MachineSink's job to catch all 779 // the sinking opportunities anyway. 780 bool SameBlock = Def->getParent() == &MBB; 781 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) && 782 !TreeWalker.IsOnStack(Reg); 783 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 784 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 785 } else if (ShouldRematerialize(Def, AA, TII)) { 786 Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI, 787 MRI, TII, TRI); 788 } else if (CanMove && 789 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 790 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 791 MRI, TII); 792 } else { 793 // We failed to stackify the operand. If the problem was ordering 794 // constraints, Commuting may be able to help. 795 if (!CanMove && SameBlock) 796 Commuting.MaybeCommute(Insert, TreeWalker, TII); 797 // Proceed to the next operand. 798 continue; 799 } 800 801 // We stackified an operand. Add the defining instruction's operands to 802 // the worklist stack now to continue to build an ever deeper tree. 803 Commuting.Reset(); 804 TreeWalker.PushOperands(Insert); 805 } 806 807 // If we stackified any operands, skip over the tree to start looking for 808 // the next instruction we can build a tree on. 809 if (Insert != &*MII) { 810 ImposeStackOrdering(&*MII); 811 MII = std::prev( 812 llvm::make_reverse_iterator(MachineBasicBlock::iterator(Insert))); 813 Changed = true; 814 } 815 } 816 } 817 818 // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so 819 // that it never looks like a use-before-def. 820 if (Changed) { 821 MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); 822 for (MachineBasicBlock &MBB : MF) 823 MBB.addLiveIn(WebAssembly::EXPR_STACK); 824 } 825 826 #ifndef NDEBUG 827 // Verify that pushes and pops are performed in LIFO order. 828 SmallVector<unsigned, 0> Stack; 829 for (MachineBasicBlock &MBB : MF) { 830 for (MachineInstr &MI : MBB) { 831 if (MI.isDebugValue()) 832 continue; 833 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 834 if (!MO.isReg()) 835 continue; 836 unsigned Reg = MO.getReg(); 837 838 if (MFI.isVRegStackified(Reg)) { 839 if (MO.isDef()) 840 Stack.push_back(Reg); 841 else 842 assert(Stack.pop_back_val() == Reg && 843 "Register stack pop should be paired with a push"); 844 } 845 } 846 } 847 // TODO: Generalize this code to support keeping values on the stack across 848 // basic block boundaries. 849 assert(Stack.empty() && 850 "Register stack pushes and pops should be balanced"); 851 } 852 #endif 853 854 return Changed; 855 } 856