1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "wasm-reg-stackify" 41 42 namespace { 43 class WebAssemblyRegStackify final : public MachineFunctionPass { 44 StringRef getPassName() const override { 45 return "WebAssembly Register Stackify"; 46 } 47 48 void getAnalysisUsage(AnalysisUsage &AU) const override { 49 AU.setPreservesCFG(); 50 AU.addRequired<AAResultsWrapperPass>(); 51 AU.addRequired<MachineDominatorTree>(); 52 AU.addRequired<LiveIntervals>(); 53 AU.addPreserved<MachineBlockFrequencyInfo>(); 54 AU.addPreserved<SlotIndexes>(); 55 AU.addPreserved<LiveIntervals>(); 56 AU.addPreservedID(LiveVariablesID); 57 AU.addPreserved<MachineDominatorTree>(); 58 MachineFunctionPass::getAnalysisUsage(AU); 59 } 60 61 bool runOnMachineFunction(MachineFunction &MF) override; 62 63 public: 64 static char ID; // Pass identification, replacement for typeid 65 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 66 }; 67 } // end anonymous namespace 68 69 char WebAssemblyRegStackify::ID = 0; 70 FunctionPass *llvm::createWebAssemblyRegStackify() { 71 return new WebAssemblyRegStackify(); 72 } 73 74 // Decorate the given instruction with implicit operands that enforce the 75 // expression stack ordering constraints for an instruction which is on 76 // the expression stack. 77 static void ImposeStackOrdering(MachineInstr *MI) { 78 // Write the opaque VALUE_STACK register. 79 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 80 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 81 /*isDef=*/true, 82 /*isImp=*/true)); 83 84 // Also read the opaque VALUE_STACK register. 85 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 86 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 87 /*isDef=*/false, 88 /*isImp=*/true)); 89 } 90 91 // Convert an IMPLICIT_DEF instruction into an instruction which defines 92 // a constant zero value. 93 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 94 MachineRegisterInfo &MRI, 95 const TargetInstrInfo *TII, 96 MachineFunction &MF) { 97 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 98 99 const auto *RegClass = 100 MRI.getRegClass(MI->getOperand(0).getReg()); 101 if (RegClass == &WebAssembly::I32RegClass) { 102 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 103 MI->addOperand(MachineOperand::CreateImm(0)); 104 } else if (RegClass == &WebAssembly::I64RegClass) { 105 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 106 MI->addOperand(MachineOperand::CreateImm(0)); 107 } else if (RegClass == &WebAssembly::F32RegClass) { 108 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 109 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 110 Type::getFloatTy(MF.getFunction()->getContext()))); 111 MI->addOperand(MachineOperand::CreateFPImm(Val)); 112 } else if (RegClass == &WebAssembly::F64RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 114 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getDoubleTy(MF.getFunction()->getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else { 118 llvm_unreachable("Unexpected reg class"); 119 } 120 } 121 122 // Determine whether a call to the callee referenced by 123 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 124 // effects. 125 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 126 bool &Write, bool &Effects, bool &StackPointer) { 127 // All calls can use the stack pointer. 128 StackPointer = true; 129 130 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 131 if (MO.isGlobal()) { 132 const Constant *GV = MO.getGlobal(); 133 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 134 if (!GA->isInterposable()) 135 GV = GA->getAliasee(); 136 137 if (const Function *F = dyn_cast<Function>(GV)) { 138 if (!F->doesNotThrow()) 139 Effects = true; 140 if (F->doesNotAccessMemory()) 141 return; 142 if (F->onlyReadsMemory()) { 143 Read = true; 144 return; 145 } 146 } 147 } 148 149 // Assume the worst. 150 Write = true; 151 Read = true; 152 Effects = true; 153 } 154 155 // Determine whether MI reads memory, writes memory, has side effects, 156 // and/or uses the stack pointer value. 157 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 158 bool &Write, bool &Effects, bool &StackPointer) { 159 assert(!MI.isPosition()); 160 assert(!MI.isTerminator()); 161 162 if (MI.isDebugValue()) 163 return; 164 165 // Check for loads. 166 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 167 Read = true; 168 169 // Check for stores. 170 if (MI.mayStore()) { 171 Write = true; 172 173 const MachineFunction &MF = *MI.getParent()->getParent(); 174 if (MF.getSubtarget<WebAssemblySubtarget>() 175 .getTargetTriple().isOSBinFormatELF()) { 176 // Check for stores to __stack_pointer. 177 for (auto MMO : MI.memoperands()) { 178 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 179 if (MPI.V.is<const PseudoSourceValue *>()) { 180 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 181 if (const ExternalSymbolPseudoSourceValue *EPSV = 182 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 183 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") 184 StackPointer = true; 185 } 186 } 187 } else { 188 // Check for sets of the stack pointer. 189 const MachineModuleInfoWasm &MMIW = 190 MF.getMMI().getObjFileInfo<MachineModuleInfoWasm>(); 191 if ((MI.getOpcode() == WebAssembly::SET_LOCAL_I32 || 192 MI.getOpcode() == WebAssembly::SET_LOCAL_I64) && 193 MI.getOperand(0).getImm() == MMIW.getStackPointerGlobal()) { 194 StackPointer = true; 195 } 196 } 197 } else if (MI.hasOrderedMemoryRef()) { 198 switch (MI.getOpcode()) { 199 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 200 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 201 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 202 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 203 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 204 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 205 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 206 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 207 // These instruction have hasUnmodeledSideEffects() returning true 208 // because they trap on overflow and invalid so they can't be arbitrarily 209 // moved, however hasOrderedMemoryRef() interprets this plus their lack 210 // of memoperands as having a potential unknown memory reference. 211 break; 212 default: 213 // Record volatile accesses, unless it's a call, as calls are handled 214 // specially below. 215 if (!MI.isCall()) { 216 Write = true; 217 Effects = true; 218 } 219 break; 220 } 221 } 222 223 // Check for side effects. 224 if (MI.hasUnmodeledSideEffects()) { 225 switch (MI.getOpcode()) { 226 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 227 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 228 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 229 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 230 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 231 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 232 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 233 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 234 // These instructions have hasUnmodeledSideEffects() returning true 235 // because they trap on overflow and invalid so they can't be arbitrarily 236 // moved, however in the specific case of register stackifying, it is safe 237 // to move them because overflow and invalid are Undefined Behavior. 238 break; 239 default: 240 Effects = true; 241 break; 242 } 243 } 244 245 // Analyze calls. 246 if (MI.isCall()) { 247 switch (MI.getOpcode()) { 248 case WebAssembly::CALL_VOID: 249 case WebAssembly::CALL_INDIRECT_VOID: 250 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 251 break; 252 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 253 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 254 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 255 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 256 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 257 break; 258 default: 259 llvm_unreachable("unexpected call opcode"); 260 } 261 } 262 } 263 264 // Test whether Def is safe and profitable to rematerialize. 265 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 266 const WebAssemblyInstrInfo *TII) { 267 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 268 } 269 270 // Identify the definition for this register at this point. This is a 271 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 272 // LiveIntervals to handle complex cases. 273 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 274 const MachineRegisterInfo &MRI, 275 const LiveIntervals &LIS) 276 { 277 // Most registers are in SSA form here so we try a quick MRI query first. 278 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 279 return Def; 280 281 // MRI doesn't know what the Def is. Try asking LIS. 282 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 283 LIS.getInstructionIndex(*Insert))) 284 return LIS.getInstructionFromIndex(ValNo->def); 285 286 return nullptr; 287 } 288 289 // Test whether Reg, as defined at Def, has exactly one use. This is a 290 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 291 // to handle complex cases. 292 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 293 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 294 LiveIntervals &LIS) { 295 // Most registers are in SSA form here so we try a quick MRI query first. 296 if (MRI.hasOneUse(Reg)) 297 return true; 298 299 bool HasOne = false; 300 const LiveInterval &LI = LIS.getInterval(Reg); 301 const VNInfo *DefVNI = LI.getVNInfoAt( 302 LIS.getInstructionIndex(*Def).getRegSlot()); 303 assert(DefVNI); 304 for (auto &I : MRI.use_nodbg_operands(Reg)) { 305 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 306 if (Result.valueIn() == DefVNI) { 307 if (!Result.isKill()) 308 return false; 309 if (HasOne) 310 return false; 311 HasOne = true; 312 } 313 } 314 return HasOne; 315 } 316 317 // Test whether it's safe to move Def to just before Insert. 318 // TODO: Compute memory dependencies in a way that doesn't require always 319 // walking the block. 320 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 321 // more precise. 322 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 323 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 324 assert(Def->getParent() == Insert->getParent()); 325 326 // Check for register dependencies. 327 SmallVector<unsigned, 4> MutableRegisters; 328 for (const MachineOperand &MO : Def->operands()) { 329 if (!MO.isReg() || MO.isUndef()) 330 continue; 331 unsigned Reg = MO.getReg(); 332 333 // If the register is dead here and at Insert, ignore it. 334 if (MO.isDead() && Insert->definesRegister(Reg) && 335 !Insert->readsRegister(Reg)) 336 continue; 337 338 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 339 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 340 // from moving down, and we've already checked for that. 341 if (Reg == WebAssembly::ARGUMENTS) 342 continue; 343 // If the physical register is never modified, ignore it. 344 if (!MRI.isPhysRegModified(Reg)) 345 continue; 346 // Otherwise, it's a physical register with unknown liveness. 347 return false; 348 } 349 350 // If one of the operands isn't in SSA form, it has different values at 351 // different times, and we need to make sure we don't move our use across 352 // a different def. 353 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 354 MutableRegisters.push_back(Reg); 355 } 356 357 bool Read = false, Write = false, Effects = false, StackPointer = false; 358 Query(*Def, AA, Read, Write, Effects, StackPointer); 359 360 // If the instruction does not access memory and has no side effects, it has 361 // no additional dependencies. 362 bool HasMutableRegisters = !MutableRegisters.empty(); 363 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 364 return true; 365 366 // Scan through the intervening instructions between Def and Insert. 367 MachineBasicBlock::const_iterator D(Def), I(Insert); 368 for (--I; I != D; --I) { 369 bool InterveningRead = false; 370 bool InterveningWrite = false; 371 bool InterveningEffects = false; 372 bool InterveningStackPointer = false; 373 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 374 InterveningStackPointer); 375 if (Effects && InterveningEffects) 376 return false; 377 if (Read && InterveningWrite) 378 return false; 379 if (Write && (InterveningRead || InterveningWrite)) 380 return false; 381 if (StackPointer && InterveningStackPointer) 382 return false; 383 384 for (unsigned Reg : MutableRegisters) 385 for (const MachineOperand &MO : I->operands()) 386 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 387 return false; 388 } 389 390 return true; 391 } 392 393 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 394 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 395 const MachineBasicBlock &MBB, 396 const MachineRegisterInfo &MRI, 397 const MachineDominatorTree &MDT, 398 LiveIntervals &LIS, 399 WebAssemblyFunctionInfo &MFI) { 400 const LiveInterval &LI = LIS.getInterval(Reg); 401 402 const MachineInstr *OneUseInst = OneUse.getParent(); 403 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 404 405 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 406 if (&Use == &OneUse) 407 continue; 408 409 const MachineInstr *UseInst = Use.getParent(); 410 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 411 412 if (UseVNI != OneUseVNI) 413 continue; 414 415 const MachineInstr *OneUseInst = OneUse.getParent(); 416 if (UseInst == OneUseInst) { 417 // Another use in the same instruction. We need to ensure that the one 418 // selected use happens "before" it. 419 if (&OneUse > &Use) 420 return false; 421 } else { 422 // Test that the use is dominated by the one selected use. 423 while (!MDT.dominates(OneUseInst, UseInst)) { 424 // Actually, dominating is over-conservative. Test that the use would 425 // happen after the one selected use in the stack evaluation order. 426 // 427 // This is needed as a consequence of using implicit get_locals for 428 // uses and implicit set_locals for defs. 429 if (UseInst->getDesc().getNumDefs() == 0) 430 return false; 431 const MachineOperand &MO = UseInst->getOperand(0); 432 if (!MO.isReg()) 433 return false; 434 unsigned DefReg = MO.getReg(); 435 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 436 !MFI.isVRegStackified(DefReg)) 437 return false; 438 assert(MRI.hasOneUse(DefReg)); 439 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 440 const MachineInstr *NewUseInst = NewUse.getParent(); 441 if (NewUseInst == OneUseInst) { 442 if (&OneUse > &NewUse) 443 return false; 444 break; 445 } 446 UseInst = NewUseInst; 447 } 448 } 449 } 450 return true; 451 } 452 453 /// Get the appropriate tee opcode for the given register class. 454 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 455 if (RC == &WebAssembly::I32RegClass) 456 return WebAssembly::TEE_I32; 457 if (RC == &WebAssembly::I64RegClass) 458 return WebAssembly::TEE_I64; 459 if (RC == &WebAssembly::F32RegClass) 460 return WebAssembly::TEE_F32; 461 if (RC == &WebAssembly::F64RegClass) 462 return WebAssembly::TEE_F64; 463 if (RC == &WebAssembly::V128RegClass) 464 return WebAssembly::TEE_V128; 465 llvm_unreachable("Unexpected register class"); 466 } 467 468 // Shrink LI to its uses, cleaning up LI. 469 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 470 if (LIS.shrinkToUses(&LI)) { 471 SmallVector<LiveInterval*, 4> SplitLIs; 472 LIS.splitSeparateComponents(LI, SplitLIs); 473 } 474 } 475 476 /// A single-use def in the same block with no intervening memory or register 477 /// dependencies; move the def down and nest it with the current instruction. 478 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 479 MachineInstr *Def, 480 MachineBasicBlock &MBB, 481 MachineInstr *Insert, LiveIntervals &LIS, 482 WebAssemblyFunctionInfo &MFI, 483 MachineRegisterInfo &MRI) { 484 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 485 486 MBB.splice(Insert, &MBB, Def); 487 LIS.handleMove(*Def); 488 489 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 490 // No one else is using this register for anything so we can just stackify 491 // it in place. 492 MFI.stackifyVReg(Reg); 493 } else { 494 // The register may have unrelated uses or defs; create a new register for 495 // just our one def and use so that we can stackify it. 496 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 497 Def->getOperand(0).setReg(NewReg); 498 Op.setReg(NewReg); 499 500 // Tell LiveIntervals about the new register. 501 LIS.createAndComputeVirtRegInterval(NewReg); 502 503 // Tell LiveIntervals about the changes to the old register. 504 LiveInterval &LI = LIS.getInterval(Reg); 505 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 506 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 507 /*RemoveDeadValNo=*/true); 508 509 MFI.stackifyVReg(NewReg); 510 511 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 512 } 513 514 ImposeStackOrdering(Def); 515 return Def; 516 } 517 518 /// A trivially cloneable instruction; clone it and nest the new copy with the 519 /// current instruction. 520 static MachineInstr *RematerializeCheapDef( 521 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 522 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 523 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 524 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 525 DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 526 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 527 528 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 529 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 530 Op.setReg(NewReg); 531 MachineInstr *Clone = &*std::prev(Insert); 532 LIS.InsertMachineInstrInMaps(*Clone); 533 LIS.createAndComputeVirtRegInterval(NewReg); 534 MFI.stackifyVReg(NewReg); 535 ImposeStackOrdering(Clone); 536 537 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 538 539 // Shrink the interval. 540 bool IsDead = MRI.use_empty(Reg); 541 if (!IsDead) { 542 LiveInterval &LI = LIS.getInterval(Reg); 543 ShrinkToUses(LI, LIS); 544 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 545 } 546 547 // If that was the last use of the original, delete the original. 548 if (IsDead) { 549 DEBUG(dbgs() << " - Deleting original\n"); 550 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 551 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 552 LIS.removeInterval(Reg); 553 LIS.RemoveMachineInstrFromMaps(Def); 554 Def.eraseFromParent(); 555 } 556 557 return Clone; 558 } 559 560 /// A multiple-use def in the same block with no intervening memory or register 561 /// dependencies; move the def down, nest it with the current instruction, and 562 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 563 /// this: 564 /// 565 /// Reg = INST ... // Def 566 /// INST ..., Reg, ... // Insert 567 /// INST ..., Reg, ... 568 /// INST ..., Reg, ... 569 /// 570 /// to this: 571 /// 572 /// DefReg = INST ... // Def (to become the new Insert) 573 /// TeeReg, Reg = TEE_... DefReg 574 /// INST ..., TeeReg, ... // Insert 575 /// INST ..., Reg, ... 576 /// INST ..., Reg, ... 577 /// 578 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 579 /// resulting code. 580 static MachineInstr *MoveAndTeeForMultiUse( 581 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 582 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 583 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 584 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 585 586 // Move Def into place. 587 MBB.splice(Insert, &MBB, Def); 588 LIS.handleMove(*Def); 589 590 // Create the Tee and attach the registers. 591 const auto *RegClass = MRI.getRegClass(Reg); 592 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 593 unsigned DefReg = MRI.createVirtualRegister(RegClass); 594 MachineOperand &DefMO = Def->getOperand(0); 595 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 596 TII->get(GetTeeOpcode(RegClass)), TeeReg) 597 .addReg(Reg, RegState::Define) 598 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 599 Op.setReg(TeeReg); 600 DefMO.setReg(DefReg); 601 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 602 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 603 604 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 605 LiveInterval &LI = LIS.getInterval(Reg); 606 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 607 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 608 I->start = TeeIdx; 609 ValNo->def = TeeIdx; 610 ShrinkToUses(LI, LIS); 611 612 // Finish stackifying the new regs. 613 LIS.createAndComputeVirtRegInterval(TeeReg); 614 LIS.createAndComputeVirtRegInterval(DefReg); 615 MFI.stackifyVReg(DefReg); 616 MFI.stackifyVReg(TeeReg); 617 ImposeStackOrdering(Def); 618 ImposeStackOrdering(Tee); 619 620 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 621 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 622 return Def; 623 } 624 625 namespace { 626 /// A stack for walking the tree of instructions being built, visiting the 627 /// MachineOperands in DFS order. 628 class TreeWalkerState { 629 typedef MachineInstr::mop_iterator mop_iterator; 630 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 631 typedef iterator_range<mop_reverse_iterator> RangeTy; 632 SmallVector<RangeTy, 4> Worklist; 633 634 public: 635 explicit TreeWalkerState(MachineInstr *Insert) { 636 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 637 if (Range.begin() != Range.end()) 638 Worklist.push_back(reverse(Range)); 639 } 640 641 bool Done() const { return Worklist.empty(); } 642 643 MachineOperand &Pop() { 644 RangeTy &Range = Worklist.back(); 645 MachineOperand &Op = *Range.begin(); 646 Range = drop_begin(Range, 1); 647 if (Range.begin() == Range.end()) 648 Worklist.pop_back(); 649 assert((Worklist.empty() || 650 Worklist.back().begin() != Worklist.back().end()) && 651 "Empty ranges shouldn't remain in the worklist"); 652 return Op; 653 } 654 655 /// Push Instr's operands onto the stack to be visited. 656 void PushOperands(MachineInstr *Instr) { 657 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 658 if (Range.begin() != Range.end()) 659 Worklist.push_back(reverse(Range)); 660 } 661 662 /// Some of Instr's operands are on the top of the stack; remove them and 663 /// re-insert them starting from the beginning (because we've commuted them). 664 void ResetTopOperands(MachineInstr *Instr) { 665 assert(HasRemainingOperands(Instr) && 666 "Reseting operands should only be done when the instruction has " 667 "an operand still on the stack"); 668 Worklist.back() = reverse(Instr->explicit_uses()); 669 } 670 671 /// Test whether Instr has operands remaining to be visited at the top of 672 /// the stack. 673 bool HasRemainingOperands(const MachineInstr *Instr) const { 674 if (Worklist.empty()) 675 return false; 676 const RangeTy &Range = Worklist.back(); 677 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 678 } 679 680 /// Test whether the given register is present on the stack, indicating an 681 /// operand in the tree that we haven't visited yet. Moving a definition of 682 /// Reg to a point in the tree after that would change its value. 683 /// 684 /// This is needed as a consequence of using implicit get_locals for 685 /// uses and implicit set_locals for defs. 686 bool IsOnStack(unsigned Reg) const { 687 for (const RangeTy &Range : Worklist) 688 for (const MachineOperand &MO : Range) 689 if (MO.isReg() && MO.getReg() == Reg) 690 return true; 691 return false; 692 } 693 }; 694 695 /// State to keep track of whether commuting is in flight or whether it's been 696 /// tried for the current instruction and didn't work. 697 class CommutingState { 698 /// There are effectively three states: the initial state where we haven't 699 /// started commuting anything and we don't know anything yet, the tenative 700 /// state where we've commuted the operands of the current instruction and are 701 /// revisting it, and the declined state where we've reverted the operands 702 /// back to their original order and will no longer commute it further. 703 bool TentativelyCommuting; 704 bool Declined; 705 706 /// During the tentative state, these hold the operand indices of the commuted 707 /// operands. 708 unsigned Operand0, Operand1; 709 710 public: 711 CommutingState() : TentativelyCommuting(false), Declined(false) {} 712 713 /// Stackification for an operand was not successful due to ordering 714 /// constraints. If possible, and if we haven't already tried it and declined 715 /// it, commute Insert's operands and prepare to revisit it. 716 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 717 const WebAssemblyInstrInfo *TII) { 718 if (TentativelyCommuting) { 719 assert(!Declined && 720 "Don't decline commuting until you've finished trying it"); 721 // Commuting didn't help. Revert it. 722 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 723 TentativelyCommuting = false; 724 Declined = true; 725 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 726 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 727 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 728 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 729 // Tentatively commute the operands and try again. 730 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 731 TreeWalker.ResetTopOperands(Insert); 732 TentativelyCommuting = true; 733 Declined = false; 734 } 735 } 736 } 737 738 /// Stackification for some operand was successful. Reset to the default 739 /// state. 740 void Reset() { 741 TentativelyCommuting = false; 742 Declined = false; 743 } 744 }; 745 } // end anonymous namespace 746 747 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 748 DEBUG(dbgs() << "********** Register Stackifying **********\n" 749 "********** Function: " 750 << MF.getName() << '\n'); 751 752 bool Changed = false; 753 MachineRegisterInfo &MRI = MF.getRegInfo(); 754 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 755 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 756 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 757 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 758 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 759 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 760 761 // Walk the instructions from the bottom up. Currently we don't look past 762 // block boundaries, and the blocks aren't ordered so the block visitation 763 // order isn't significant, but we may want to change this in the future. 764 for (MachineBasicBlock &MBB : MF) { 765 // Don't use a range-based for loop, because we modify the list as we're 766 // iterating over it and the end iterator may change. 767 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 768 MachineInstr *Insert = &*MII; 769 // Don't nest anything inside an inline asm, because we don't have 770 // constraints for $push inputs. 771 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 772 continue; 773 774 // Ignore debugging intrinsics. 775 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 776 continue; 777 778 // Iterate through the inputs in reverse order, since we'll be pulling 779 // operands off the stack in LIFO order. 780 CommutingState Commuting; 781 TreeWalkerState TreeWalker(Insert); 782 while (!TreeWalker.Done()) { 783 MachineOperand &Op = TreeWalker.Pop(); 784 785 // We're only interested in explicit virtual register operands. 786 if (!Op.isReg()) 787 continue; 788 789 unsigned Reg = Op.getReg(); 790 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 791 assert(!Op.isImplicit() && 792 "explicit_uses() should only iterate over explicit operands"); 793 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 794 continue; 795 796 // Identify the definition for this register at this point. 797 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 798 if (!Def) 799 continue; 800 801 // Don't nest an INLINE_ASM def into anything, because we don't have 802 // constraints for $pop outputs. 803 if (Def->getOpcode() == TargetOpcode::INLINEASM) 804 continue; 805 806 // Argument instructions represent live-in registers and not real 807 // instructions. 808 if (WebAssembly::isArgument(*Def)) 809 continue; 810 811 // Decide which strategy to take. Prefer to move a single-use value 812 // over cloning it, and prefer cloning over introducing a tee. 813 // For moving, we require the def to be in the same block as the use; 814 // this makes things simpler (LiveIntervals' handleMove function only 815 // supports intra-block moves) and it's MachineSink's job to catch all 816 // the sinking opportunities anyway. 817 bool SameBlock = Def->getParent() == &MBB; 818 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 819 !TreeWalker.IsOnStack(Reg); 820 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 821 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 822 } else if (ShouldRematerialize(*Def, AA, TII)) { 823 Insert = 824 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 825 LIS, MFI, MRI, TII, TRI); 826 } else if (CanMove && 827 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 828 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 829 MRI, TII); 830 } else { 831 // We failed to stackify the operand. If the problem was ordering 832 // constraints, Commuting may be able to help. 833 if (!CanMove && SameBlock) 834 Commuting.MaybeCommute(Insert, TreeWalker, TII); 835 // Proceed to the next operand. 836 continue; 837 } 838 839 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 840 // to a constant 0 so that the def is explicit, and the push/pop 841 // correspondence is maintained. 842 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 843 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); 844 845 // We stackified an operand. Add the defining instruction's operands to 846 // the worklist stack now to continue to build an ever deeper tree. 847 Commuting.Reset(); 848 TreeWalker.PushOperands(Insert); 849 } 850 851 // If we stackified any operands, skip over the tree to start looking for 852 // the next instruction we can build a tree on. 853 if (Insert != &*MII) { 854 ImposeStackOrdering(&*MII); 855 MII = MachineBasicBlock::iterator(Insert).getReverse(); 856 Changed = true; 857 } 858 } 859 } 860 861 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 862 // that it never looks like a use-before-def. 863 if (Changed) { 864 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 865 for (MachineBasicBlock &MBB : MF) 866 MBB.addLiveIn(WebAssembly::VALUE_STACK); 867 } 868 869 #ifndef NDEBUG 870 // Verify that pushes and pops are performed in LIFO order. 871 SmallVector<unsigned, 0> Stack; 872 for (MachineBasicBlock &MBB : MF) { 873 for (MachineInstr &MI : MBB) { 874 if (MI.isDebugValue()) 875 continue; 876 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 877 if (!MO.isReg()) 878 continue; 879 unsigned Reg = MO.getReg(); 880 881 if (MFI.isVRegStackified(Reg)) { 882 if (MO.isDef()) 883 Stack.push_back(Reg); 884 else 885 assert(Stack.pop_back_val() == Reg && 886 "Register stack pop should be paired with a push"); 887 } 888 } 889 } 890 // TODO: Generalize this code to support keeping values on the stack across 891 // basic block boundaries. 892 assert(Stack.empty() && 893 "Register stack pushes and pops should be balanced"); 894 } 895 #endif 896 897 return Changed; 898 } 899