1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-reg-stackify" 39 40 namespace { 41 class WebAssemblyRegStackify final : public MachineFunctionPass { 42 StringRef getPassName() const override { 43 return "WebAssembly Register Stackify"; 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.setPreservesCFG(); 48 AU.addRequired<AAResultsWrapperPass>(); 49 AU.addRequired<MachineDominatorTree>(); 50 AU.addRequired<LiveIntervals>(); 51 AU.addPreserved<MachineBlockFrequencyInfo>(); 52 AU.addPreserved<SlotIndexes>(); 53 AU.addPreserved<LiveIntervals>(); 54 AU.addPreservedID(LiveVariablesID); 55 AU.addPreserved<MachineDominatorTree>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 64 }; 65 } // end anonymous namespace 66 67 char WebAssemblyRegStackify::ID = 0; 68 FunctionPass *llvm::createWebAssemblyRegStackify() { 69 return new WebAssemblyRegStackify(); 70 } 71 72 // Decorate the given instruction with implicit operands that enforce the 73 // expression stack ordering constraints for an instruction which is on 74 // the expression stack. 75 static void ImposeStackOrdering(MachineInstr *MI) { 76 // Write the opaque VALUE_STACK register. 77 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 78 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 79 /*isDef=*/true, 80 /*isImp=*/true)); 81 82 // Also read the opaque VALUE_STACK register. 83 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 85 /*isDef=*/false, 86 /*isImp=*/true)); 87 } 88 89 // Determine whether a call to the callee referenced by 90 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 91 // effects. 92 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 93 bool &Write, bool &Effects, bool &StackPointer) { 94 // All calls can use the stack pointer. 95 StackPointer = true; 96 97 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 98 if (MO.isGlobal()) { 99 const Constant *GV = MO.getGlobal(); 100 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 101 if (!GA->isInterposable()) 102 GV = GA->getAliasee(); 103 104 if (const Function *F = dyn_cast<Function>(GV)) { 105 if (!F->doesNotThrow()) 106 Effects = true; 107 if (F->doesNotAccessMemory()) 108 return; 109 if (F->onlyReadsMemory()) { 110 Read = true; 111 return; 112 } 113 } 114 } 115 116 // Assume the worst. 117 Write = true; 118 Read = true; 119 Effects = true; 120 } 121 122 // Determine whether MI reads memory, writes memory, has side effects, 123 // and/or uses the __stack_pointer value. 124 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 125 bool &Write, bool &Effects, bool &StackPointer) { 126 assert(!MI.isPosition()); 127 assert(!MI.isTerminator()); 128 129 if (MI.isDebugValue()) 130 return; 131 132 // Check for loads. 133 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 134 Read = true; 135 136 // Check for stores. 137 if (MI.mayStore()) { 138 Write = true; 139 140 // Check for stores to __stack_pointer. 141 for (auto MMO : MI.memoperands()) { 142 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 143 if (MPI.V.is<const PseudoSourceValue *>()) { 144 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 145 if (const ExternalSymbolPseudoSourceValue *EPSV = 146 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 147 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") 148 StackPointer = true; 149 } 150 } 151 } else if (MI.hasOrderedMemoryRef()) { 152 switch (MI.getOpcode()) { 153 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 154 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 155 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 156 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 157 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 158 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 159 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 160 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 161 // These instruction have hasUnmodeledSideEffects() returning true 162 // because they trap on overflow and invalid so they can't be arbitrarily 163 // moved, however hasOrderedMemoryRef() interprets this plus their lack 164 // of memoperands as having a potential unknown memory reference. 165 break; 166 default: 167 // Record volatile accesses, unless it's a call, as calls are handled 168 // specially below. 169 if (!MI.isCall()) { 170 Write = true; 171 Effects = true; 172 } 173 break; 174 } 175 } 176 177 // Check for side effects. 178 if (MI.hasUnmodeledSideEffects()) { 179 switch (MI.getOpcode()) { 180 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 181 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 182 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 183 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 184 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 185 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 186 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 187 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 188 // These instructions have hasUnmodeledSideEffects() returning true 189 // because they trap on overflow and invalid so they can't be arbitrarily 190 // moved, however in the specific case of register stackifying, it is safe 191 // to move them because overflow and invalid are Undefined Behavior. 192 break; 193 default: 194 Effects = true; 195 break; 196 } 197 } 198 199 // Analyze calls. 200 if (MI.isCall()) { 201 switch (MI.getOpcode()) { 202 case WebAssembly::CALL_VOID: 203 case WebAssembly::CALL_INDIRECT_VOID: 204 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 205 break; 206 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 207 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 208 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 209 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 210 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 211 break; 212 default: 213 llvm_unreachable("unexpected call opcode"); 214 } 215 } 216 } 217 218 // Test whether Def is safe and profitable to rematerialize. 219 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 220 const WebAssemblyInstrInfo *TII) { 221 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 222 } 223 224 // Identify the definition for this register at this point. This is a 225 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 226 // LiveIntervals to handle complex cases. 227 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 228 const MachineRegisterInfo &MRI, 229 const LiveIntervals &LIS) 230 { 231 // Most registers are in SSA form here so we try a quick MRI query first. 232 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 233 return Def; 234 235 // MRI doesn't know what the Def is. Try asking LIS. 236 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 237 LIS.getInstructionIndex(*Insert))) 238 return LIS.getInstructionFromIndex(ValNo->def); 239 240 return nullptr; 241 } 242 243 // Test whether Reg, as defined at Def, has exactly one use. This is a 244 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 245 // to handle complex cases. 246 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 247 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 248 LiveIntervals &LIS) { 249 // Most registers are in SSA form here so we try a quick MRI query first. 250 if (MRI.hasOneUse(Reg)) 251 return true; 252 253 bool HasOne = false; 254 const LiveInterval &LI = LIS.getInterval(Reg); 255 const VNInfo *DefVNI = LI.getVNInfoAt( 256 LIS.getInstructionIndex(*Def).getRegSlot()); 257 assert(DefVNI); 258 for (auto &I : MRI.use_nodbg_operands(Reg)) { 259 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 260 if (Result.valueIn() == DefVNI) { 261 if (!Result.isKill()) 262 return false; 263 if (HasOne) 264 return false; 265 HasOne = true; 266 } 267 } 268 return HasOne; 269 } 270 271 // Test whether it's safe to move Def to just before Insert. 272 // TODO: Compute memory dependencies in a way that doesn't require always 273 // walking the block. 274 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 275 // more precise. 276 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 277 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 278 assert(Def->getParent() == Insert->getParent()); 279 280 // Check for register dependencies. 281 SmallVector<unsigned, 4> MutableRegisters; 282 for (const MachineOperand &MO : Def->operands()) { 283 if (!MO.isReg() || MO.isUndef()) 284 continue; 285 unsigned Reg = MO.getReg(); 286 287 // If the register is dead here and at Insert, ignore it. 288 if (MO.isDead() && Insert->definesRegister(Reg) && 289 !Insert->readsRegister(Reg)) 290 continue; 291 292 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 293 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 294 // from moving down, and we've already checked for that. 295 if (Reg == WebAssembly::ARGUMENTS) 296 continue; 297 // If the physical register is never modified, ignore it. 298 if (!MRI.isPhysRegModified(Reg)) 299 continue; 300 // Otherwise, it's a physical register with unknown liveness. 301 return false; 302 } 303 304 // If one of the operands isn't in SSA form, it has different values at 305 // different times, and we need to make sure we don't move our use across 306 // a different def. 307 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 308 MutableRegisters.push_back(Reg); 309 } 310 311 bool Read = false, Write = false, Effects = false, StackPointer = false; 312 Query(*Def, AA, Read, Write, Effects, StackPointer); 313 314 // If the instruction does not access memory and has no side effects, it has 315 // no additional dependencies. 316 bool HasMutableRegisters = !MutableRegisters.empty(); 317 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 318 return true; 319 320 // Scan through the intervening instructions between Def and Insert. 321 MachineBasicBlock::const_iterator D(Def), I(Insert); 322 for (--I; I != D; --I) { 323 bool InterveningRead = false; 324 bool InterveningWrite = false; 325 bool InterveningEffects = false; 326 bool InterveningStackPointer = false; 327 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 328 InterveningStackPointer); 329 if (Effects && InterveningEffects) 330 return false; 331 if (Read && InterveningWrite) 332 return false; 333 if (Write && (InterveningRead || InterveningWrite)) 334 return false; 335 if (StackPointer && InterveningStackPointer) 336 return false; 337 338 for (unsigned Reg : MutableRegisters) 339 for (const MachineOperand &MO : I->operands()) 340 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 341 return false; 342 } 343 344 return true; 345 } 346 347 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 348 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 349 const MachineBasicBlock &MBB, 350 const MachineRegisterInfo &MRI, 351 const MachineDominatorTree &MDT, 352 LiveIntervals &LIS, 353 WebAssemblyFunctionInfo &MFI) { 354 const LiveInterval &LI = LIS.getInterval(Reg); 355 356 const MachineInstr *OneUseInst = OneUse.getParent(); 357 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 358 359 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 360 if (&Use == &OneUse) 361 continue; 362 363 const MachineInstr *UseInst = Use.getParent(); 364 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 365 366 if (UseVNI != OneUseVNI) 367 continue; 368 369 const MachineInstr *OneUseInst = OneUse.getParent(); 370 if (UseInst == OneUseInst) { 371 // Another use in the same instruction. We need to ensure that the one 372 // selected use happens "before" it. 373 if (&OneUse > &Use) 374 return false; 375 } else { 376 // Test that the use is dominated by the one selected use. 377 while (!MDT.dominates(OneUseInst, UseInst)) { 378 // Actually, dominating is over-conservative. Test that the use would 379 // happen after the one selected use in the stack evaluation order. 380 // 381 // This is needed as a consequence of using implicit get_locals for 382 // uses and implicit set_locals for defs. 383 if (UseInst->getDesc().getNumDefs() == 0) 384 return false; 385 const MachineOperand &MO = UseInst->getOperand(0); 386 if (!MO.isReg()) 387 return false; 388 unsigned DefReg = MO.getReg(); 389 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 390 !MFI.isVRegStackified(DefReg)) 391 return false; 392 assert(MRI.hasOneUse(DefReg)); 393 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 394 const MachineInstr *NewUseInst = NewUse.getParent(); 395 if (NewUseInst == OneUseInst) { 396 if (&OneUse > &NewUse) 397 return false; 398 break; 399 } 400 UseInst = NewUseInst; 401 } 402 } 403 } 404 return true; 405 } 406 407 /// Get the appropriate tee_local opcode for the given register class. 408 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) { 409 if (RC == &WebAssembly::I32RegClass) 410 return WebAssembly::TEE_LOCAL_I32; 411 if (RC == &WebAssembly::I64RegClass) 412 return WebAssembly::TEE_LOCAL_I64; 413 if (RC == &WebAssembly::F32RegClass) 414 return WebAssembly::TEE_LOCAL_F32; 415 if (RC == &WebAssembly::F64RegClass) 416 return WebAssembly::TEE_LOCAL_F64; 417 if (RC == &WebAssembly::V128RegClass) 418 return WebAssembly::TEE_LOCAL_V128; 419 llvm_unreachable("Unexpected register class"); 420 } 421 422 // Shrink LI to its uses, cleaning up LI. 423 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 424 if (LIS.shrinkToUses(&LI)) { 425 SmallVector<LiveInterval*, 4> SplitLIs; 426 LIS.splitSeparateComponents(LI, SplitLIs); 427 } 428 } 429 430 /// A single-use def in the same block with no intervening memory or register 431 /// dependencies; move the def down and nest it with the current instruction. 432 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 433 MachineInstr *Def, 434 MachineBasicBlock &MBB, 435 MachineInstr *Insert, LiveIntervals &LIS, 436 WebAssemblyFunctionInfo &MFI, 437 MachineRegisterInfo &MRI) { 438 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 439 440 MBB.splice(Insert, &MBB, Def); 441 LIS.handleMove(*Def); 442 443 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 444 // No one else is using this register for anything so we can just stackify 445 // it in place. 446 MFI.stackifyVReg(Reg); 447 } else { 448 // The register may have unrelated uses or defs; create a new register for 449 // just our one def and use so that we can stackify it. 450 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 451 Def->getOperand(0).setReg(NewReg); 452 Op.setReg(NewReg); 453 454 // Tell LiveIntervals about the new register. 455 LIS.createAndComputeVirtRegInterval(NewReg); 456 457 // Tell LiveIntervals about the changes to the old register. 458 LiveInterval &LI = LIS.getInterval(Reg); 459 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 460 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 461 /*RemoveDeadValNo=*/true); 462 463 MFI.stackifyVReg(NewReg); 464 465 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 466 } 467 468 ImposeStackOrdering(Def); 469 return Def; 470 } 471 472 /// A trivially cloneable instruction; clone it and nest the new copy with the 473 /// current instruction. 474 static MachineInstr *RematerializeCheapDef( 475 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 476 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 477 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 478 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 479 DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 480 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 481 482 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 483 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 484 Op.setReg(NewReg); 485 MachineInstr *Clone = &*std::prev(Insert); 486 LIS.InsertMachineInstrInMaps(*Clone); 487 LIS.createAndComputeVirtRegInterval(NewReg); 488 MFI.stackifyVReg(NewReg); 489 ImposeStackOrdering(Clone); 490 491 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 492 493 // Shrink the interval. 494 bool IsDead = MRI.use_empty(Reg); 495 if (!IsDead) { 496 LiveInterval &LI = LIS.getInterval(Reg); 497 ShrinkToUses(LI, LIS); 498 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 499 } 500 501 // If that was the last use of the original, delete the original. 502 if (IsDead) { 503 DEBUG(dbgs() << " - Deleting original\n"); 504 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 505 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 506 LIS.removeInterval(Reg); 507 LIS.RemoveMachineInstrFromMaps(Def); 508 Def.eraseFromParent(); 509 } 510 511 return Clone; 512 } 513 514 /// A multiple-use def in the same block with no intervening memory or register 515 /// dependencies; move the def down, nest it with the current instruction, and 516 /// insert a tee_local to satisfy the rest of the uses. As an illustration, 517 /// rewrite this: 518 /// 519 /// Reg = INST ... // Def 520 /// INST ..., Reg, ... // Insert 521 /// INST ..., Reg, ... 522 /// INST ..., Reg, ... 523 /// 524 /// to this: 525 /// 526 /// DefReg = INST ... // Def (to become the new Insert) 527 /// TeeReg, Reg = TEE_LOCAL_... DefReg 528 /// INST ..., TeeReg, ... // Insert 529 /// INST ..., Reg, ... 530 /// INST ..., Reg, ... 531 /// 532 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 533 /// resulting code. 534 static MachineInstr *MoveAndTeeForMultiUse( 535 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 536 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 537 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 538 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 539 540 // Move Def into place. 541 MBB.splice(Insert, &MBB, Def); 542 LIS.handleMove(*Def); 543 544 // Create the Tee and attach the registers. 545 const auto *RegClass = MRI.getRegClass(Reg); 546 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 547 unsigned DefReg = MRI.createVirtualRegister(RegClass); 548 MachineOperand &DefMO = Def->getOperand(0); 549 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 550 TII->get(GetTeeLocalOpcode(RegClass)), TeeReg) 551 .addReg(Reg, RegState::Define) 552 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 553 Op.setReg(TeeReg); 554 DefMO.setReg(DefReg); 555 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 556 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 557 558 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 559 LiveInterval &LI = LIS.getInterval(Reg); 560 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 561 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 562 I->start = TeeIdx; 563 ValNo->def = TeeIdx; 564 ShrinkToUses(LI, LIS); 565 566 // Finish stackifying the new regs. 567 LIS.createAndComputeVirtRegInterval(TeeReg); 568 LIS.createAndComputeVirtRegInterval(DefReg); 569 MFI.stackifyVReg(DefReg); 570 MFI.stackifyVReg(TeeReg); 571 ImposeStackOrdering(Def); 572 ImposeStackOrdering(Tee); 573 574 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 575 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 576 return Def; 577 } 578 579 namespace { 580 /// A stack for walking the tree of instructions being built, visiting the 581 /// MachineOperands in DFS order. 582 class TreeWalkerState { 583 typedef MachineInstr::mop_iterator mop_iterator; 584 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 585 typedef iterator_range<mop_reverse_iterator> RangeTy; 586 SmallVector<RangeTy, 4> Worklist; 587 588 public: 589 explicit TreeWalkerState(MachineInstr *Insert) { 590 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 591 if (Range.begin() != Range.end()) 592 Worklist.push_back(reverse(Range)); 593 } 594 595 bool Done() const { return Worklist.empty(); } 596 597 MachineOperand &Pop() { 598 RangeTy &Range = Worklist.back(); 599 MachineOperand &Op = *Range.begin(); 600 Range = drop_begin(Range, 1); 601 if (Range.begin() == Range.end()) 602 Worklist.pop_back(); 603 assert((Worklist.empty() || 604 Worklist.back().begin() != Worklist.back().end()) && 605 "Empty ranges shouldn't remain in the worklist"); 606 return Op; 607 } 608 609 /// Push Instr's operands onto the stack to be visited. 610 void PushOperands(MachineInstr *Instr) { 611 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 612 if (Range.begin() != Range.end()) 613 Worklist.push_back(reverse(Range)); 614 } 615 616 /// Some of Instr's operands are on the top of the stack; remove them and 617 /// re-insert them starting from the beginning (because we've commuted them). 618 void ResetTopOperands(MachineInstr *Instr) { 619 assert(HasRemainingOperands(Instr) && 620 "Reseting operands should only be done when the instruction has " 621 "an operand still on the stack"); 622 Worklist.back() = reverse(Instr->explicit_uses()); 623 } 624 625 /// Test whether Instr has operands remaining to be visited at the top of 626 /// the stack. 627 bool HasRemainingOperands(const MachineInstr *Instr) const { 628 if (Worklist.empty()) 629 return false; 630 const RangeTy &Range = Worklist.back(); 631 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 632 } 633 634 /// Test whether the given register is present on the stack, indicating an 635 /// operand in the tree that we haven't visited yet. Moving a definition of 636 /// Reg to a point in the tree after that would change its value. 637 /// 638 /// This is needed as a consequence of using implicit get_locals for 639 /// uses and implicit set_locals for defs. 640 bool IsOnStack(unsigned Reg) const { 641 for (const RangeTy &Range : Worklist) 642 for (const MachineOperand &MO : Range) 643 if (MO.isReg() && MO.getReg() == Reg) 644 return true; 645 return false; 646 } 647 }; 648 649 /// State to keep track of whether commuting is in flight or whether it's been 650 /// tried for the current instruction and didn't work. 651 class CommutingState { 652 /// There are effectively three states: the initial state where we haven't 653 /// started commuting anything and we don't know anything yet, the tenative 654 /// state where we've commuted the operands of the current instruction and are 655 /// revisting it, and the declined state where we've reverted the operands 656 /// back to their original order and will no longer commute it further. 657 bool TentativelyCommuting; 658 bool Declined; 659 660 /// During the tentative state, these hold the operand indices of the commuted 661 /// operands. 662 unsigned Operand0, Operand1; 663 664 public: 665 CommutingState() : TentativelyCommuting(false), Declined(false) {} 666 667 /// Stackification for an operand was not successful due to ordering 668 /// constraints. If possible, and if we haven't already tried it and declined 669 /// it, commute Insert's operands and prepare to revisit it. 670 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 671 const WebAssemblyInstrInfo *TII) { 672 if (TentativelyCommuting) { 673 assert(!Declined && 674 "Don't decline commuting until you've finished trying it"); 675 // Commuting didn't help. Revert it. 676 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 677 TentativelyCommuting = false; 678 Declined = true; 679 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 680 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 681 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 682 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 683 // Tentatively commute the operands and try again. 684 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 685 TreeWalker.ResetTopOperands(Insert); 686 TentativelyCommuting = true; 687 Declined = false; 688 } 689 } 690 } 691 692 /// Stackification for some operand was successful. Reset to the default 693 /// state. 694 void Reset() { 695 TentativelyCommuting = false; 696 Declined = false; 697 } 698 }; 699 } // end anonymous namespace 700 701 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 702 DEBUG(dbgs() << "********** Register Stackifying **********\n" 703 "********** Function: " 704 << MF.getName() << '\n'); 705 706 bool Changed = false; 707 MachineRegisterInfo &MRI = MF.getRegInfo(); 708 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 709 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 710 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 711 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 712 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 713 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 714 715 // Walk the instructions from the bottom up. Currently we don't look past 716 // block boundaries, and the blocks aren't ordered so the block visitation 717 // order isn't significant, but we may want to change this in the future. 718 for (MachineBasicBlock &MBB : MF) { 719 // Don't use a range-based for loop, because we modify the list as we're 720 // iterating over it and the end iterator may change. 721 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 722 MachineInstr *Insert = &*MII; 723 // Don't nest anything inside an inline asm, because we don't have 724 // constraints for $push inputs. 725 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 726 continue; 727 728 // Ignore debugging intrinsics. 729 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 730 continue; 731 732 // Iterate through the inputs in reverse order, since we'll be pulling 733 // operands off the stack in LIFO order. 734 CommutingState Commuting; 735 TreeWalkerState TreeWalker(Insert); 736 while (!TreeWalker.Done()) { 737 MachineOperand &Op = TreeWalker.Pop(); 738 739 // We're only interested in explicit virtual register operands. 740 if (!Op.isReg()) 741 continue; 742 743 unsigned Reg = Op.getReg(); 744 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 745 assert(!Op.isImplicit() && 746 "explicit_uses() should only iterate over explicit operands"); 747 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 748 continue; 749 750 // Identify the definition for this register at this point. 751 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 752 if (!Def) 753 continue; 754 755 // Don't nest an INLINE_ASM def into anything, because we don't have 756 // constraints for $pop outputs. 757 if (Def->getOpcode() == TargetOpcode::INLINEASM) 758 continue; 759 760 // Argument instructions represent live-in registers and not real 761 // instructions. 762 if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || 763 Def->getOpcode() == WebAssembly::ARGUMENT_I64 || 764 Def->getOpcode() == WebAssembly::ARGUMENT_F32 || 765 Def->getOpcode() == WebAssembly::ARGUMENT_F64 || 766 Def->getOpcode() == WebAssembly::ARGUMENT_v16i8 || 767 Def->getOpcode() == WebAssembly::ARGUMENT_v8i16 || 768 Def->getOpcode() == WebAssembly::ARGUMENT_v4i32 || 769 Def->getOpcode() == WebAssembly::ARGUMENT_v4f32) 770 continue; 771 772 // Decide which strategy to take. Prefer to move a single-use value 773 // over cloning it, and prefer cloning over introducing a tee_local. 774 // For moving, we require the def to be in the same block as the use; 775 // this makes things simpler (LiveIntervals' handleMove function only 776 // supports intra-block moves) and it's MachineSink's job to catch all 777 // the sinking opportunities anyway. 778 bool SameBlock = Def->getParent() == &MBB; 779 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 780 !TreeWalker.IsOnStack(Reg); 781 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 782 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 783 } else if (ShouldRematerialize(*Def, AA, TII)) { 784 Insert = 785 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 786 LIS, MFI, MRI, TII, TRI); 787 } else if (CanMove && 788 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 789 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 790 MRI, TII); 791 } else { 792 // We failed to stackify the operand. If the problem was ordering 793 // constraints, Commuting may be able to help. 794 if (!CanMove && SameBlock) 795 Commuting.MaybeCommute(Insert, TreeWalker, TII); 796 // Proceed to the next operand. 797 continue; 798 } 799 800 // We stackified an operand. Add the defining instruction's operands to 801 // the worklist stack now to continue to build an ever deeper tree. 802 Commuting.Reset(); 803 TreeWalker.PushOperands(Insert); 804 } 805 806 // If we stackified any operands, skip over the tree to start looking for 807 // the next instruction we can build a tree on. 808 if (Insert != &*MII) { 809 ImposeStackOrdering(&*MII); 810 MII = MachineBasicBlock::iterator(Insert).getReverse(); 811 Changed = true; 812 } 813 } 814 } 815 816 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 817 // that it never looks like a use-before-def. 818 if (Changed) { 819 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 820 for (MachineBasicBlock &MBB : MF) 821 MBB.addLiveIn(WebAssembly::VALUE_STACK); 822 } 823 824 #ifndef NDEBUG 825 // Verify that pushes and pops are performed in LIFO order. 826 SmallVector<unsigned, 0> Stack; 827 for (MachineBasicBlock &MBB : MF) { 828 for (MachineInstr &MI : MBB) { 829 if (MI.isDebugValue()) 830 continue; 831 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 832 if (!MO.isReg()) 833 continue; 834 unsigned Reg = MO.getReg(); 835 836 if (MFI.isVRegStackified(Reg)) { 837 if (MO.isDef()) 838 Stack.push_back(Reg); 839 else 840 assert(Stack.pop_back_val() == Reg && 841 "Register stack pop should be paired with a push"); 842 } 843 } 844 } 845 // TODO: Generalize this code to support keeping values on the stack across 846 // basic block boundaries. 847 assert(Stack.empty() && 848 "Register stack pushes and pops should be balanced"); 849 } 850 #endif 851 852 return Changed; 853 } 854