1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void ImposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF, 102 LiveIntervals &LIS) { 103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 104 105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 106 if (RegClass == &WebAssembly::I32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 108 MI->addOperand(MachineOperand::CreateImm(0)); 109 } else if (RegClass == &WebAssembly::I64RegClass) { 110 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 111 MI->addOperand(MachineOperand::CreateImm(0)); 112 } else if (RegClass == &WebAssembly::F32RegClass) { 113 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 114 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 115 Type::getFloatTy(MF.getFunction().getContext()))); 116 MI->addOperand(MachineOperand::CreateFPImm(Val)); 117 } else if (RegClass == &WebAssembly::F64RegClass) { 118 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 119 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 120 Type::getDoubleTy(MF.getFunction().getContext()))); 121 MI->addOperand(MachineOperand::CreateFPImm(Val)); 122 } else if (RegClass == &WebAssembly::V128RegClass) { 123 unsigned TempReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 124 MI->setDesc(TII->get(WebAssembly::SPLAT_v4i32)); 125 MI->addOperand(MachineOperand::CreateReg(TempReg, false)); 126 MachineInstr *Const = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 127 TII->get(WebAssembly::CONST_I32), TempReg) 128 .addImm(0); 129 LIS.InsertMachineInstrInMaps(*Const); 130 } else { 131 llvm_unreachable("Unexpected reg class"); 132 } 133 } 134 135 // Determine whether a call to the callee referenced by 136 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 137 // effects. 138 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 139 bool &Write, bool &Effects, bool &StackPointer) { 140 // All calls can use the stack pointer. 141 StackPointer = true; 142 143 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 144 if (MO.isGlobal()) { 145 const Constant *GV = MO.getGlobal(); 146 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 147 if (!GA->isInterposable()) 148 GV = GA->getAliasee(); 149 150 if (const Function *F = dyn_cast<Function>(GV)) { 151 if (!F->doesNotThrow()) 152 Effects = true; 153 if (F->doesNotAccessMemory()) 154 return; 155 if (F->onlyReadsMemory()) { 156 Read = true; 157 return; 158 } 159 } 160 } 161 162 // Assume the worst. 163 Write = true; 164 Read = true; 165 Effects = true; 166 } 167 168 // Determine whether MI reads memory, writes memory, has side effects, 169 // and/or uses the stack pointer value. 170 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 171 bool &Write, bool &Effects, bool &StackPointer) { 172 assert(!MI.isTerminator()); 173 174 if (MI.isDebugInstr() || MI.isPosition()) 175 return; 176 177 // Check for loads. 178 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 179 Read = true; 180 181 // Check for stores. 182 if (MI.mayStore()) { 183 Write = true; 184 185 // Check for stores to __stack_pointer. 186 for (auto MMO : MI.memoperands()) { 187 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 188 if (MPI.V.is<const PseudoSourceValue *>()) { 189 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 190 if (const ExternalSymbolPseudoSourceValue *EPSV = 191 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 192 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { 193 StackPointer = true; 194 } 195 } 196 } 197 } else if (MI.hasOrderedMemoryRef()) { 198 switch (MI.getOpcode()) { 199 case WebAssembly::DIV_S_I32: 200 case WebAssembly::DIV_S_I64: 201 case WebAssembly::REM_S_I32: 202 case WebAssembly::REM_S_I64: 203 case WebAssembly::DIV_U_I32: 204 case WebAssembly::DIV_U_I64: 205 case WebAssembly::REM_U_I32: 206 case WebAssembly::REM_U_I64: 207 case WebAssembly::I32_TRUNC_S_F32: 208 case WebAssembly::I64_TRUNC_S_F32: 209 case WebAssembly::I32_TRUNC_S_F64: 210 case WebAssembly::I64_TRUNC_S_F64: 211 case WebAssembly::I32_TRUNC_U_F32: 212 case WebAssembly::I64_TRUNC_U_F32: 213 case WebAssembly::I32_TRUNC_U_F64: 214 case WebAssembly::I64_TRUNC_U_F64: 215 // These instruction have hasUnmodeledSideEffects() returning true 216 // because they trap on overflow and invalid so they can't be arbitrarily 217 // moved, however hasOrderedMemoryRef() interprets this plus their lack 218 // of memoperands as having a potential unknown memory reference. 219 break; 220 default: 221 // Record volatile accesses, unless it's a call, as calls are handled 222 // specially below. 223 if (!MI.isCall()) { 224 Write = true; 225 Effects = true; 226 } 227 break; 228 } 229 } 230 231 // Check for side effects. 232 if (MI.hasUnmodeledSideEffects()) { 233 switch (MI.getOpcode()) { 234 case WebAssembly::DIV_S_I32: 235 case WebAssembly::DIV_S_I64: 236 case WebAssembly::REM_S_I32: 237 case WebAssembly::REM_S_I64: 238 case WebAssembly::DIV_U_I32: 239 case WebAssembly::DIV_U_I64: 240 case WebAssembly::REM_U_I32: 241 case WebAssembly::REM_U_I64: 242 case WebAssembly::I32_TRUNC_S_F32: 243 case WebAssembly::I64_TRUNC_S_F32: 244 case WebAssembly::I32_TRUNC_S_F64: 245 case WebAssembly::I64_TRUNC_S_F64: 246 case WebAssembly::I32_TRUNC_U_F32: 247 case WebAssembly::I64_TRUNC_U_F32: 248 case WebAssembly::I32_TRUNC_U_F64: 249 case WebAssembly::I64_TRUNC_U_F64: 250 // These instructions have hasUnmodeledSideEffects() returning true 251 // because they trap on overflow and invalid so they can't be arbitrarily 252 // moved, however in the specific case of register stackifying, it is safe 253 // to move them because overflow and invalid are Undefined Behavior. 254 break; 255 default: 256 Effects = true; 257 break; 258 } 259 } 260 261 // Analyze calls. 262 if (MI.isCall()) { 263 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); 264 QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 265 } 266 } 267 268 // Test whether Def is safe and profitable to rematerialize. 269 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 270 const WebAssemblyInstrInfo *TII) { 271 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 272 } 273 274 // Identify the definition for this register at this point. This is a 275 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 276 // LiveIntervals to handle complex cases. 277 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 278 const MachineRegisterInfo &MRI, 279 const LiveIntervals &LIS) { 280 // Most registers are in SSA form here so we try a quick MRI query first. 281 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 282 return Def; 283 284 // MRI doesn't know what the Def is. Try asking LIS. 285 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 286 LIS.getInstructionIndex(*Insert))) 287 return LIS.getInstructionFromIndex(ValNo->def); 288 289 return nullptr; 290 } 291 292 // Test whether Reg, as defined at Def, has exactly one use. This is a 293 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 294 // to handle complex cases. 295 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 296 MachineDominatorTree &MDT, LiveIntervals &LIS) { 297 // Most registers are in SSA form here so we try a quick MRI query first. 298 if (MRI.hasOneUse(Reg)) 299 return true; 300 301 bool HasOne = false; 302 const LiveInterval &LI = LIS.getInterval(Reg); 303 const VNInfo *DefVNI = 304 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 305 assert(DefVNI); 306 for (auto &I : MRI.use_nodbg_operands(Reg)) { 307 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 308 if (Result.valueIn() == DefVNI) { 309 if (!Result.isKill()) 310 return false; 311 if (HasOne) 312 return false; 313 HasOne = true; 314 } 315 } 316 return HasOne; 317 } 318 319 // Test whether it's safe to move Def to just before Insert. 320 // TODO: Compute memory dependencies in a way that doesn't require always 321 // walking the block. 322 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 323 // more precise. 324 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 325 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 326 assert(Def->getParent() == Insert->getParent()); 327 328 // Check for register dependencies. 329 SmallVector<unsigned, 4> MutableRegisters; 330 for (const MachineOperand &MO : Def->operands()) { 331 if (!MO.isReg() || MO.isUndef()) 332 continue; 333 unsigned Reg = MO.getReg(); 334 335 // If the register is dead here and at Insert, ignore it. 336 if (MO.isDead() && Insert->definesRegister(Reg) && 337 !Insert->readsRegister(Reg)) 338 continue; 339 340 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 341 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 342 // from moving down, and we've already checked for that. 343 if (Reg == WebAssembly::ARGUMENTS) 344 continue; 345 // If the physical register is never modified, ignore it. 346 if (!MRI.isPhysRegModified(Reg)) 347 continue; 348 // Otherwise, it's a physical register with unknown liveness. 349 return false; 350 } 351 352 // If one of the operands isn't in SSA form, it has different values at 353 // different times, and we need to make sure we don't move our use across 354 // a different def. 355 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 356 MutableRegisters.push_back(Reg); 357 } 358 359 bool Read = false, Write = false, Effects = false, StackPointer = false; 360 Query(*Def, AA, Read, Write, Effects, StackPointer); 361 362 // If the instruction does not access memory and has no side effects, it has 363 // no additional dependencies. 364 bool HasMutableRegisters = !MutableRegisters.empty(); 365 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 366 return true; 367 368 // Scan through the intervening instructions between Def and Insert. 369 MachineBasicBlock::const_iterator D(Def), I(Insert); 370 for (--I; I != D; --I) { 371 bool InterveningRead = false; 372 bool InterveningWrite = false; 373 bool InterveningEffects = false; 374 bool InterveningStackPointer = false; 375 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 376 InterveningStackPointer); 377 if (Effects && InterveningEffects) 378 return false; 379 if (Read && InterveningWrite) 380 return false; 381 if (Write && (InterveningRead || InterveningWrite)) 382 return false; 383 if (StackPointer && InterveningStackPointer) 384 return false; 385 386 for (unsigned Reg : MutableRegisters) 387 for (const MachineOperand &MO : I->operands()) 388 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 389 return false; 390 } 391 392 return true; 393 } 394 395 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 396 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 397 const MachineBasicBlock &MBB, 398 const MachineRegisterInfo &MRI, 399 const MachineDominatorTree &MDT, 400 LiveIntervals &LIS, 401 WebAssemblyFunctionInfo &MFI) { 402 const LiveInterval &LI = LIS.getInterval(Reg); 403 404 const MachineInstr *OneUseInst = OneUse.getParent(); 405 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 406 407 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 408 if (&Use == &OneUse) 409 continue; 410 411 const MachineInstr *UseInst = Use.getParent(); 412 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 413 414 if (UseVNI != OneUseVNI) 415 continue; 416 417 if (UseInst == OneUseInst) { 418 // Another use in the same instruction. We need to ensure that the one 419 // selected use happens "before" it. 420 if (&OneUse > &Use) 421 return false; 422 } else { 423 // Test that the use is dominated by the one selected use. 424 while (!MDT.dominates(OneUseInst, UseInst)) { 425 // Actually, dominating is over-conservative. Test that the use would 426 // happen after the one selected use in the stack evaluation order. 427 // 428 // This is needed as a consequence of using implicit get_locals for 429 // uses and implicit set_locals for defs. 430 if (UseInst->getDesc().getNumDefs() == 0) 431 return false; 432 const MachineOperand &MO = UseInst->getOperand(0); 433 if (!MO.isReg()) 434 return false; 435 unsigned DefReg = MO.getReg(); 436 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 437 !MFI.isVRegStackified(DefReg)) 438 return false; 439 assert(MRI.hasOneNonDBGUse(DefReg)); 440 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 441 const MachineInstr *NewUseInst = NewUse.getParent(); 442 if (NewUseInst == OneUseInst) { 443 if (&OneUse > &NewUse) 444 return false; 445 break; 446 } 447 UseInst = NewUseInst; 448 } 449 } 450 } 451 return true; 452 } 453 454 /// Get the appropriate tee opcode for the given register class. 455 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 456 if (RC == &WebAssembly::I32RegClass) 457 return WebAssembly::TEE_I32; 458 if (RC == &WebAssembly::I64RegClass) 459 return WebAssembly::TEE_I64; 460 if (RC == &WebAssembly::F32RegClass) 461 return WebAssembly::TEE_F32; 462 if (RC == &WebAssembly::F64RegClass) 463 return WebAssembly::TEE_F64; 464 if (RC == &WebAssembly::V128RegClass) 465 return WebAssembly::TEE_V128; 466 llvm_unreachable("Unexpected register class"); 467 } 468 469 // Shrink LI to its uses, cleaning up LI. 470 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 471 if (LIS.shrinkToUses(&LI)) { 472 SmallVector<LiveInterval *, 4> SplitLIs; 473 LIS.splitSeparateComponents(LI, SplitLIs); 474 } 475 } 476 477 static void MoveDebugValues(unsigned Reg, MachineInstr *Insert, 478 MachineBasicBlock &MBB, MachineRegisterInfo &MRI) { 479 for (auto &Op : MRI.reg_operands(Reg)) { 480 MachineInstr *MI = Op.getParent(); 481 assert(MI != nullptr); 482 if (MI->isDebugValue() && MI->getParent() == &MBB) 483 MBB.splice(Insert, &MBB, MI); 484 } 485 } 486 487 static void UpdateDebugValuesReg(unsigned Reg, unsigned NewReg, 488 MachineBasicBlock &MBB, 489 MachineRegisterInfo &MRI) { 490 for (auto &Op : MRI.reg_operands(Reg)) { 491 MachineInstr *MI = Op.getParent(); 492 assert(MI != nullptr); 493 if (MI->isDebugValue() && MI->getParent() == &MBB) 494 Op.setReg(NewReg); 495 } 496 } 497 498 /// A single-use def in the same block with no intervening memory or register 499 /// dependencies; move the def down and nest it with the current instruction. 500 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, 501 MachineInstr *Def, MachineBasicBlock &MBB, 502 MachineInstr *Insert, LiveIntervals &LIS, 503 WebAssemblyFunctionInfo &MFI, 504 MachineRegisterInfo &MRI) { 505 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 506 507 MBB.splice(Insert, &MBB, Def); 508 MoveDebugValues(Reg, Insert, MBB, MRI); 509 LIS.handleMove(*Def); 510 511 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 512 // No one else is using this register for anything so we can just stackify 513 // it in place. 514 MFI.stackifyVReg(Reg); 515 } else { 516 // The register may have unrelated uses or defs; create a new register for 517 // just our one def and use so that we can stackify it. 518 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 519 Def->getOperand(0).setReg(NewReg); 520 Op.setReg(NewReg); 521 522 // Tell LiveIntervals about the new register. 523 LIS.createAndComputeVirtRegInterval(NewReg); 524 525 // Tell LiveIntervals about the changes to the old register. 526 LiveInterval &LI = LIS.getInterval(Reg); 527 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 528 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 529 /*RemoveDeadValNo=*/true); 530 531 MFI.stackifyVReg(NewReg); 532 533 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 534 535 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 536 } 537 538 ImposeStackOrdering(Def); 539 return Def; 540 } 541 542 static void CloneDebugValues(unsigned Reg, MachineInstr *Insert, 543 unsigned TargetReg, MachineBasicBlock &MBB, 544 MachineRegisterInfo &MRI, 545 const WebAssemblyInstrInfo *TII) { 546 SmallPtrSet<MachineInstr *, 4> Instrs; 547 for (auto &Op : MRI.reg_operands(Reg)) { 548 MachineInstr *MI = Op.getParent(); 549 assert(MI != nullptr); 550 if (MI->isDebugValue() && MI->getParent() == &MBB && 551 Instrs.find(MI) == Instrs.end()) 552 Instrs.insert(MI); 553 } 554 for (const auto &MI : Instrs) { 555 MachineInstr &Clone = TII->duplicate(MBB, Insert, *MI); 556 for (unsigned i = 0, e = Clone.getNumOperands(); i != e; ++i) { 557 MachineOperand &MO = Clone.getOperand(i); 558 if (MO.isReg() && MO.getReg() == Reg) 559 MO.setReg(TargetReg); 560 } 561 LLVM_DEBUG(dbgs() << " - - Cloned DBG_VALUE: "; Clone.dump()); 562 } 563 } 564 565 /// A trivially cloneable instruction; clone it and nest the new copy with the 566 /// current instruction. 567 static MachineInstr *RematerializeCheapDef( 568 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 569 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 570 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 571 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 572 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 573 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 574 575 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 576 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 577 Op.setReg(NewReg); 578 MachineInstr *Clone = &*std::prev(Insert); 579 LIS.InsertMachineInstrInMaps(*Clone); 580 LIS.createAndComputeVirtRegInterval(NewReg); 581 MFI.stackifyVReg(NewReg); 582 ImposeStackOrdering(Clone); 583 584 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 585 586 // Shrink the interval. 587 bool IsDead = MRI.use_empty(Reg); 588 if (!IsDead) { 589 LiveInterval &LI = LIS.getInterval(Reg); 590 ShrinkToUses(LI, LIS); 591 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 592 } 593 594 // If that was the last use of the original, delete the original. 595 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 596 if (IsDead) { 597 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 598 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 599 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 600 LIS.removeInterval(Reg); 601 LIS.RemoveMachineInstrFromMaps(Def); 602 Def.eraseFromParent(); 603 604 MoveDebugValues(Reg, &*Insert, MBB, MRI); 605 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 606 } else { 607 CloneDebugValues(Reg, &*Insert, NewReg, MBB, MRI, TII); 608 } 609 610 return Clone; 611 } 612 613 /// A multiple-use def in the same block with no intervening memory or register 614 /// dependencies; move the def down, nest it with the current instruction, and 615 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 616 /// this: 617 /// 618 /// Reg = INST ... // Def 619 /// INST ..., Reg, ... // Insert 620 /// INST ..., Reg, ... 621 /// INST ..., Reg, ... 622 /// 623 /// to this: 624 /// 625 /// DefReg = INST ... // Def (to become the new Insert) 626 /// TeeReg, Reg = TEE_... DefReg 627 /// INST ..., TeeReg, ... // Insert 628 /// INST ..., Reg, ... 629 /// INST ..., Reg, ... 630 /// 631 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 632 /// resulting code. 633 static MachineInstr *MoveAndTeeForMultiUse( 634 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 635 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 636 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 637 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 638 639 // Move Def into place. 640 MBB.splice(Insert, &MBB, Def); 641 LIS.handleMove(*Def); 642 643 // Create the Tee and attach the registers. 644 const auto *RegClass = MRI.getRegClass(Reg); 645 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 646 unsigned DefReg = MRI.createVirtualRegister(RegClass); 647 MachineOperand &DefMO = Def->getOperand(0); 648 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 649 TII->get(GetTeeOpcode(RegClass)), TeeReg) 650 .addReg(Reg, RegState::Define) 651 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 652 Op.setReg(TeeReg); 653 DefMO.setReg(DefReg); 654 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 655 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 656 657 MoveDebugValues(Reg, Insert, MBB, MRI); 658 659 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 660 LiveInterval &LI = LIS.getInterval(Reg); 661 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 662 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 663 I->start = TeeIdx; 664 ValNo->def = TeeIdx; 665 ShrinkToUses(LI, LIS); 666 667 // Finish stackifying the new regs. 668 LIS.createAndComputeVirtRegInterval(TeeReg); 669 LIS.createAndComputeVirtRegInterval(DefReg); 670 MFI.stackifyVReg(DefReg); 671 MFI.stackifyVReg(TeeReg); 672 ImposeStackOrdering(Def); 673 ImposeStackOrdering(Tee); 674 675 CloneDebugValues(Reg, Tee, DefReg, MBB, MRI, TII); 676 CloneDebugValues(Reg, Insert, TeeReg, MBB, MRI, TII); 677 678 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 679 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 680 return Def; 681 } 682 683 namespace { 684 /// A stack for walking the tree of instructions being built, visiting the 685 /// MachineOperands in DFS order. 686 class TreeWalkerState { 687 typedef MachineInstr::mop_iterator mop_iterator; 688 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 689 typedef iterator_range<mop_reverse_iterator> RangeTy; 690 SmallVector<RangeTy, 4> Worklist; 691 692 public: 693 explicit TreeWalkerState(MachineInstr *Insert) { 694 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 695 if (Range.begin() != Range.end()) 696 Worklist.push_back(reverse(Range)); 697 } 698 699 bool Done() const { return Worklist.empty(); } 700 701 MachineOperand &Pop() { 702 RangeTy &Range = Worklist.back(); 703 MachineOperand &Op = *Range.begin(); 704 Range = drop_begin(Range, 1); 705 if (Range.begin() == Range.end()) 706 Worklist.pop_back(); 707 assert((Worklist.empty() || 708 Worklist.back().begin() != Worklist.back().end()) && 709 "Empty ranges shouldn't remain in the worklist"); 710 return Op; 711 } 712 713 /// Push Instr's operands onto the stack to be visited. 714 void PushOperands(MachineInstr *Instr) { 715 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 716 if (Range.begin() != Range.end()) 717 Worklist.push_back(reverse(Range)); 718 } 719 720 /// Some of Instr's operands are on the top of the stack; remove them and 721 /// re-insert them starting from the beginning (because we've commuted them). 722 void ResetTopOperands(MachineInstr *Instr) { 723 assert(HasRemainingOperands(Instr) && 724 "Reseting operands should only be done when the instruction has " 725 "an operand still on the stack"); 726 Worklist.back() = reverse(Instr->explicit_uses()); 727 } 728 729 /// Test whether Instr has operands remaining to be visited at the top of 730 /// the stack. 731 bool HasRemainingOperands(const MachineInstr *Instr) const { 732 if (Worklist.empty()) 733 return false; 734 const RangeTy &Range = Worklist.back(); 735 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 736 } 737 738 /// Test whether the given register is present on the stack, indicating an 739 /// operand in the tree that we haven't visited yet. Moving a definition of 740 /// Reg to a point in the tree after that would change its value. 741 /// 742 /// This is needed as a consequence of using implicit get_locals for 743 /// uses and implicit set_locals for defs. 744 bool IsOnStack(unsigned Reg) const { 745 for (const RangeTy &Range : Worklist) 746 for (const MachineOperand &MO : Range) 747 if (MO.isReg() && MO.getReg() == Reg) 748 return true; 749 return false; 750 } 751 }; 752 753 /// State to keep track of whether commuting is in flight or whether it's been 754 /// tried for the current instruction and didn't work. 755 class CommutingState { 756 /// There are effectively three states: the initial state where we haven't 757 /// started commuting anything and we don't know anything yet, the tentative 758 /// state where we've commuted the operands of the current instruction and are 759 /// revisiting it, and the declined state where we've reverted the operands 760 /// back to their original order and will no longer commute it further. 761 bool TentativelyCommuting; 762 bool Declined; 763 764 /// During the tentative state, these hold the operand indices of the commuted 765 /// operands. 766 unsigned Operand0, Operand1; 767 768 public: 769 CommutingState() : TentativelyCommuting(false), Declined(false) {} 770 771 /// Stackification for an operand was not successful due to ordering 772 /// constraints. If possible, and if we haven't already tried it and declined 773 /// it, commute Insert's operands and prepare to revisit it. 774 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 775 const WebAssemblyInstrInfo *TII) { 776 if (TentativelyCommuting) { 777 assert(!Declined && 778 "Don't decline commuting until you've finished trying it"); 779 // Commuting didn't help. Revert it. 780 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 781 TentativelyCommuting = false; 782 Declined = true; 783 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 784 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 785 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 786 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 787 // Tentatively commute the operands and try again. 788 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 789 TreeWalker.ResetTopOperands(Insert); 790 TentativelyCommuting = true; 791 Declined = false; 792 } 793 } 794 } 795 796 /// Stackification for some operand was successful. Reset to the default 797 /// state. 798 void Reset() { 799 TentativelyCommuting = false; 800 Declined = false; 801 } 802 }; 803 } // end anonymous namespace 804 805 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 806 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 807 "********** Function: " 808 << MF.getName() << '\n'); 809 810 bool Changed = false; 811 MachineRegisterInfo &MRI = MF.getRegInfo(); 812 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 813 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 814 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 815 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 816 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 817 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 818 819 // Walk the instructions from the bottom up. Currently we don't look past 820 // block boundaries, and the blocks aren't ordered so the block visitation 821 // order isn't significant, but we may want to change this in the future. 822 for (MachineBasicBlock &MBB : MF) { 823 // Don't use a range-based for loop, because we modify the list as we're 824 // iterating over it and the end iterator may change. 825 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 826 MachineInstr *Insert = &*MII; 827 // Don't nest anything inside an inline asm, because we don't have 828 // constraints for $push inputs. 829 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 830 continue; 831 832 // Ignore debugging intrinsics. 833 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 834 continue; 835 836 // Iterate through the inputs in reverse order, since we'll be pulling 837 // operands off the stack in LIFO order. 838 CommutingState Commuting; 839 TreeWalkerState TreeWalker(Insert); 840 while (!TreeWalker.Done()) { 841 MachineOperand &Op = TreeWalker.Pop(); 842 843 // We're only interested in explicit virtual register operands. 844 if (!Op.isReg()) 845 continue; 846 847 unsigned Reg = Op.getReg(); 848 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 849 assert(!Op.isImplicit() && 850 "explicit_uses() should only iterate over explicit operands"); 851 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 852 continue; 853 854 // Identify the definition for this register at this point. 855 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 856 if (!Def) 857 continue; 858 859 // Don't nest an INLINE_ASM def into anything, because we don't have 860 // constraints for $pop outputs. 861 if (Def->getOpcode() == TargetOpcode::INLINEASM) 862 continue; 863 864 // Argument instructions represent live-in registers and not real 865 // instructions. 866 if (WebAssembly::isArgument(*Def)) 867 continue; 868 869 // Decide which strategy to take. Prefer to move a single-use value 870 // over cloning it, and prefer cloning over introducing a tee. 871 // For moving, we require the def to be in the same block as the use; 872 // this makes things simpler (LiveIntervals' handleMove function only 873 // supports intra-block moves) and it's MachineSink's job to catch all 874 // the sinking opportunities anyway. 875 bool SameBlock = Def->getParent() == &MBB; 876 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 877 !TreeWalker.IsOnStack(Reg); 878 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 879 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 880 } else if (ShouldRematerialize(*Def, AA, TII)) { 881 Insert = 882 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 883 LIS, MFI, MRI, TII, TRI); 884 } else if (CanMove && 885 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 886 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 887 MRI, TII); 888 } else { 889 // We failed to stackify the operand. If the problem was ordering 890 // constraints, Commuting may be able to help. 891 if (!CanMove && SameBlock) 892 Commuting.MaybeCommute(Insert, TreeWalker, TII); 893 // Proceed to the next operand. 894 continue; 895 } 896 897 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 898 // to a constant 0 so that the def is explicit, and the push/pop 899 // correspondence is maintained. 900 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 901 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS); 902 903 // We stackified an operand. Add the defining instruction's operands to 904 // the worklist stack now to continue to build an ever deeper tree. 905 Commuting.Reset(); 906 TreeWalker.PushOperands(Insert); 907 } 908 909 // If we stackified any operands, skip over the tree to start looking for 910 // the next instruction we can build a tree on. 911 if (Insert != &*MII) { 912 ImposeStackOrdering(&*MII); 913 MII = MachineBasicBlock::iterator(Insert).getReverse(); 914 Changed = true; 915 } 916 } 917 } 918 919 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 920 // that it never looks like a use-before-def. 921 if (Changed) { 922 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 923 for (MachineBasicBlock &MBB : MF) 924 MBB.addLiveIn(WebAssembly::VALUE_STACK); 925 } 926 927 #ifndef NDEBUG 928 // Verify that pushes and pops are performed in LIFO order. 929 SmallVector<unsigned, 0> Stack; 930 for (MachineBasicBlock &MBB : MF) { 931 for (MachineInstr &MI : MBB) { 932 if (MI.isDebugInstr()) 933 continue; 934 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 935 if (!MO.isReg()) 936 continue; 937 unsigned Reg = MO.getReg(); 938 939 if (MFI.isVRegStackified(Reg)) { 940 if (MO.isDef()) 941 Stack.push_back(Reg); 942 else 943 assert(Stack.pop_back_val() == Reg && 944 "Register stack pop should be paired with a push"); 945 } 946 } 947 } 948 // TODO: Generalize this code to support keeping values on the stack across 949 // basic block boundaries. 950 assert(Stack.empty() && 951 "Register stack pushes and pops should be balanced"); 952 } 953 #endif 954 955 return Changed; 956 } 957