1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "wasm-reg-stackify" 40 41 namespace { 42 class WebAssemblyRegStackify final : public MachineFunctionPass { 43 StringRef getPassName() const override { 44 return "WebAssembly Register Stackify"; 45 } 46 47 void getAnalysisUsage(AnalysisUsage &AU) const override { 48 AU.setPreservesCFG(); 49 AU.addRequired<AAResultsWrapperPass>(); 50 AU.addRequired<MachineDominatorTree>(); 51 AU.addRequired<LiveIntervals>(); 52 AU.addPreserved<MachineBlockFrequencyInfo>(); 53 AU.addPreserved<SlotIndexes>(); 54 AU.addPreserved<LiveIntervals>(); 55 AU.addPreservedID(LiveVariablesID); 56 AU.addPreserved<MachineDominatorTree>(); 57 MachineFunctionPass::getAnalysisUsage(AU); 58 } 59 60 bool runOnMachineFunction(MachineFunction &MF) override; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 65 }; 66 } // end anonymous namespace 67 68 char WebAssemblyRegStackify::ID = 0; 69 FunctionPass *llvm::createWebAssemblyRegStackify() { 70 return new WebAssemblyRegStackify(); 71 } 72 73 // Decorate the given instruction with implicit operands that enforce the 74 // expression stack ordering constraints for an instruction which is on 75 // the expression stack. 76 static void ImposeStackOrdering(MachineInstr *MI) { 77 // Write the opaque VALUE_STACK register. 78 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 79 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 80 /*isDef=*/true, 81 /*isImp=*/true)); 82 83 // Also read the opaque VALUE_STACK register. 84 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/false, 87 /*isImp=*/true)); 88 } 89 90 // Convert an IMPLICIT_DEF instruction into an instruction which defines 91 // a constant zero value. 92 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 93 MachineRegisterInfo &MRI, 94 const TargetInstrInfo *TII, 95 MachineFunction &MF) { 96 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 97 98 const auto *RegClass = 99 MRI.getRegClass(MI->getOperand(0).getReg()); 100 if (RegClass == &WebAssembly::I32RegClass) { 101 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 102 MI->addOperand(MachineOperand::CreateImm(0)); 103 } else if (RegClass == &WebAssembly::I64RegClass) { 104 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 105 MI->addOperand(MachineOperand::CreateImm(0)); 106 } else if (RegClass == &WebAssembly::F32RegClass) { 107 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 108 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 109 Type::getFloatTy(MF.getFunction()->getContext()))); 110 MI->addOperand(MachineOperand::CreateFPImm(Val)); 111 } else if (RegClass == &WebAssembly::F64RegClass) { 112 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 113 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 114 Type::getDoubleTy(MF.getFunction()->getContext()))); 115 MI->addOperand(MachineOperand::CreateFPImm(Val)); 116 } else { 117 llvm_unreachable("Unexpected reg class"); 118 } 119 } 120 121 // Determine whether a call to the callee referenced by 122 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 123 // effects. 124 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 125 bool &Write, bool &Effects, bool &StackPointer) { 126 // All calls can use the stack pointer. 127 StackPointer = true; 128 129 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 130 if (MO.isGlobal()) { 131 const Constant *GV = MO.getGlobal(); 132 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 133 if (!GA->isInterposable()) 134 GV = GA->getAliasee(); 135 136 if (const Function *F = dyn_cast<Function>(GV)) { 137 if (!F->doesNotThrow()) 138 Effects = true; 139 if (F->doesNotAccessMemory()) 140 return; 141 if (F->onlyReadsMemory()) { 142 Read = true; 143 return; 144 } 145 } 146 } 147 148 // Assume the worst. 149 Write = true; 150 Read = true; 151 Effects = true; 152 } 153 154 // Determine whether MI reads memory, writes memory, has side effects, 155 // and/or uses the __stack_pointer value. 156 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 157 bool &Write, bool &Effects, bool &StackPointer) { 158 assert(!MI.isPosition()); 159 assert(!MI.isTerminator()); 160 161 if (MI.isDebugValue()) 162 return; 163 164 // Check for loads. 165 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 166 Read = true; 167 168 // Check for stores. 169 if (MI.mayStore()) { 170 Write = true; 171 172 // Check for stores to __stack_pointer. 173 for (auto MMO : MI.memoperands()) { 174 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 175 if (MPI.V.is<const PseudoSourceValue *>()) { 176 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 177 if (const ExternalSymbolPseudoSourceValue *EPSV = 178 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 179 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") 180 StackPointer = true; 181 } 182 } 183 } else if (MI.hasOrderedMemoryRef()) { 184 switch (MI.getOpcode()) { 185 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 186 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 187 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 188 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 189 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 190 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 191 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 192 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 193 // These instruction have hasUnmodeledSideEffects() returning true 194 // because they trap on overflow and invalid so they can't be arbitrarily 195 // moved, however hasOrderedMemoryRef() interprets this plus their lack 196 // of memoperands as having a potential unknown memory reference. 197 break; 198 default: 199 // Record volatile accesses, unless it's a call, as calls are handled 200 // specially below. 201 if (!MI.isCall()) { 202 Write = true; 203 Effects = true; 204 } 205 break; 206 } 207 } 208 209 // Check for side effects. 210 if (MI.hasUnmodeledSideEffects()) { 211 switch (MI.getOpcode()) { 212 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 213 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 214 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 215 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 216 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 217 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 218 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 219 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 220 // These instructions have hasUnmodeledSideEffects() returning true 221 // because they trap on overflow and invalid so they can't be arbitrarily 222 // moved, however in the specific case of register stackifying, it is safe 223 // to move them because overflow and invalid are Undefined Behavior. 224 break; 225 default: 226 Effects = true; 227 break; 228 } 229 } 230 231 // Analyze calls. 232 if (MI.isCall()) { 233 switch (MI.getOpcode()) { 234 case WebAssembly::CALL_VOID: 235 case WebAssembly::CALL_INDIRECT_VOID: 236 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 237 break; 238 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 239 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 240 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 241 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 242 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 243 break; 244 default: 245 llvm_unreachable("unexpected call opcode"); 246 } 247 } 248 } 249 250 // Test whether Def is safe and profitable to rematerialize. 251 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 252 const WebAssemblyInstrInfo *TII) { 253 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 254 } 255 256 // Identify the definition for this register at this point. This is a 257 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 258 // LiveIntervals to handle complex cases. 259 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 260 const MachineRegisterInfo &MRI, 261 const LiveIntervals &LIS) 262 { 263 // Most registers are in SSA form here so we try a quick MRI query first. 264 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 265 return Def; 266 267 // MRI doesn't know what the Def is. Try asking LIS. 268 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 269 LIS.getInstructionIndex(*Insert))) 270 return LIS.getInstructionFromIndex(ValNo->def); 271 272 return nullptr; 273 } 274 275 // Test whether Reg, as defined at Def, has exactly one use. This is a 276 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 277 // to handle complex cases. 278 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 279 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 280 LiveIntervals &LIS) { 281 // Most registers are in SSA form here so we try a quick MRI query first. 282 if (MRI.hasOneUse(Reg)) 283 return true; 284 285 bool HasOne = false; 286 const LiveInterval &LI = LIS.getInterval(Reg); 287 const VNInfo *DefVNI = LI.getVNInfoAt( 288 LIS.getInstructionIndex(*Def).getRegSlot()); 289 assert(DefVNI); 290 for (auto &I : MRI.use_nodbg_operands(Reg)) { 291 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 292 if (Result.valueIn() == DefVNI) { 293 if (!Result.isKill()) 294 return false; 295 if (HasOne) 296 return false; 297 HasOne = true; 298 } 299 } 300 return HasOne; 301 } 302 303 // Test whether it's safe to move Def to just before Insert. 304 // TODO: Compute memory dependencies in a way that doesn't require always 305 // walking the block. 306 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 307 // more precise. 308 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 309 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 310 assert(Def->getParent() == Insert->getParent()); 311 312 // Check for register dependencies. 313 SmallVector<unsigned, 4> MutableRegisters; 314 for (const MachineOperand &MO : Def->operands()) { 315 if (!MO.isReg() || MO.isUndef()) 316 continue; 317 unsigned Reg = MO.getReg(); 318 319 // If the register is dead here and at Insert, ignore it. 320 if (MO.isDead() && Insert->definesRegister(Reg) && 321 !Insert->readsRegister(Reg)) 322 continue; 323 324 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 325 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 326 // from moving down, and we've already checked for that. 327 if (Reg == WebAssembly::ARGUMENTS) 328 continue; 329 // If the physical register is never modified, ignore it. 330 if (!MRI.isPhysRegModified(Reg)) 331 continue; 332 // Otherwise, it's a physical register with unknown liveness. 333 return false; 334 } 335 336 // If one of the operands isn't in SSA form, it has different values at 337 // different times, and we need to make sure we don't move our use across 338 // a different def. 339 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 340 MutableRegisters.push_back(Reg); 341 } 342 343 bool Read = false, Write = false, Effects = false, StackPointer = false; 344 Query(*Def, AA, Read, Write, Effects, StackPointer); 345 346 // If the instruction does not access memory and has no side effects, it has 347 // no additional dependencies. 348 bool HasMutableRegisters = !MutableRegisters.empty(); 349 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 350 return true; 351 352 // Scan through the intervening instructions between Def and Insert. 353 MachineBasicBlock::const_iterator D(Def), I(Insert); 354 for (--I; I != D; --I) { 355 bool InterveningRead = false; 356 bool InterveningWrite = false; 357 bool InterveningEffects = false; 358 bool InterveningStackPointer = false; 359 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 360 InterveningStackPointer); 361 if (Effects && InterveningEffects) 362 return false; 363 if (Read && InterveningWrite) 364 return false; 365 if (Write && (InterveningRead || InterveningWrite)) 366 return false; 367 if (StackPointer && InterveningStackPointer) 368 return false; 369 370 for (unsigned Reg : MutableRegisters) 371 for (const MachineOperand &MO : I->operands()) 372 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 373 return false; 374 } 375 376 return true; 377 } 378 379 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 380 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 381 const MachineBasicBlock &MBB, 382 const MachineRegisterInfo &MRI, 383 const MachineDominatorTree &MDT, 384 LiveIntervals &LIS, 385 WebAssemblyFunctionInfo &MFI) { 386 const LiveInterval &LI = LIS.getInterval(Reg); 387 388 const MachineInstr *OneUseInst = OneUse.getParent(); 389 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 390 391 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 392 if (&Use == &OneUse) 393 continue; 394 395 const MachineInstr *UseInst = Use.getParent(); 396 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 397 398 if (UseVNI != OneUseVNI) 399 continue; 400 401 const MachineInstr *OneUseInst = OneUse.getParent(); 402 if (UseInst == OneUseInst) { 403 // Another use in the same instruction. We need to ensure that the one 404 // selected use happens "before" it. 405 if (&OneUse > &Use) 406 return false; 407 } else { 408 // Test that the use is dominated by the one selected use. 409 while (!MDT.dominates(OneUseInst, UseInst)) { 410 // Actually, dominating is over-conservative. Test that the use would 411 // happen after the one selected use in the stack evaluation order. 412 // 413 // This is needed as a consequence of using implicit get_locals for 414 // uses and implicit set_locals for defs. 415 if (UseInst->getDesc().getNumDefs() == 0) 416 return false; 417 const MachineOperand &MO = UseInst->getOperand(0); 418 if (!MO.isReg()) 419 return false; 420 unsigned DefReg = MO.getReg(); 421 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 422 !MFI.isVRegStackified(DefReg)) 423 return false; 424 assert(MRI.hasOneUse(DefReg)); 425 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 426 const MachineInstr *NewUseInst = NewUse.getParent(); 427 if (NewUseInst == OneUseInst) { 428 if (&OneUse > &NewUse) 429 return false; 430 break; 431 } 432 UseInst = NewUseInst; 433 } 434 } 435 } 436 return true; 437 } 438 439 /// Get the appropriate tee opcode for the given register class. 440 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 441 if (RC == &WebAssembly::I32RegClass) 442 return WebAssembly::TEE_I32; 443 if (RC == &WebAssembly::I64RegClass) 444 return WebAssembly::TEE_I64; 445 if (RC == &WebAssembly::F32RegClass) 446 return WebAssembly::TEE_F32; 447 if (RC == &WebAssembly::F64RegClass) 448 return WebAssembly::TEE_F64; 449 if (RC == &WebAssembly::V128RegClass) 450 return WebAssembly::TEE_V128; 451 llvm_unreachable("Unexpected register class"); 452 } 453 454 // Shrink LI to its uses, cleaning up LI. 455 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 456 if (LIS.shrinkToUses(&LI)) { 457 SmallVector<LiveInterval*, 4> SplitLIs; 458 LIS.splitSeparateComponents(LI, SplitLIs); 459 } 460 } 461 462 /// A single-use def in the same block with no intervening memory or register 463 /// dependencies; move the def down and nest it with the current instruction. 464 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 465 MachineInstr *Def, 466 MachineBasicBlock &MBB, 467 MachineInstr *Insert, LiveIntervals &LIS, 468 WebAssemblyFunctionInfo &MFI, 469 MachineRegisterInfo &MRI) { 470 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 471 472 MBB.splice(Insert, &MBB, Def); 473 LIS.handleMove(*Def); 474 475 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 476 // No one else is using this register for anything so we can just stackify 477 // it in place. 478 MFI.stackifyVReg(Reg); 479 } else { 480 // The register may have unrelated uses or defs; create a new register for 481 // just our one def and use so that we can stackify it. 482 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 483 Def->getOperand(0).setReg(NewReg); 484 Op.setReg(NewReg); 485 486 // Tell LiveIntervals about the new register. 487 LIS.createAndComputeVirtRegInterval(NewReg); 488 489 // Tell LiveIntervals about the changes to the old register. 490 LiveInterval &LI = LIS.getInterval(Reg); 491 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 492 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 493 /*RemoveDeadValNo=*/true); 494 495 MFI.stackifyVReg(NewReg); 496 497 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 498 } 499 500 ImposeStackOrdering(Def); 501 return Def; 502 } 503 504 /// A trivially cloneable instruction; clone it and nest the new copy with the 505 /// current instruction. 506 static MachineInstr *RematerializeCheapDef( 507 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 508 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 509 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 510 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 511 DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 512 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 513 514 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 515 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 516 Op.setReg(NewReg); 517 MachineInstr *Clone = &*std::prev(Insert); 518 LIS.InsertMachineInstrInMaps(*Clone); 519 LIS.createAndComputeVirtRegInterval(NewReg); 520 MFI.stackifyVReg(NewReg); 521 ImposeStackOrdering(Clone); 522 523 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 524 525 // Shrink the interval. 526 bool IsDead = MRI.use_empty(Reg); 527 if (!IsDead) { 528 LiveInterval &LI = LIS.getInterval(Reg); 529 ShrinkToUses(LI, LIS); 530 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 531 } 532 533 // If that was the last use of the original, delete the original. 534 if (IsDead) { 535 DEBUG(dbgs() << " - Deleting original\n"); 536 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 537 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 538 LIS.removeInterval(Reg); 539 LIS.RemoveMachineInstrFromMaps(Def); 540 Def.eraseFromParent(); 541 } 542 543 return Clone; 544 } 545 546 /// A multiple-use def in the same block with no intervening memory or register 547 /// dependencies; move the def down, nest it with the current instruction, and 548 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 549 /// this: 550 /// 551 /// Reg = INST ... // Def 552 /// INST ..., Reg, ... // Insert 553 /// INST ..., Reg, ... 554 /// INST ..., Reg, ... 555 /// 556 /// to this: 557 /// 558 /// DefReg = INST ... // Def (to become the new Insert) 559 /// TeeReg, Reg = TEE_... DefReg 560 /// INST ..., TeeReg, ... // Insert 561 /// INST ..., Reg, ... 562 /// INST ..., Reg, ... 563 /// 564 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 565 /// resulting code. 566 static MachineInstr *MoveAndTeeForMultiUse( 567 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 568 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 569 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 570 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 571 572 // Move Def into place. 573 MBB.splice(Insert, &MBB, Def); 574 LIS.handleMove(*Def); 575 576 // Create the Tee and attach the registers. 577 const auto *RegClass = MRI.getRegClass(Reg); 578 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 579 unsigned DefReg = MRI.createVirtualRegister(RegClass); 580 MachineOperand &DefMO = Def->getOperand(0); 581 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 582 TII->get(GetTeeOpcode(RegClass)), TeeReg) 583 .addReg(Reg, RegState::Define) 584 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 585 Op.setReg(TeeReg); 586 DefMO.setReg(DefReg); 587 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 588 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 589 590 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 591 LiveInterval &LI = LIS.getInterval(Reg); 592 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 593 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 594 I->start = TeeIdx; 595 ValNo->def = TeeIdx; 596 ShrinkToUses(LI, LIS); 597 598 // Finish stackifying the new regs. 599 LIS.createAndComputeVirtRegInterval(TeeReg); 600 LIS.createAndComputeVirtRegInterval(DefReg); 601 MFI.stackifyVReg(DefReg); 602 MFI.stackifyVReg(TeeReg); 603 ImposeStackOrdering(Def); 604 ImposeStackOrdering(Tee); 605 606 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 607 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 608 return Def; 609 } 610 611 namespace { 612 /// A stack for walking the tree of instructions being built, visiting the 613 /// MachineOperands in DFS order. 614 class TreeWalkerState { 615 typedef MachineInstr::mop_iterator mop_iterator; 616 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 617 typedef iterator_range<mop_reverse_iterator> RangeTy; 618 SmallVector<RangeTy, 4> Worklist; 619 620 public: 621 explicit TreeWalkerState(MachineInstr *Insert) { 622 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 623 if (Range.begin() != Range.end()) 624 Worklist.push_back(reverse(Range)); 625 } 626 627 bool Done() const { return Worklist.empty(); } 628 629 MachineOperand &Pop() { 630 RangeTy &Range = Worklist.back(); 631 MachineOperand &Op = *Range.begin(); 632 Range = drop_begin(Range, 1); 633 if (Range.begin() == Range.end()) 634 Worklist.pop_back(); 635 assert((Worklist.empty() || 636 Worklist.back().begin() != Worklist.back().end()) && 637 "Empty ranges shouldn't remain in the worklist"); 638 return Op; 639 } 640 641 /// Push Instr's operands onto the stack to be visited. 642 void PushOperands(MachineInstr *Instr) { 643 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 644 if (Range.begin() != Range.end()) 645 Worklist.push_back(reverse(Range)); 646 } 647 648 /// Some of Instr's operands are on the top of the stack; remove them and 649 /// re-insert them starting from the beginning (because we've commuted them). 650 void ResetTopOperands(MachineInstr *Instr) { 651 assert(HasRemainingOperands(Instr) && 652 "Reseting operands should only be done when the instruction has " 653 "an operand still on the stack"); 654 Worklist.back() = reverse(Instr->explicit_uses()); 655 } 656 657 /// Test whether Instr has operands remaining to be visited at the top of 658 /// the stack. 659 bool HasRemainingOperands(const MachineInstr *Instr) const { 660 if (Worklist.empty()) 661 return false; 662 const RangeTy &Range = Worklist.back(); 663 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 664 } 665 666 /// Test whether the given register is present on the stack, indicating an 667 /// operand in the tree that we haven't visited yet. Moving a definition of 668 /// Reg to a point in the tree after that would change its value. 669 /// 670 /// This is needed as a consequence of using implicit get_locals for 671 /// uses and implicit set_locals for defs. 672 bool IsOnStack(unsigned Reg) const { 673 for (const RangeTy &Range : Worklist) 674 for (const MachineOperand &MO : Range) 675 if (MO.isReg() && MO.getReg() == Reg) 676 return true; 677 return false; 678 } 679 }; 680 681 /// State to keep track of whether commuting is in flight or whether it's been 682 /// tried for the current instruction and didn't work. 683 class CommutingState { 684 /// There are effectively three states: the initial state where we haven't 685 /// started commuting anything and we don't know anything yet, the tenative 686 /// state where we've commuted the operands of the current instruction and are 687 /// revisting it, and the declined state where we've reverted the operands 688 /// back to their original order and will no longer commute it further. 689 bool TentativelyCommuting; 690 bool Declined; 691 692 /// During the tentative state, these hold the operand indices of the commuted 693 /// operands. 694 unsigned Operand0, Operand1; 695 696 public: 697 CommutingState() : TentativelyCommuting(false), Declined(false) {} 698 699 /// Stackification for an operand was not successful due to ordering 700 /// constraints. If possible, and if we haven't already tried it and declined 701 /// it, commute Insert's operands and prepare to revisit it. 702 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 703 const WebAssemblyInstrInfo *TII) { 704 if (TentativelyCommuting) { 705 assert(!Declined && 706 "Don't decline commuting until you've finished trying it"); 707 // Commuting didn't help. Revert it. 708 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 709 TentativelyCommuting = false; 710 Declined = true; 711 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 712 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 713 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 714 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 715 // Tentatively commute the operands and try again. 716 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 717 TreeWalker.ResetTopOperands(Insert); 718 TentativelyCommuting = true; 719 Declined = false; 720 } 721 } 722 } 723 724 /// Stackification for some operand was successful. Reset to the default 725 /// state. 726 void Reset() { 727 TentativelyCommuting = false; 728 Declined = false; 729 } 730 }; 731 } // end anonymous namespace 732 733 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 734 DEBUG(dbgs() << "********** Register Stackifying **********\n" 735 "********** Function: " 736 << MF.getName() << '\n'); 737 738 bool Changed = false; 739 MachineRegisterInfo &MRI = MF.getRegInfo(); 740 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 741 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 742 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 743 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 744 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 745 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 746 747 // Walk the instructions from the bottom up. Currently we don't look past 748 // block boundaries, and the blocks aren't ordered so the block visitation 749 // order isn't significant, but we may want to change this in the future. 750 for (MachineBasicBlock &MBB : MF) { 751 // Don't use a range-based for loop, because we modify the list as we're 752 // iterating over it and the end iterator may change. 753 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 754 MachineInstr *Insert = &*MII; 755 // Don't nest anything inside an inline asm, because we don't have 756 // constraints for $push inputs. 757 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 758 continue; 759 760 // Ignore debugging intrinsics. 761 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 762 continue; 763 764 // Iterate through the inputs in reverse order, since we'll be pulling 765 // operands off the stack in LIFO order. 766 CommutingState Commuting; 767 TreeWalkerState TreeWalker(Insert); 768 while (!TreeWalker.Done()) { 769 MachineOperand &Op = TreeWalker.Pop(); 770 771 // We're only interested in explicit virtual register operands. 772 if (!Op.isReg()) 773 continue; 774 775 unsigned Reg = Op.getReg(); 776 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 777 assert(!Op.isImplicit() && 778 "explicit_uses() should only iterate over explicit operands"); 779 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 780 continue; 781 782 // Identify the definition for this register at this point. 783 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 784 if (!Def) 785 continue; 786 787 // Don't nest an INLINE_ASM def into anything, because we don't have 788 // constraints for $pop outputs. 789 if (Def->getOpcode() == TargetOpcode::INLINEASM) 790 continue; 791 792 // Argument instructions represent live-in registers and not real 793 // instructions. 794 if (WebAssembly::isArgument(*Def)) 795 continue; 796 797 // Decide which strategy to take. Prefer to move a single-use value 798 // over cloning it, and prefer cloning over introducing a tee. 799 // For moving, we require the def to be in the same block as the use; 800 // this makes things simpler (LiveIntervals' handleMove function only 801 // supports intra-block moves) and it's MachineSink's job to catch all 802 // the sinking opportunities anyway. 803 bool SameBlock = Def->getParent() == &MBB; 804 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 805 !TreeWalker.IsOnStack(Reg); 806 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 807 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 808 } else if (ShouldRematerialize(*Def, AA, TII)) { 809 Insert = 810 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 811 LIS, MFI, MRI, TII, TRI); 812 } else if (CanMove && 813 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 814 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 815 MRI, TII); 816 } else { 817 // We failed to stackify the operand. If the problem was ordering 818 // constraints, Commuting may be able to help. 819 if (!CanMove && SameBlock) 820 Commuting.MaybeCommute(Insert, TreeWalker, TII); 821 // Proceed to the next operand. 822 continue; 823 } 824 825 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 826 // to a constant 0 so that the def is explicit, and the push/pop 827 // correspondence is maintained. 828 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 829 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); 830 831 // We stackified an operand. Add the defining instruction's operands to 832 // the worklist stack now to continue to build an ever deeper tree. 833 Commuting.Reset(); 834 TreeWalker.PushOperands(Insert); 835 } 836 837 // If we stackified any operands, skip over the tree to start looking for 838 // the next instruction we can build a tree on. 839 if (Insert != &*MII) { 840 ImposeStackOrdering(&*MII); 841 MII = MachineBasicBlock::iterator(Insert).getReverse(); 842 Changed = true; 843 } 844 } 845 } 846 847 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 848 // that it never looks like a use-before-def. 849 if (Changed) { 850 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 851 for (MachineBasicBlock &MBB : MF) 852 MBB.addLiveIn(WebAssembly::VALUE_STACK); 853 } 854 855 #ifndef NDEBUG 856 // Verify that pushes and pops are performed in LIFO order. 857 SmallVector<unsigned, 0> Stack; 858 for (MachineBasicBlock &MBB : MF) { 859 for (MachineInstr &MI : MBB) { 860 if (MI.isDebugValue()) 861 continue; 862 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 863 if (!MO.isReg()) 864 continue; 865 unsigned Reg = MO.getReg(); 866 867 if (MFI.isVRegStackified(Reg)) { 868 if (MO.isDef()) 869 Stack.push_back(Reg); 870 else 871 assert(Stack.pop_back_val() == Reg && 872 "Register stack pop should be paired with a push"); 873 } 874 } 875 } 876 // TODO: Generalize this code to support keeping values on the stack across 877 // basic block boundaries. 878 assert(Stack.empty() && 879 "Register stack pushes and pops should be balanced"); 880 } 881 #endif 882 883 return Changed; 884 } 885