1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// expression don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-reg-stackify" 39 40 namespace { 41 class WebAssemblyRegStackify final : public MachineFunctionPass { 42 const char *getPassName() const override { 43 return "WebAssembly Register Stackify"; 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.setPreservesCFG(); 48 AU.addRequired<AAResultsWrapperPass>(); 49 AU.addRequired<MachineDominatorTree>(); 50 AU.addRequired<LiveIntervals>(); 51 AU.addPreserved<MachineBlockFrequencyInfo>(); 52 AU.addPreserved<SlotIndexes>(); 53 AU.addPreserved<LiveIntervals>(); 54 AU.addPreservedID(LiveVariablesID); 55 AU.addPreserved<MachineDominatorTree>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 64 }; 65 } // end anonymous namespace 66 67 char WebAssemblyRegStackify::ID = 0; 68 FunctionPass *llvm::createWebAssemblyRegStackify() { 69 return new WebAssemblyRegStackify(); 70 } 71 72 // Decorate the given instruction with implicit operands that enforce the 73 // expression stack ordering constraints for an instruction which is on 74 // the expression stack. 75 static void ImposeStackOrdering(MachineInstr *MI) { 76 // Write the opaque EXPR_STACK register. 77 if (!MI->definesRegister(WebAssembly::EXPR_STACK)) 78 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 79 /*isDef=*/true, 80 /*isImp=*/true)); 81 82 // Also read the opaque EXPR_STACK register. 83 if (!MI->readsRegister(WebAssembly::EXPR_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 85 /*isDef=*/false, 86 /*isImp=*/true)); 87 } 88 89 // Determine whether a call to the callee referenced by 90 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 91 // effects. 92 static void QueryCallee(const MachineInstr *MI, unsigned CalleeOpNo, 93 bool &Read, bool &Write, bool &Effects) { 94 const MachineOperand &MO = MI->getOperand(CalleeOpNo); 95 if (MO.isGlobal()) { 96 const Constant *GV = MO.getGlobal(); 97 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 98 if (!GA->isInterposable()) 99 GV = GA->getAliasee(); 100 101 if (const Function *F = dyn_cast<Function>(GV)) { 102 if (!F->doesNotThrow()) 103 Effects = true; 104 if (F->doesNotAccessMemory()) 105 return; 106 if (F->onlyReadsMemory()) { 107 Read = true; 108 return; 109 } 110 } 111 } 112 113 // Assume the worst. 114 Write = true; 115 Read = true; 116 Effects = true; 117 } 118 119 // Determine whether MI reads memory, writes memory, and/or has side 120 // effects. 121 static void Query(const MachineInstr *MI, AliasAnalysis &AA, 122 bool &Read, bool &Write, bool &Effects) { 123 assert(!MI->isPosition()); 124 assert(!MI->isTerminator()); 125 assert(!MI->isDebugValue()); 126 127 // Check for loads. 128 if (MI->mayLoad() && !MI->isInvariantLoad(&AA)) 129 Read = true; 130 131 // Check for stores. 132 if (MI->mayStore()) 133 Write = true; 134 else if (MI->hasOrderedMemoryRef()) { 135 switch (MI->getOpcode()) { 136 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 137 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 138 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 139 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 140 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 141 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 142 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 143 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 144 // These instruction have hasUnmodeledSideEffects() returning true 145 // because they trap on overflow and invalid so they can't be arbitrarily 146 // moved, however hasOrderedMemoryRef() interprets this plus their lack 147 // of memoperands as having a potential unknown memory reference. 148 break; 149 default: 150 // Record potential stores, unless it's a call, as calls are handled 151 // specially below. 152 if (!MI->isCall()) 153 Write = true; 154 break; 155 } 156 } 157 158 // Check for side effects. 159 if (MI->hasUnmodeledSideEffects()) { 160 switch (MI->getOpcode()) { 161 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 162 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 163 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 164 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 165 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 166 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 167 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 168 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 169 // These instructions have hasUnmodeledSideEffects() returning true 170 // because they trap on overflow and invalid so they can't be arbitrarily 171 // moved, however in the specific case of register stackifying, it is safe 172 // to move them because overflow and invalid are Undefined Behavior. 173 break; 174 default: 175 Effects = true; 176 break; 177 } 178 } 179 180 // Analyze calls. 181 if (MI->isCall()) { 182 switch (MI->getOpcode()) { 183 case WebAssembly::CALL_VOID: 184 QueryCallee(MI, 0, Read, Write, Effects); 185 break; 186 case WebAssembly::CALL_I32: 187 case WebAssembly::CALL_I64: 188 case WebAssembly::CALL_F32: 189 case WebAssembly::CALL_F64: 190 QueryCallee(MI, 1, Read, Write, Effects); 191 break; 192 case WebAssembly::CALL_INDIRECT_VOID: 193 case WebAssembly::CALL_INDIRECT_I32: 194 case WebAssembly::CALL_INDIRECT_I64: 195 case WebAssembly::CALL_INDIRECT_F32: 196 case WebAssembly::CALL_INDIRECT_F64: 197 Read = true; 198 Write = true; 199 Effects = true; 200 break; 201 default: 202 llvm_unreachable("unexpected call opcode"); 203 } 204 } 205 } 206 207 // Test whether Def is safe and profitable to rematerialize. 208 static bool ShouldRematerialize(const MachineInstr *Def, AliasAnalysis &AA, 209 const WebAssemblyInstrInfo *TII) { 210 return Def->isAsCheapAsAMove() && 211 TII->isTriviallyReMaterializable(Def, &AA); 212 } 213 214 // Identify the definition for this register at this point. This is a 215 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 216 // LiveIntervals to handle complex cases. 217 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 218 const MachineRegisterInfo &MRI, 219 const LiveIntervals &LIS) 220 { 221 // Most registers are in SSA form here so we try a quick MRI query first. 222 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 223 return Def; 224 225 // MRI doesn't know what the Def is. Try asking LIS. 226 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 227 LIS.getInstructionIndex(*Insert))) 228 return LIS.getInstructionFromIndex(ValNo->def); 229 230 return nullptr; 231 } 232 233 // Test whether Reg, as defined at Def, has exactly one use. This is a 234 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 235 // to handle complex cases. 236 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 237 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 238 LiveIntervals &LIS) { 239 // Most registers are in SSA form here so we try a quick MRI query first. 240 if (MRI.hasOneUse(Reg)) 241 return true; 242 243 bool HasOne = false; 244 const LiveInterval &LI = LIS.getInterval(Reg); 245 const VNInfo *DefVNI = LI.getVNInfoAt( 246 LIS.getInstructionIndex(*Def).getRegSlot()); 247 assert(DefVNI); 248 for (auto I : MRI.use_operands(Reg)) { 249 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 250 if (Result.valueIn() == DefVNI) { 251 if (!Result.isKill()) 252 return false; 253 if (HasOne) 254 return false; 255 HasOne = true; 256 } 257 } 258 return HasOne; 259 } 260 261 // Test whether it's safe to move Def to just before Insert. 262 // TODO: Compute memory dependencies in a way that doesn't require always 263 // walking the block. 264 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 265 // more precise. 266 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 267 AliasAnalysis &AA, const LiveIntervals &LIS, 268 const MachineRegisterInfo &MRI) { 269 assert(Def->getParent() == Insert->getParent()); 270 271 // Check for register dependencies. 272 for (const MachineOperand &MO : Def->operands()) { 273 if (!MO.isReg() || MO.isUndef()) 274 continue; 275 unsigned Reg = MO.getReg(); 276 277 // If the register is dead here and at Insert, ignore it. 278 if (MO.isDead() && Insert->definesRegister(Reg) && 279 !Insert->readsRegister(Reg)) 280 continue; 281 282 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 283 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 284 // from moving down, and we've already checked for that. 285 if (Reg == WebAssembly::ARGUMENTS) 286 continue; 287 // If the physical register is never modified, ignore it. 288 if (!MRI.isPhysRegModified(Reg)) 289 continue; 290 // Otherwise, it's a physical register with unknown liveness. 291 return false; 292 } 293 294 // Ask LiveIntervals whether moving this virtual register use or def to 295 // Insert will change which value numbers are seen. 296 // 297 // If the operand is a use of a register that is also defined in the same 298 // instruction, test that the newly defined value reaches the insert point, 299 // since the operand will be moving along with the def. 300 const LiveInterval &LI = LIS.getInterval(Reg); 301 VNInfo *DefVNI = 302 (MO.isDef() || Def->definesRegister(Reg)) ? 303 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) : 304 LI.getVNInfoBefore(LIS.getInstructionIndex(*Def)); 305 assert(DefVNI && "Instruction input missing value number"); 306 VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert)); 307 if (InsVNI && DefVNI != InsVNI) 308 return false; 309 } 310 311 bool Read = false, Write = false, Effects = false; 312 Query(Def, AA, Read, Write, Effects); 313 314 // If the instruction does not access memory and has no side effects, it has 315 // no additional dependencies. 316 if (!Read && !Write && !Effects) 317 return true; 318 319 // Scan through the intervening instructions between Def and Insert. 320 MachineBasicBlock::const_iterator D(Def), I(Insert); 321 for (--I; I != D; --I) { 322 bool InterveningRead = false; 323 bool InterveningWrite = false; 324 bool InterveningEffects = false; 325 Query(I, AA, InterveningRead, InterveningWrite, InterveningEffects); 326 if (Effects && InterveningEffects) 327 return false; 328 if (Read && InterveningWrite) 329 return false; 330 if (Write && (InterveningRead || InterveningWrite)) 331 return false; 332 } 333 334 return true; 335 } 336 337 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 338 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 339 const MachineBasicBlock &MBB, 340 const MachineRegisterInfo &MRI, 341 const MachineDominatorTree &MDT, 342 LiveIntervals &LIS) { 343 const LiveInterval &LI = LIS.getInterval(Reg); 344 345 const MachineInstr *OneUseInst = OneUse.getParent(); 346 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 347 348 for (const MachineOperand &Use : MRI.use_operands(Reg)) { 349 if (&Use == &OneUse) 350 continue; 351 352 const MachineInstr *UseInst = Use.getParent(); 353 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 354 355 if (UseVNI != OneUseVNI) 356 continue; 357 358 const MachineInstr *OneUseInst = OneUse.getParent(); 359 if (UseInst == OneUseInst) { 360 // Another use in the same instruction. We need to ensure that the one 361 // selected use happens "before" it. 362 if (&OneUse > &Use) 363 return false; 364 } else { 365 // Test that the use is dominated by the one selected use. 366 if (!MDT.dominates(OneUseInst, UseInst)) 367 return false; 368 } 369 } 370 return true; 371 } 372 373 /// Get the appropriate tee_local opcode for the given register class. 374 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) { 375 if (RC == &WebAssembly::I32RegClass) 376 return WebAssembly::TEE_LOCAL_I32; 377 if (RC == &WebAssembly::I64RegClass) 378 return WebAssembly::TEE_LOCAL_I64; 379 if (RC == &WebAssembly::F32RegClass) 380 return WebAssembly::TEE_LOCAL_F32; 381 if (RC == &WebAssembly::F64RegClass) 382 return WebAssembly::TEE_LOCAL_F64; 383 llvm_unreachable("Unexpected register class"); 384 } 385 386 // Shrink LI to its uses, cleaning up LI. 387 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 388 if (LIS.shrinkToUses(&LI)) { 389 SmallVector<LiveInterval*, 4> SplitLIs; 390 LIS.splitSeparateComponents(LI, SplitLIs); 391 } 392 } 393 394 /// A single-use def in the same block with no intervening memory or register 395 /// dependencies; move the def down and nest it with the current instruction. 396 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 397 MachineInstr *Def, 398 MachineBasicBlock &MBB, 399 MachineInstr *Insert, LiveIntervals &LIS, 400 WebAssemblyFunctionInfo &MFI, 401 MachineRegisterInfo &MRI) { 402 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 403 404 MBB.splice(Insert, &MBB, Def); 405 LIS.handleMove(*Def); 406 407 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 408 // No one else is using this register for anything so we can just stackify 409 // it in place. 410 MFI.stackifyVReg(Reg); 411 } else { 412 // The register may have unrelated uses or defs; create a new register for 413 // just our one def and use so that we can stackify it. 414 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 415 Def->getOperand(0).setReg(NewReg); 416 Op.setReg(NewReg); 417 418 // Tell LiveIntervals about the new register. 419 LIS.createAndComputeVirtRegInterval(NewReg); 420 421 // Tell LiveIntervals about the changes to the old register. 422 LiveInterval &LI = LIS.getInterval(Reg); 423 LIS.removeVRegDefAt(LI, LIS.getInstructionIndex(*Def).getRegSlot()); 424 ShrinkToUses(LI, LIS); 425 426 MFI.stackifyVReg(NewReg); 427 428 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 429 } 430 431 ImposeStackOrdering(Def); 432 return Def; 433 } 434 435 /// A trivially cloneable instruction; clone it and nest the new copy with the 436 /// current instruction. 437 static MachineInstr * 438 RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def, 439 MachineBasicBlock &MBB, MachineInstr *Insert, 440 LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 441 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII, 442 const WebAssemblyRegisterInfo *TRI) { 443 DEBUG(dbgs() << "Rematerializing cheap def: "; Def->dump()); 444 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 445 446 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 447 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 448 Op.setReg(NewReg); 449 MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert)); 450 LIS.InsertMachineInstrInMaps(*Clone); 451 LIS.createAndComputeVirtRegInterval(NewReg); 452 MFI.stackifyVReg(NewReg); 453 ImposeStackOrdering(Clone); 454 455 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 456 457 // Shrink the interval. 458 bool IsDead = MRI.use_empty(Reg); 459 if (!IsDead) { 460 LiveInterval &LI = LIS.getInterval(Reg); 461 ShrinkToUses(LI, LIS); 462 IsDead = !LI.liveAt(LIS.getInstructionIndex(*Def).getDeadSlot()); 463 } 464 465 // If that was the last use of the original, delete the original. 466 if (IsDead) { 467 DEBUG(dbgs() << " - Deleting original\n"); 468 SlotIndex Idx = LIS.getInstructionIndex(*Def).getRegSlot(); 469 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 470 LIS.removeInterval(Reg); 471 LIS.RemoveMachineInstrFromMaps(*Def); 472 Def->eraseFromParent(); 473 } 474 475 return Clone; 476 } 477 478 /// A multiple-use def in the same block with no intervening memory or register 479 /// dependencies; move the def down, nest it with the current instruction, and 480 /// insert a tee_local to satisfy the rest of the uses. As an illustration, 481 /// rewrite this: 482 /// 483 /// Reg = INST ... // Def 484 /// INST ..., Reg, ... // Insert 485 /// INST ..., Reg, ... 486 /// INST ..., Reg, ... 487 /// 488 /// to this: 489 /// 490 /// DefReg = INST ... // Def (to become the new Insert) 491 /// TeeReg, Reg = TEE_LOCAL_... DefReg 492 /// INST ..., TeeReg, ... // Insert 493 /// INST ..., NewReg, ... 494 /// INST ..., NewReg, ... 495 /// 496 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 497 /// resulting code. 498 static MachineInstr *MoveAndTeeForMultiUse( 499 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 500 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 501 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 502 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 503 504 // Move Def into place. 505 MBB.splice(Insert, &MBB, Def); 506 LIS.handleMove(*Def); 507 508 // Create the Tee and attach the registers. 509 const auto *RegClass = MRI.getRegClass(Reg); 510 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 511 unsigned DefReg = MRI.createVirtualRegister(RegClass); 512 MachineOperand &DefMO = Def->getOperand(0); 513 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 514 TII->get(GetTeeLocalOpcode(RegClass)), TeeReg) 515 .addReg(Reg, RegState::Define) 516 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 517 Op.setReg(TeeReg); 518 DefMO.setReg(DefReg); 519 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 520 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 521 522 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 523 LiveInterval &LI = LIS.getInterval(Reg); 524 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 525 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 526 I->start = TeeIdx; 527 ValNo->def = TeeIdx; 528 ShrinkToUses(LI, LIS); 529 530 // Finish stackifying the new regs. 531 LIS.createAndComputeVirtRegInterval(TeeReg); 532 LIS.createAndComputeVirtRegInterval(DefReg); 533 MFI.stackifyVReg(DefReg); 534 MFI.stackifyVReg(TeeReg); 535 ImposeStackOrdering(Def); 536 ImposeStackOrdering(Tee); 537 538 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 539 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 540 return Def; 541 } 542 543 namespace { 544 /// A stack for walking the tree of instructions being built, visiting the 545 /// MachineOperands in DFS order. 546 class TreeWalkerState { 547 typedef MachineInstr::mop_iterator mop_iterator; 548 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 549 typedef iterator_range<mop_reverse_iterator> RangeTy; 550 SmallVector<RangeTy, 4> Worklist; 551 552 public: 553 explicit TreeWalkerState(MachineInstr *Insert) { 554 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 555 if (Range.begin() != Range.end()) 556 Worklist.push_back(reverse(Range)); 557 } 558 559 bool Done() const { return Worklist.empty(); } 560 561 MachineOperand &Pop() { 562 RangeTy &Range = Worklist.back(); 563 MachineOperand &Op = *Range.begin(); 564 Range = drop_begin(Range, 1); 565 if (Range.begin() == Range.end()) 566 Worklist.pop_back(); 567 assert((Worklist.empty() || 568 Worklist.back().begin() != Worklist.back().end()) && 569 "Empty ranges shouldn't remain in the worklist"); 570 return Op; 571 } 572 573 /// Push Instr's operands onto the stack to be visited. 574 void PushOperands(MachineInstr *Instr) { 575 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 576 if (Range.begin() != Range.end()) 577 Worklist.push_back(reverse(Range)); 578 } 579 580 /// Some of Instr's operands are on the top of the stack; remove them and 581 /// re-insert them starting from the beginning (because we've commuted them). 582 void ResetTopOperands(MachineInstr *Instr) { 583 assert(HasRemainingOperands(Instr) && 584 "Reseting operands should only be done when the instruction has " 585 "an operand still on the stack"); 586 Worklist.back() = reverse(Instr->explicit_uses()); 587 } 588 589 /// Test whether Instr has operands remaining to be visited at the top of 590 /// the stack. 591 bool HasRemainingOperands(const MachineInstr *Instr) const { 592 if (Worklist.empty()) 593 return false; 594 const RangeTy &Range = Worklist.back(); 595 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 596 } 597 598 /// Test whether the given register is present on the stack, indicating an 599 /// operand in the tree that we haven't visited yet. Moving a definition of 600 /// Reg to a point in the tree after that would change its value. 601 bool IsOnStack(unsigned Reg) const { 602 for (const RangeTy &Range : Worklist) 603 for (const MachineOperand &MO : Range) 604 if (MO.isReg() && MO.getReg() == Reg) 605 return true; 606 return false; 607 } 608 }; 609 610 /// State to keep track of whether commuting is in flight or whether it's been 611 /// tried for the current instruction and didn't work. 612 class CommutingState { 613 /// There are effectively three states: the initial state where we haven't 614 /// started commuting anything and we don't know anything yet, the tenative 615 /// state where we've commuted the operands of the current instruction and are 616 /// revisting it, and the declined state where we've reverted the operands 617 /// back to their original order and will no longer commute it further. 618 bool TentativelyCommuting; 619 bool Declined; 620 621 /// During the tentative state, these hold the operand indices of the commuted 622 /// operands. 623 unsigned Operand0, Operand1; 624 625 public: 626 CommutingState() : TentativelyCommuting(false), Declined(false) {} 627 628 /// Stackification for an operand was not successful due to ordering 629 /// constraints. If possible, and if we haven't already tried it and declined 630 /// it, commute Insert's operands and prepare to revisit it. 631 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 632 const WebAssemblyInstrInfo *TII) { 633 if (TentativelyCommuting) { 634 assert(!Declined && 635 "Don't decline commuting until you've finished trying it"); 636 // Commuting didn't help. Revert it. 637 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 638 TentativelyCommuting = false; 639 Declined = true; 640 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 641 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 642 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 643 if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) { 644 // Tentatively commute the operands and try again. 645 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 646 TreeWalker.ResetTopOperands(Insert); 647 TentativelyCommuting = true; 648 Declined = false; 649 } 650 } 651 } 652 653 /// Stackification for some operand was successful. Reset to the default 654 /// state. 655 void Reset() { 656 TentativelyCommuting = false; 657 Declined = false; 658 } 659 }; 660 } // end anonymous namespace 661 662 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 663 DEBUG(dbgs() << "********** Register Stackifying **********\n" 664 "********** Function: " 665 << MF.getName() << '\n'); 666 667 bool Changed = false; 668 MachineRegisterInfo &MRI = MF.getRegInfo(); 669 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 670 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 671 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 672 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 673 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 674 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 675 676 // Walk the instructions from the bottom up. Currently we don't look past 677 // block boundaries, and the blocks aren't ordered so the block visitation 678 // order isn't significant, but we may want to change this in the future. 679 for (MachineBasicBlock &MBB : MF) { 680 // Don't use a range-based for loop, because we modify the list as we're 681 // iterating over it and the end iterator may change. 682 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 683 MachineInstr *Insert = &*MII; 684 // Don't nest anything inside an inline asm, because we don't have 685 // constraints for $push inputs. 686 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 687 continue; 688 689 // Ignore debugging intrinsics. 690 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 691 continue; 692 693 // Iterate through the inputs in reverse order, since we'll be pulling 694 // operands off the stack in LIFO order. 695 CommutingState Commuting; 696 TreeWalkerState TreeWalker(Insert); 697 while (!TreeWalker.Done()) { 698 MachineOperand &Op = TreeWalker.Pop(); 699 700 // We're only interested in explicit virtual register operands. 701 if (!Op.isReg()) 702 continue; 703 704 unsigned Reg = Op.getReg(); 705 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 706 assert(!Op.isImplicit() && 707 "explicit_uses() should only iterate over explicit operands"); 708 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 709 continue; 710 711 // Identify the definition for this register at this point. Most 712 // registers are in SSA form here so we try a quick MRI query first. 713 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 714 if (!Def) 715 continue; 716 717 // Don't nest an INLINE_ASM def into anything, because we don't have 718 // constraints for $pop outputs. 719 if (Def->getOpcode() == TargetOpcode::INLINEASM) 720 continue; 721 722 // Argument instructions represent live-in registers and not real 723 // instructions. 724 if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || 725 Def->getOpcode() == WebAssembly::ARGUMENT_I64 || 726 Def->getOpcode() == WebAssembly::ARGUMENT_F32 || 727 Def->getOpcode() == WebAssembly::ARGUMENT_F64) 728 continue; 729 730 // Decide which strategy to take. Prefer to move a single-use value 731 // over cloning it, and prefer cloning over introducing a tee_local. 732 // For moving, we require the def to be in the same block as the use; 733 // this makes things simpler (LiveIntervals' handleMove function only 734 // supports intra-block moves) and it's MachineSink's job to catch all 735 // the sinking opportunities anyway. 736 bool SameBlock = Def->getParent() == &MBB; 737 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) && 738 !TreeWalker.IsOnStack(Reg); 739 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 740 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 741 } else if (ShouldRematerialize(Def, AA, TII)) { 742 Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI, 743 MRI, TII, TRI); 744 } else if (CanMove && 745 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS)) { 746 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 747 MRI, TII); 748 } else { 749 // We failed to stackify the operand. If the problem was ordering 750 // constraints, Commuting may be able to help. 751 if (!CanMove && SameBlock) 752 Commuting.MaybeCommute(Insert, TreeWalker, TII); 753 // Proceed to the next operand. 754 continue; 755 } 756 757 // We stackified an operand. Add the defining instruction's operands to 758 // the worklist stack now to continue to build an ever deeper tree. 759 Commuting.Reset(); 760 TreeWalker.PushOperands(Insert); 761 } 762 763 // If we stackified any operands, skip over the tree to start looking for 764 // the next instruction we can build a tree on. 765 if (Insert != &*MII) { 766 ImposeStackOrdering(&*MII); 767 MII = std::prev( 768 llvm::make_reverse_iterator(MachineBasicBlock::iterator(Insert))); 769 Changed = true; 770 } 771 } 772 } 773 774 // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so 775 // that it never looks like a use-before-def. 776 if (Changed) { 777 MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); 778 for (MachineBasicBlock &MBB : MF) 779 MBB.addLiveIn(WebAssembly::EXPR_STACK); 780 } 781 782 #ifndef NDEBUG 783 // Verify that pushes and pops are performed in LIFO order. 784 SmallVector<unsigned, 0> Stack; 785 for (MachineBasicBlock &MBB : MF) { 786 for (MachineInstr &MI : MBB) { 787 if (MI.isDebugValue()) 788 continue; 789 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 790 if (!MO.isReg()) 791 continue; 792 unsigned Reg = MO.getReg(); 793 794 if (MFI.isVRegStackified(Reg)) { 795 if (MO.isDef()) 796 Stack.push_back(Reg); 797 else 798 assert(Stack.pop_back_val() == Reg && 799 "Register stack pop should be paired with a push"); 800 } 801 } 802 } 803 // TODO: Generalize this code to support keeping values on the stack across 804 // basic block boundaries. 805 assert(Stack.empty() && 806 "Register stack pushes and pops should be balanced"); 807 } 808 #endif 809 810 return Changed; 811 } 812