1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/Analysis/AliasAnalysis.h" 29 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineDominators.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 using namespace llvm; 38 39 #define DEBUG_TYPE "wasm-reg-stackify" 40 41 namespace { 42 class WebAssemblyRegStackify final : public MachineFunctionPass { 43 StringRef getPassName() const override { 44 return "WebAssembly Register Stackify"; 45 } 46 47 void getAnalysisUsage(AnalysisUsage &AU) const override { 48 AU.setPreservesCFG(); 49 AU.addRequired<AAResultsWrapperPass>(); 50 AU.addRequired<MachineDominatorTree>(); 51 AU.addRequired<LiveIntervals>(); 52 AU.addPreserved<MachineBlockFrequencyInfo>(); 53 AU.addPreserved<SlotIndexes>(); 54 AU.addPreserved<LiveIntervals>(); 55 AU.addPreservedID(LiveVariablesID); 56 AU.addPreserved<MachineDominatorTree>(); 57 MachineFunctionPass::getAnalysisUsage(AU); 58 } 59 60 bool runOnMachineFunction(MachineFunction &MF) override; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 65 }; 66 } // end anonymous namespace 67 68 char WebAssemblyRegStackify::ID = 0; 69 FunctionPass *llvm::createWebAssemblyRegStackify() { 70 return new WebAssemblyRegStackify(); 71 } 72 73 // Decorate the given instruction with implicit operands that enforce the 74 // expression stack ordering constraints for an instruction which is on 75 // the expression stack. 76 static void ImposeStackOrdering(MachineInstr *MI) { 77 // Write the opaque VALUE_STACK register. 78 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 79 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 80 /*isDef=*/true, 81 /*isImp=*/true)); 82 83 // Also read the opaque VALUE_STACK register. 84 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/false, 87 /*isImp=*/true)); 88 } 89 90 // Determine whether a call to the callee referenced by 91 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 92 // effects. 93 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 94 bool &Write, bool &Effects, bool &StackPointer) { 95 // All calls can use the stack pointer. 96 StackPointer = true; 97 98 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 99 if (MO.isGlobal()) { 100 const Constant *GV = MO.getGlobal(); 101 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 102 if (!GA->isInterposable()) 103 GV = GA->getAliasee(); 104 105 if (const Function *F = dyn_cast<Function>(GV)) { 106 if (!F->doesNotThrow()) 107 Effects = true; 108 if (F->doesNotAccessMemory()) 109 return; 110 if (F->onlyReadsMemory()) { 111 Read = true; 112 return; 113 } 114 } 115 } 116 117 // Assume the worst. 118 Write = true; 119 Read = true; 120 Effects = true; 121 } 122 123 // Determine whether MI reads memory, writes memory, has side effects, 124 // and/or uses the __stack_pointer value. 125 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 126 bool &Write, bool &Effects, bool &StackPointer) { 127 assert(!MI.isPosition()); 128 assert(!MI.isTerminator()); 129 130 if (MI.isDebugValue()) 131 return; 132 133 // Check for loads. 134 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 135 Read = true; 136 137 // Check for stores. 138 if (MI.mayStore()) { 139 Write = true; 140 141 // Check for stores to __stack_pointer. 142 for (auto MMO : MI.memoperands()) { 143 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 144 if (MPI.V.is<const PseudoSourceValue *>()) { 145 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 146 if (const ExternalSymbolPseudoSourceValue *EPSV = 147 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 148 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") 149 StackPointer = true; 150 } 151 } 152 } else if (MI.hasOrderedMemoryRef()) { 153 switch (MI.getOpcode()) { 154 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 155 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 156 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 157 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 158 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 159 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 160 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 161 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 162 // These instruction have hasUnmodeledSideEffects() returning true 163 // because they trap on overflow and invalid so they can't be arbitrarily 164 // moved, however hasOrderedMemoryRef() interprets this plus their lack 165 // of memoperands as having a potential unknown memory reference. 166 break; 167 default: 168 // Record volatile accesses, unless it's a call, as calls are handled 169 // specially below. 170 if (!MI.isCall()) { 171 Write = true; 172 Effects = true; 173 } 174 break; 175 } 176 } 177 178 // Check for side effects. 179 if (MI.hasUnmodeledSideEffects()) { 180 switch (MI.getOpcode()) { 181 case WebAssembly::DIV_S_I32: case WebAssembly::DIV_S_I64: 182 case WebAssembly::REM_S_I32: case WebAssembly::REM_S_I64: 183 case WebAssembly::DIV_U_I32: case WebAssembly::DIV_U_I64: 184 case WebAssembly::REM_U_I32: case WebAssembly::REM_U_I64: 185 case WebAssembly::I32_TRUNC_S_F32: case WebAssembly::I64_TRUNC_S_F32: 186 case WebAssembly::I32_TRUNC_S_F64: case WebAssembly::I64_TRUNC_S_F64: 187 case WebAssembly::I32_TRUNC_U_F32: case WebAssembly::I64_TRUNC_U_F32: 188 case WebAssembly::I32_TRUNC_U_F64: case WebAssembly::I64_TRUNC_U_F64: 189 // These instructions have hasUnmodeledSideEffects() returning true 190 // because they trap on overflow and invalid so they can't be arbitrarily 191 // moved, however in the specific case of register stackifying, it is safe 192 // to move them because overflow and invalid are Undefined Behavior. 193 break; 194 default: 195 Effects = true; 196 break; 197 } 198 } 199 200 // Analyze calls. 201 if (MI.isCall()) { 202 switch (MI.getOpcode()) { 203 case WebAssembly::CALL_VOID: 204 case WebAssembly::CALL_INDIRECT_VOID: 205 QueryCallee(MI, 0, Read, Write, Effects, StackPointer); 206 break; 207 case WebAssembly::CALL_I32: case WebAssembly::CALL_I64: 208 case WebAssembly::CALL_F32: case WebAssembly::CALL_F64: 209 case WebAssembly::CALL_INDIRECT_I32: case WebAssembly::CALL_INDIRECT_I64: 210 case WebAssembly::CALL_INDIRECT_F32: case WebAssembly::CALL_INDIRECT_F64: 211 QueryCallee(MI, 1, Read, Write, Effects, StackPointer); 212 break; 213 default: 214 llvm_unreachable("unexpected call opcode"); 215 } 216 } 217 } 218 219 // Test whether Def is safe and profitable to rematerialize. 220 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 221 const WebAssemblyInstrInfo *TII) { 222 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 223 } 224 225 // Identify the definition for this register at this point. This is a 226 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 227 // LiveIntervals to handle complex cases. 228 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 229 const MachineRegisterInfo &MRI, 230 const LiveIntervals &LIS) 231 { 232 // Most registers are in SSA form here so we try a quick MRI query first. 233 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 234 return Def; 235 236 // MRI doesn't know what the Def is. Try asking LIS. 237 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 238 LIS.getInstructionIndex(*Insert))) 239 return LIS.getInstructionFromIndex(ValNo->def); 240 241 return nullptr; 242 } 243 244 // Test whether Reg, as defined at Def, has exactly one use. This is a 245 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 246 // to handle complex cases. 247 static bool HasOneUse(unsigned Reg, MachineInstr *Def, 248 MachineRegisterInfo &MRI, MachineDominatorTree &MDT, 249 LiveIntervals &LIS) { 250 // Most registers are in SSA form here so we try a quick MRI query first. 251 if (MRI.hasOneUse(Reg)) 252 return true; 253 254 bool HasOne = false; 255 const LiveInterval &LI = LIS.getInterval(Reg); 256 const VNInfo *DefVNI = LI.getVNInfoAt( 257 LIS.getInstructionIndex(*Def).getRegSlot()); 258 assert(DefVNI); 259 for (auto &I : MRI.use_nodbg_operands(Reg)) { 260 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 261 if (Result.valueIn() == DefVNI) { 262 if (!Result.isKill()) 263 return false; 264 if (HasOne) 265 return false; 266 HasOne = true; 267 } 268 } 269 return HasOne; 270 } 271 272 // Test whether it's safe to move Def to just before Insert. 273 // TODO: Compute memory dependencies in a way that doesn't require always 274 // walking the block. 275 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 276 // more precise. 277 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 278 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 279 assert(Def->getParent() == Insert->getParent()); 280 281 // Check for register dependencies. 282 SmallVector<unsigned, 4> MutableRegisters; 283 for (const MachineOperand &MO : Def->operands()) { 284 if (!MO.isReg() || MO.isUndef()) 285 continue; 286 unsigned Reg = MO.getReg(); 287 288 // If the register is dead here and at Insert, ignore it. 289 if (MO.isDead() && Insert->definesRegister(Reg) && 290 !Insert->readsRegister(Reg)) 291 continue; 292 293 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 294 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 295 // from moving down, and we've already checked for that. 296 if (Reg == WebAssembly::ARGUMENTS) 297 continue; 298 // If the physical register is never modified, ignore it. 299 if (!MRI.isPhysRegModified(Reg)) 300 continue; 301 // Otherwise, it's a physical register with unknown liveness. 302 return false; 303 } 304 305 // If one of the operands isn't in SSA form, it has different values at 306 // different times, and we need to make sure we don't move our use across 307 // a different def. 308 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 309 MutableRegisters.push_back(Reg); 310 } 311 312 bool Read = false, Write = false, Effects = false, StackPointer = false; 313 Query(*Def, AA, Read, Write, Effects, StackPointer); 314 315 // If the instruction does not access memory and has no side effects, it has 316 // no additional dependencies. 317 bool HasMutableRegisters = !MutableRegisters.empty(); 318 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 319 return true; 320 321 // Scan through the intervening instructions between Def and Insert. 322 MachineBasicBlock::const_iterator D(Def), I(Insert); 323 for (--I; I != D; --I) { 324 bool InterveningRead = false; 325 bool InterveningWrite = false; 326 bool InterveningEffects = false; 327 bool InterveningStackPointer = false; 328 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 329 InterveningStackPointer); 330 if (Effects && InterveningEffects) 331 return false; 332 if (Read && InterveningWrite) 333 return false; 334 if (Write && (InterveningRead || InterveningWrite)) 335 return false; 336 if (StackPointer && InterveningStackPointer) 337 return false; 338 339 for (unsigned Reg : MutableRegisters) 340 for (const MachineOperand &MO : I->operands()) 341 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 342 return false; 343 } 344 345 return true; 346 } 347 348 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 349 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 350 const MachineBasicBlock &MBB, 351 const MachineRegisterInfo &MRI, 352 const MachineDominatorTree &MDT, 353 LiveIntervals &LIS, 354 WebAssemblyFunctionInfo &MFI) { 355 const LiveInterval &LI = LIS.getInterval(Reg); 356 357 const MachineInstr *OneUseInst = OneUse.getParent(); 358 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 359 360 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 361 if (&Use == &OneUse) 362 continue; 363 364 const MachineInstr *UseInst = Use.getParent(); 365 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 366 367 if (UseVNI != OneUseVNI) 368 continue; 369 370 const MachineInstr *OneUseInst = OneUse.getParent(); 371 if (UseInst == OneUseInst) { 372 // Another use in the same instruction. We need to ensure that the one 373 // selected use happens "before" it. 374 if (&OneUse > &Use) 375 return false; 376 } else { 377 // Test that the use is dominated by the one selected use. 378 while (!MDT.dominates(OneUseInst, UseInst)) { 379 // Actually, dominating is over-conservative. Test that the use would 380 // happen after the one selected use in the stack evaluation order. 381 // 382 // This is needed as a consequence of using implicit get_locals for 383 // uses and implicit set_locals for defs. 384 if (UseInst->getDesc().getNumDefs() == 0) 385 return false; 386 const MachineOperand &MO = UseInst->getOperand(0); 387 if (!MO.isReg()) 388 return false; 389 unsigned DefReg = MO.getReg(); 390 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 391 !MFI.isVRegStackified(DefReg)) 392 return false; 393 assert(MRI.hasOneUse(DefReg)); 394 const MachineOperand &NewUse = *MRI.use_begin(DefReg); 395 const MachineInstr *NewUseInst = NewUse.getParent(); 396 if (NewUseInst == OneUseInst) { 397 if (&OneUse > &NewUse) 398 return false; 399 break; 400 } 401 UseInst = NewUseInst; 402 } 403 } 404 } 405 return true; 406 } 407 408 /// Get the appropriate tee opcode for the given register class. 409 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 410 if (RC == &WebAssembly::I32RegClass) 411 return WebAssembly::TEE_I32; 412 if (RC == &WebAssembly::I64RegClass) 413 return WebAssembly::TEE_I64; 414 if (RC == &WebAssembly::F32RegClass) 415 return WebAssembly::TEE_F32; 416 if (RC == &WebAssembly::F64RegClass) 417 return WebAssembly::TEE_F64; 418 if (RC == &WebAssembly::V128RegClass) 419 return WebAssembly::TEE_V128; 420 llvm_unreachable("Unexpected register class"); 421 } 422 423 // Shrink LI to its uses, cleaning up LI. 424 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 425 if (LIS.shrinkToUses(&LI)) { 426 SmallVector<LiveInterval*, 4> SplitLIs; 427 LIS.splitSeparateComponents(LI, SplitLIs); 428 } 429 } 430 431 /// A single-use def in the same block with no intervening memory or register 432 /// dependencies; move the def down and nest it with the current instruction. 433 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 434 MachineInstr *Def, 435 MachineBasicBlock &MBB, 436 MachineInstr *Insert, LiveIntervals &LIS, 437 WebAssemblyFunctionInfo &MFI, 438 MachineRegisterInfo &MRI) { 439 DEBUG(dbgs() << "Move for single use: "; Def->dump()); 440 441 MBB.splice(Insert, &MBB, Def); 442 LIS.handleMove(*Def); 443 444 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 445 // No one else is using this register for anything so we can just stackify 446 // it in place. 447 MFI.stackifyVReg(Reg); 448 } else { 449 // The register may have unrelated uses or defs; create a new register for 450 // just our one def and use so that we can stackify it. 451 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 452 Def->getOperand(0).setReg(NewReg); 453 Op.setReg(NewReg); 454 455 // Tell LiveIntervals about the new register. 456 LIS.createAndComputeVirtRegInterval(NewReg); 457 458 // Tell LiveIntervals about the changes to the old register. 459 LiveInterval &LI = LIS.getInterval(Reg); 460 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 461 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 462 /*RemoveDeadValNo=*/true); 463 464 MFI.stackifyVReg(NewReg); 465 466 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 467 } 468 469 ImposeStackOrdering(Def); 470 return Def; 471 } 472 473 /// A trivially cloneable instruction; clone it and nest the new copy with the 474 /// current instruction. 475 static MachineInstr *RematerializeCheapDef( 476 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 477 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 478 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 479 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 480 DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 481 DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 482 483 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 484 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 485 Op.setReg(NewReg); 486 MachineInstr *Clone = &*std::prev(Insert); 487 LIS.InsertMachineInstrInMaps(*Clone); 488 LIS.createAndComputeVirtRegInterval(NewReg); 489 MFI.stackifyVReg(NewReg); 490 ImposeStackOrdering(Clone); 491 492 DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 493 494 // Shrink the interval. 495 bool IsDead = MRI.use_empty(Reg); 496 if (!IsDead) { 497 LiveInterval &LI = LIS.getInterval(Reg); 498 ShrinkToUses(LI, LIS); 499 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 500 } 501 502 // If that was the last use of the original, delete the original. 503 if (IsDead) { 504 DEBUG(dbgs() << " - Deleting original\n"); 505 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 506 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 507 LIS.removeInterval(Reg); 508 LIS.RemoveMachineInstrFromMaps(Def); 509 Def.eraseFromParent(); 510 } 511 512 return Clone; 513 } 514 515 /// A multiple-use def in the same block with no intervening memory or register 516 /// dependencies; move the def down, nest it with the current instruction, and 517 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 518 /// this: 519 /// 520 /// Reg = INST ... // Def 521 /// INST ..., Reg, ... // Insert 522 /// INST ..., Reg, ... 523 /// INST ..., Reg, ... 524 /// 525 /// to this: 526 /// 527 /// DefReg = INST ... // Def (to become the new Insert) 528 /// TeeReg, Reg = TEE_... DefReg 529 /// INST ..., TeeReg, ... // Insert 530 /// INST ..., Reg, ... 531 /// INST ..., Reg, ... 532 /// 533 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 534 /// resulting code. 535 static MachineInstr *MoveAndTeeForMultiUse( 536 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 537 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 538 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 539 DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 540 541 // Move Def into place. 542 MBB.splice(Insert, &MBB, Def); 543 LIS.handleMove(*Def); 544 545 // Create the Tee and attach the registers. 546 const auto *RegClass = MRI.getRegClass(Reg); 547 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 548 unsigned DefReg = MRI.createVirtualRegister(RegClass); 549 MachineOperand &DefMO = Def->getOperand(0); 550 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 551 TII->get(GetTeeOpcode(RegClass)), TeeReg) 552 .addReg(Reg, RegState::Define) 553 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 554 Op.setReg(TeeReg); 555 DefMO.setReg(DefReg); 556 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 557 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 558 559 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 560 LiveInterval &LI = LIS.getInterval(Reg); 561 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 562 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 563 I->start = TeeIdx; 564 ValNo->def = TeeIdx; 565 ShrinkToUses(LI, LIS); 566 567 // Finish stackifying the new regs. 568 LIS.createAndComputeVirtRegInterval(TeeReg); 569 LIS.createAndComputeVirtRegInterval(DefReg); 570 MFI.stackifyVReg(DefReg); 571 MFI.stackifyVReg(TeeReg); 572 ImposeStackOrdering(Def); 573 ImposeStackOrdering(Tee); 574 575 DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 576 DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 577 return Def; 578 } 579 580 namespace { 581 /// A stack for walking the tree of instructions being built, visiting the 582 /// MachineOperands in DFS order. 583 class TreeWalkerState { 584 typedef MachineInstr::mop_iterator mop_iterator; 585 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 586 typedef iterator_range<mop_reverse_iterator> RangeTy; 587 SmallVector<RangeTy, 4> Worklist; 588 589 public: 590 explicit TreeWalkerState(MachineInstr *Insert) { 591 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 592 if (Range.begin() != Range.end()) 593 Worklist.push_back(reverse(Range)); 594 } 595 596 bool Done() const { return Worklist.empty(); } 597 598 MachineOperand &Pop() { 599 RangeTy &Range = Worklist.back(); 600 MachineOperand &Op = *Range.begin(); 601 Range = drop_begin(Range, 1); 602 if (Range.begin() == Range.end()) 603 Worklist.pop_back(); 604 assert((Worklist.empty() || 605 Worklist.back().begin() != Worklist.back().end()) && 606 "Empty ranges shouldn't remain in the worklist"); 607 return Op; 608 } 609 610 /// Push Instr's operands onto the stack to be visited. 611 void PushOperands(MachineInstr *Instr) { 612 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 613 if (Range.begin() != Range.end()) 614 Worklist.push_back(reverse(Range)); 615 } 616 617 /// Some of Instr's operands are on the top of the stack; remove them and 618 /// re-insert them starting from the beginning (because we've commuted them). 619 void ResetTopOperands(MachineInstr *Instr) { 620 assert(HasRemainingOperands(Instr) && 621 "Reseting operands should only be done when the instruction has " 622 "an operand still on the stack"); 623 Worklist.back() = reverse(Instr->explicit_uses()); 624 } 625 626 /// Test whether Instr has operands remaining to be visited at the top of 627 /// the stack. 628 bool HasRemainingOperands(const MachineInstr *Instr) const { 629 if (Worklist.empty()) 630 return false; 631 const RangeTy &Range = Worklist.back(); 632 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 633 } 634 635 /// Test whether the given register is present on the stack, indicating an 636 /// operand in the tree that we haven't visited yet. Moving a definition of 637 /// Reg to a point in the tree after that would change its value. 638 /// 639 /// This is needed as a consequence of using implicit get_locals for 640 /// uses and implicit set_locals for defs. 641 bool IsOnStack(unsigned Reg) const { 642 for (const RangeTy &Range : Worklist) 643 for (const MachineOperand &MO : Range) 644 if (MO.isReg() && MO.getReg() == Reg) 645 return true; 646 return false; 647 } 648 }; 649 650 /// State to keep track of whether commuting is in flight or whether it's been 651 /// tried for the current instruction and didn't work. 652 class CommutingState { 653 /// There are effectively three states: the initial state where we haven't 654 /// started commuting anything and we don't know anything yet, the tenative 655 /// state where we've commuted the operands of the current instruction and are 656 /// revisting it, and the declined state where we've reverted the operands 657 /// back to their original order and will no longer commute it further. 658 bool TentativelyCommuting; 659 bool Declined; 660 661 /// During the tentative state, these hold the operand indices of the commuted 662 /// operands. 663 unsigned Operand0, Operand1; 664 665 public: 666 CommutingState() : TentativelyCommuting(false), Declined(false) {} 667 668 /// Stackification for an operand was not successful due to ordering 669 /// constraints. If possible, and if we haven't already tried it and declined 670 /// it, commute Insert's operands and prepare to revisit it. 671 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 672 const WebAssemblyInstrInfo *TII) { 673 if (TentativelyCommuting) { 674 assert(!Declined && 675 "Don't decline commuting until you've finished trying it"); 676 // Commuting didn't help. Revert it. 677 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 678 TentativelyCommuting = false; 679 Declined = true; 680 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 681 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 682 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 683 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 684 // Tentatively commute the operands and try again. 685 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 686 TreeWalker.ResetTopOperands(Insert); 687 TentativelyCommuting = true; 688 Declined = false; 689 } 690 } 691 } 692 693 /// Stackification for some operand was successful. Reset to the default 694 /// state. 695 void Reset() { 696 TentativelyCommuting = false; 697 Declined = false; 698 } 699 }; 700 } // end anonymous namespace 701 702 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 703 DEBUG(dbgs() << "********** Register Stackifying **********\n" 704 "********** Function: " 705 << MF.getName() << '\n'); 706 707 bool Changed = false; 708 MachineRegisterInfo &MRI = MF.getRegInfo(); 709 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 710 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 711 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 712 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 713 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 714 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 715 716 // Walk the instructions from the bottom up. Currently we don't look past 717 // block boundaries, and the blocks aren't ordered so the block visitation 718 // order isn't significant, but we may want to change this in the future. 719 for (MachineBasicBlock &MBB : MF) { 720 // Don't use a range-based for loop, because we modify the list as we're 721 // iterating over it and the end iterator may change. 722 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 723 MachineInstr *Insert = &*MII; 724 // Don't nest anything inside an inline asm, because we don't have 725 // constraints for $push inputs. 726 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 727 continue; 728 729 // Ignore debugging intrinsics. 730 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 731 continue; 732 733 // Iterate through the inputs in reverse order, since we'll be pulling 734 // operands off the stack in LIFO order. 735 CommutingState Commuting; 736 TreeWalkerState TreeWalker(Insert); 737 while (!TreeWalker.Done()) { 738 MachineOperand &Op = TreeWalker.Pop(); 739 740 // We're only interested in explicit virtual register operands. 741 if (!Op.isReg()) 742 continue; 743 744 unsigned Reg = Op.getReg(); 745 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 746 assert(!Op.isImplicit() && 747 "explicit_uses() should only iterate over explicit operands"); 748 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 749 continue; 750 751 // Identify the definition for this register at this point. 752 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 753 if (!Def) 754 continue; 755 756 // Don't nest an INLINE_ASM def into anything, because we don't have 757 // constraints for $pop outputs. 758 if (Def->getOpcode() == TargetOpcode::INLINEASM) 759 continue; 760 761 // Argument instructions represent live-in registers and not real 762 // instructions. 763 if (WebAssembly::isArgument(*Def)) 764 continue; 765 766 // Decide which strategy to take. Prefer to move a single-use value 767 // over cloning it, and prefer cloning over introducing a tee. 768 // For moving, we require the def to be in the same block as the use; 769 // this makes things simpler (LiveIntervals' handleMove function only 770 // supports intra-block moves) and it's MachineSink's job to catch all 771 // the sinking opportunities anyway. 772 bool SameBlock = Def->getParent() == &MBB; 773 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 774 !TreeWalker.IsOnStack(Reg); 775 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 776 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 777 } else if (ShouldRematerialize(*Def, AA, TII)) { 778 Insert = 779 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 780 LIS, MFI, MRI, TII, TRI); 781 } else if (CanMove && 782 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 783 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 784 MRI, TII); 785 } else { 786 // We failed to stackify the operand. If the problem was ordering 787 // constraints, Commuting may be able to help. 788 if (!CanMove && SameBlock) 789 Commuting.MaybeCommute(Insert, TreeWalker, TII); 790 // Proceed to the next operand. 791 continue; 792 } 793 794 // We stackified an operand. Add the defining instruction's operands to 795 // the worklist stack now to continue to build an ever deeper tree. 796 Commuting.Reset(); 797 TreeWalker.PushOperands(Insert); 798 } 799 800 // If we stackified any operands, skip over the tree to start looking for 801 // the next instruction we can build a tree on. 802 if (Insert != &*MII) { 803 ImposeStackOrdering(&*MII); 804 MII = MachineBasicBlock::iterator(Insert).getReverse(); 805 Changed = true; 806 } 807 } 808 } 809 810 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 811 // that it never looks like a use-before-def. 812 if (Changed) { 813 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 814 for (MachineBasicBlock &MBB : MF) 815 MBB.addLiveIn(WebAssembly::VALUE_STACK); 816 } 817 818 #ifndef NDEBUG 819 // Verify that pushes and pops are performed in LIFO order. 820 SmallVector<unsigned, 0> Stack; 821 for (MachineBasicBlock &MBB : MF) { 822 for (MachineInstr &MI : MBB) { 823 if (MI.isDebugValue()) 824 continue; 825 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 826 if (!MO.isReg()) 827 continue; 828 unsigned Reg = MO.getReg(); 829 830 if (MFI.isVRegStackified(Reg)) { 831 if (MO.isDef()) 832 Stack.push_back(Reg); 833 else 834 assert(Stack.pop_back_val() == Reg && 835 "Register stack pop should be paired with a push"); 836 } 837 } 838 } 839 // TODO: Generalize this code to support keeping values on the stack across 840 // basic block boundaries. 841 assert(Stack.empty() && 842 "Register stack pushes and pops should be balanced"); 843 } 844 #endif 845 846 return Changed; 847 } 848