1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// expression don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "WebAssembly.h" 24 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 using namespace llvm; 37 38 #define DEBUG_TYPE "wasm-reg-stackify" 39 40 namespace { 41 class WebAssemblyRegStackify final : public MachineFunctionPass { 42 const char *getPassName() const override { 43 return "WebAssembly Register Stackify"; 44 } 45 46 void getAnalysisUsage(AnalysisUsage &AU) const override { 47 AU.setPreservesCFG(); 48 AU.addRequired<AAResultsWrapperPass>(); 49 AU.addRequired<MachineDominatorTree>(); 50 AU.addRequired<LiveIntervals>(); 51 AU.addPreserved<MachineBlockFrequencyInfo>(); 52 AU.addPreserved<SlotIndexes>(); 53 AU.addPreserved<LiveIntervals>(); 54 AU.addPreservedID(LiveVariablesID); 55 AU.addPreserved<MachineDominatorTree>(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 bool runOnMachineFunction(MachineFunction &MF) override; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 64 }; 65 } // end anonymous namespace 66 67 char WebAssemblyRegStackify::ID = 0; 68 FunctionPass *llvm::createWebAssemblyRegStackify() { 69 return new WebAssemblyRegStackify(); 70 } 71 72 // Decorate the given instruction with implicit operands that enforce the 73 // expression stack ordering constraints for an instruction which is on 74 // the expression stack. 75 static void ImposeStackOrdering(MachineInstr *MI) { 76 // Write the opaque EXPR_STACK register. 77 if (!MI->definesRegister(WebAssembly::EXPR_STACK)) 78 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 79 /*isDef=*/true, 80 /*isImp=*/true)); 81 82 // Also read the opaque EXPR_STACK register. 83 if (!MI->readsRegister(WebAssembly::EXPR_STACK)) 84 MI->addOperand(MachineOperand::CreateReg(WebAssembly::EXPR_STACK, 85 /*isDef=*/false, 86 /*isImp=*/true)); 87 } 88 89 // Test whether it's safe to move Def to just before Insert. 90 // TODO: Compute memory dependencies in a way that doesn't require always 91 // walking the block. 92 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 93 // more precise. 94 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 95 AliasAnalysis &AA, const LiveIntervals &LIS, 96 const MachineRegisterInfo &MRI) { 97 assert(Def->getParent() == Insert->getParent()); 98 bool SawStore = false, SawSideEffects = false; 99 MachineBasicBlock::const_iterator D(Def), I(Insert); 100 101 // Check for register dependencies. 102 for (const MachineOperand &MO : Def->operands()) { 103 if (!MO.isReg() || MO.isUndef()) 104 continue; 105 unsigned Reg = MO.getReg(); 106 107 // If the register is dead here and at Insert, ignore it. 108 if (MO.isDead() && Insert->definesRegister(Reg) && 109 !Insert->readsRegister(Reg)) 110 continue; 111 112 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 113 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 114 // from moving down, and we've already checked for that. 115 if (Reg == WebAssembly::ARGUMENTS) 116 continue; 117 // If the physical register is never modified, ignore it. 118 if (!MRI.isPhysRegModified(Reg)) 119 continue; 120 // Otherwise, it's a physical register with unknown liveness. 121 return false; 122 } 123 124 // Ask LiveIntervals whether moving this virtual register use or def to 125 // Insert will change which value numbers are seen. 126 const LiveInterval &LI = LIS.getInterval(Reg); 127 VNInfo *DefVNI = 128 MO.isDef() ? LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()) 129 : LI.getVNInfoBefore(LIS.getInstructionIndex(*Def)); 130 assert(DefVNI && "Instruction input missing value number"); 131 VNInfo *InsVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*Insert)); 132 if (InsVNI && DefVNI != InsVNI) 133 return false; 134 } 135 136 SawStore = Def->isCall() || Def->mayStore(); 137 // Check for memory dependencies and side effects. 138 for (--I; I != D; --I) 139 SawSideEffects |= !I->isSafeToMove(&AA, SawStore); 140 return !(SawStore && Def->mayLoad() && !Def->isInvariantLoad(&AA)) && 141 !(SawSideEffects && !Def->isSafeToMove(&AA, SawStore)); 142 } 143 144 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 145 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 146 const MachineBasicBlock &MBB, 147 const MachineRegisterInfo &MRI, 148 const MachineDominatorTree &MDT, 149 LiveIntervals &LIS) { 150 const LiveInterval &LI = LIS.getInterval(Reg); 151 152 const MachineInstr *OneUseInst = OneUse.getParent(); 153 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 154 155 for (const MachineOperand &Use : MRI.use_operands(Reg)) { 156 if (&Use == &OneUse) 157 continue; 158 159 const MachineInstr *UseInst = Use.getParent(); 160 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 161 162 if (UseVNI != OneUseVNI) 163 continue; 164 165 const MachineInstr *OneUseInst = OneUse.getParent(); 166 if (UseInst->getOpcode() == TargetOpcode::PHI) { 167 // Test that the PHI use, which happens on the CFG edge rather than 168 // within the PHI's own block, is dominated by the one selected use. 169 const MachineBasicBlock *Pred = 170 UseInst->getOperand(&Use - &UseInst->getOperand(0) + 1).getMBB(); 171 if (!MDT.dominates(&MBB, Pred)) 172 return false; 173 } else if (UseInst == OneUseInst) { 174 // Another use in the same instruction. We need to ensure that the one 175 // selected use happens "before" it. 176 if (&OneUse > &Use) 177 return false; 178 } else { 179 // Test that the use is dominated by the one selected use. 180 if (!MDT.dominates(OneUseInst, UseInst)) 181 return false; 182 } 183 } 184 return true; 185 } 186 187 /// Get the appropriate tee_local opcode for the given register class. 188 static unsigned GetTeeLocalOpcode(const TargetRegisterClass *RC) { 189 if (RC == &WebAssembly::I32RegClass) 190 return WebAssembly::TEE_LOCAL_I32; 191 if (RC == &WebAssembly::I64RegClass) 192 return WebAssembly::TEE_LOCAL_I64; 193 if (RC == &WebAssembly::F32RegClass) 194 return WebAssembly::TEE_LOCAL_F32; 195 if (RC == &WebAssembly::F64RegClass) 196 return WebAssembly::TEE_LOCAL_F64; 197 llvm_unreachable("Unexpected register class"); 198 } 199 200 /// A single-use def in the same block with no intervening memory or register 201 /// dependencies; move the def down and nest it with the current instruction. 202 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand& Op, 203 MachineInstr *Def, 204 MachineBasicBlock &MBB, 205 MachineInstr *Insert, LiveIntervals &LIS, 206 WebAssemblyFunctionInfo &MFI, 207 MachineRegisterInfo &MRI) { 208 MBB.splice(Insert, &MBB, Def); 209 LIS.handleMove(*Def); 210 211 if (MRI.hasOneDef(Reg)) { 212 MFI.stackifyVReg(Reg); 213 } else { 214 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 215 Def->getOperand(0).setReg(NewReg); 216 Op.setReg(NewReg); 217 218 // Tell LiveIntervals about the new register. 219 LIS.createAndComputeVirtRegInterval(NewReg); 220 221 // Tell LiveIntervals about the changes to the old register. 222 LiveInterval &LI = LIS.getInterval(Reg); 223 LIS.removeVRegDefAt(LI, LIS.getInstructionIndex(*Def).getRegSlot()); 224 LIS.shrinkToUses(&LI); 225 226 MFI.stackifyVReg(NewReg); 227 } 228 229 ImposeStackOrdering(Def); 230 return Def; 231 } 232 233 /// A trivially cloneable instruction; clone it and nest the new copy with the 234 /// current instruction. 235 static MachineInstr * 236 RematerializeCheapDef(unsigned Reg, MachineOperand &Op, MachineInstr *Def, 237 MachineBasicBlock &MBB, MachineInstr *Insert, 238 LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 239 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII, 240 const WebAssemblyRegisterInfo *TRI) { 241 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 242 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 243 Op.setReg(NewReg); 244 MachineInstr *Clone = &*std::prev(MachineBasicBlock::instr_iterator(Insert)); 245 LIS.InsertMachineInstrInMaps(*Clone); 246 LIS.createAndComputeVirtRegInterval(NewReg); 247 MFI.stackifyVReg(NewReg); 248 ImposeStackOrdering(Clone); 249 250 // Shrink the interval. 251 bool IsDead = MRI.use_empty(Reg); 252 if (!IsDead) { 253 LiveInterval &LI = LIS.getInterval(Reg); 254 LIS.shrinkToUses(&LI); 255 IsDead = !LI.liveAt(LIS.getInstructionIndex(*Def).getDeadSlot()); 256 } 257 258 // If that was the last use of the original, delete the original. 259 if (IsDead) { 260 SlotIndex Idx = LIS.getInstructionIndex(*Def).getRegSlot(); 261 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 262 LIS.removeInterval(Reg); 263 LIS.RemoveMachineInstrFromMaps(*Def); 264 Def->eraseFromParent(); 265 } 266 267 return Clone; 268 } 269 270 /// A multiple-use def in the same block with no intervening memory or register 271 /// dependencies; move the def down, nest it with the current instruction, and 272 /// insert a tee_local to satisfy the rest of the uses. As an illustration, 273 /// rewrite this: 274 /// 275 /// Reg = INST ... // Def 276 /// INST ..., Reg, ... // Insert 277 /// INST ..., Reg, ... 278 /// INST ..., Reg, ... 279 /// 280 /// to this: 281 /// 282 /// DefReg = INST ... // Def (to become the new Insert) 283 /// TeeReg, NewReg = TEE_LOCAL_... DefReg 284 /// INST ..., TeeReg, ... // Insert 285 /// INST ..., NewReg, ... 286 /// INST ..., NewReg, ... 287 /// 288 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 289 /// resulting code. 290 static MachineInstr *MoveAndTeeForMultiUse( 291 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 292 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 293 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 294 MBB.splice(Insert, &MBB, Def); 295 LIS.handleMove(*Def); 296 const auto *RegClass = MRI.getRegClass(Reg); 297 unsigned NewReg = MRI.createVirtualRegister(RegClass); 298 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 299 unsigned DefReg = MRI.createVirtualRegister(RegClass); 300 MRI.replaceRegWith(Reg, NewReg); 301 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 302 TII->get(GetTeeLocalOpcode(RegClass)), TeeReg) 303 .addReg(NewReg, RegState::Define) 304 .addReg(DefReg); 305 Op.setReg(TeeReg); 306 Def->getOperand(0).setReg(DefReg); 307 LIS.InsertMachineInstrInMaps(*Tee); 308 LIS.removeInterval(Reg); 309 LIS.createAndComputeVirtRegInterval(NewReg); 310 LIS.createAndComputeVirtRegInterval(TeeReg); 311 LIS.createAndComputeVirtRegInterval(DefReg); 312 MFI.stackifyVReg(DefReg); 313 MFI.stackifyVReg(TeeReg); 314 ImposeStackOrdering(Def); 315 ImposeStackOrdering(Tee); 316 return Def; 317 } 318 319 namespace { 320 /// A stack for walking the tree of instructions being built, visiting the 321 /// MachineOperands in DFS order. 322 class TreeWalkerState { 323 typedef MachineInstr::mop_iterator mop_iterator; 324 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 325 typedef iterator_range<mop_reverse_iterator> RangeTy; 326 SmallVector<RangeTy, 4> Worklist; 327 328 public: 329 explicit TreeWalkerState(MachineInstr *Insert) { 330 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 331 if (Range.begin() != Range.end()) 332 Worklist.push_back(reverse(Range)); 333 } 334 335 bool Done() const { return Worklist.empty(); } 336 337 MachineOperand &Pop() { 338 RangeTy &Range = Worklist.back(); 339 MachineOperand &Op = *Range.begin(); 340 Range = drop_begin(Range, 1); 341 if (Range.begin() == Range.end()) 342 Worklist.pop_back(); 343 assert((Worklist.empty() || 344 Worklist.back().begin() != Worklist.back().end()) && 345 "Empty ranges shouldn't remain in the worklist"); 346 return Op; 347 } 348 349 /// Push Instr's operands onto the stack to be visited. 350 void PushOperands(MachineInstr *Instr) { 351 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 352 if (Range.begin() != Range.end()) 353 Worklist.push_back(reverse(Range)); 354 } 355 356 /// Some of Instr's operands are on the top of the stack; remove them and 357 /// re-insert them starting from the beginning (because we've commuted them). 358 void ResetTopOperands(MachineInstr *Instr) { 359 assert(HasRemainingOperands(Instr) && 360 "Reseting operands should only be done when the instruction has " 361 "an operand still on the stack"); 362 Worklist.back() = reverse(Instr->explicit_uses()); 363 } 364 365 /// Test whether Instr has operands remaining to be visited at the top of 366 /// the stack. 367 bool HasRemainingOperands(const MachineInstr *Instr) const { 368 if (Worklist.empty()) 369 return false; 370 const RangeTy &Range = Worklist.back(); 371 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 372 } 373 374 /// Test whether the given register is present on the stack, indicating an 375 /// operand in the tree that we haven't visited yet. Moving a definition of 376 /// Reg to a point in the tree after that would change its value. 377 bool IsOnStack(unsigned Reg) const { 378 for (const RangeTy &Range : Worklist) 379 for (const MachineOperand &MO : Range) 380 if (MO.isReg() && MO.getReg() == Reg) 381 return true; 382 return false; 383 } 384 }; 385 386 /// State to keep track of whether commuting is in flight or whether it's been 387 /// tried for the current instruction and didn't work. 388 class CommutingState { 389 /// There are effectively three states: the initial state where we haven't 390 /// started commuting anything and we don't know anything yet, the tenative 391 /// state where we've commuted the operands of the current instruction and are 392 /// revisting it, and the declined state where we've reverted the operands 393 /// back to their original order and will no longer commute it further. 394 bool TentativelyCommuting; 395 bool Declined; 396 397 /// During the tentative state, these hold the operand indices of the commuted 398 /// operands. 399 unsigned Operand0, Operand1; 400 401 public: 402 CommutingState() : TentativelyCommuting(false), Declined(false) {} 403 404 /// Stackification for an operand was not successful due to ordering 405 /// constraints. If possible, and if we haven't already tried it and declined 406 /// it, commute Insert's operands and prepare to revisit it. 407 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 408 const WebAssemblyInstrInfo *TII) { 409 if (TentativelyCommuting) { 410 assert(!Declined && 411 "Don't decline commuting until you've finished trying it"); 412 // Commuting didn't help. Revert it. 413 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 414 TentativelyCommuting = false; 415 Declined = true; 416 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 417 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 418 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 419 if (TII->findCommutedOpIndices(Insert, Operand0, Operand1)) { 420 // Tentatively commute the operands and try again. 421 TII->commuteInstruction(Insert, /*NewMI=*/false, Operand0, Operand1); 422 TreeWalker.ResetTopOperands(Insert); 423 TentativelyCommuting = true; 424 Declined = false; 425 } 426 } 427 } 428 429 /// Stackification for some operand was successful. Reset to the default 430 /// state. 431 void Reset() { 432 TentativelyCommuting = false; 433 Declined = false; 434 } 435 }; 436 } // end anonymous namespace 437 438 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 439 DEBUG(dbgs() << "********** Register Stackifying **********\n" 440 "********** Function: " 441 << MF.getName() << '\n'); 442 443 bool Changed = false; 444 MachineRegisterInfo &MRI = MF.getRegInfo(); 445 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 446 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 447 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 448 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 449 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 450 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 451 452 // Walk the instructions from the bottom up. Currently we don't look past 453 // block boundaries, and the blocks aren't ordered so the block visitation 454 // order isn't significant, but we may want to change this in the future. 455 for (MachineBasicBlock &MBB : MF) { 456 // Don't use a range-based for loop, because we modify the list as we're 457 // iterating over it and the end iterator may change. 458 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 459 MachineInstr *Insert = &*MII; 460 // Don't nest anything inside a phi. 461 if (Insert->getOpcode() == TargetOpcode::PHI) 462 break; 463 464 // Don't nest anything inside an inline asm, because we don't have 465 // constraints for $push inputs. 466 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 467 continue; 468 469 // Ignore debugging intrinsics. 470 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 471 continue; 472 473 // Iterate through the inputs in reverse order, since we'll be pulling 474 // operands off the stack in LIFO order. 475 CommutingState Commuting; 476 TreeWalkerState TreeWalker(Insert); 477 while (!TreeWalker.Done()) { 478 MachineOperand &Op = TreeWalker.Pop(); 479 480 // We're only interested in explicit virtual register operands. 481 if (!Op.isReg()) 482 continue; 483 484 unsigned Reg = Op.getReg(); 485 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 486 assert(!Op.isImplicit() && 487 "explicit_uses() should only iterate over explicit operands"); 488 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 489 continue; 490 491 // Identify the definition for this register at this point. Most 492 // registers are in SSA form here so we try a quick MRI query first. 493 MachineInstr *Def = MRI.getUniqueVRegDef(Reg); 494 if (!Def) { 495 // MRI doesn't know what the Def is. Try asking LIS. 496 const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 497 LIS.getInstructionIndex(*Insert)); 498 if (!ValNo) 499 continue; 500 Def = LIS.getInstructionFromIndex(ValNo->def); 501 if (!Def) 502 continue; 503 } 504 505 // Don't nest an INLINE_ASM def into anything, because we don't have 506 // constraints for $pop outputs. 507 if (Def->getOpcode() == TargetOpcode::INLINEASM) 508 continue; 509 510 // Don't nest PHIs inside of anything. 511 if (Def->getOpcode() == TargetOpcode::PHI) 512 continue; 513 514 // Argument instructions represent live-in registers and not real 515 // instructions. 516 if (Def->getOpcode() == WebAssembly::ARGUMENT_I32 || 517 Def->getOpcode() == WebAssembly::ARGUMENT_I64 || 518 Def->getOpcode() == WebAssembly::ARGUMENT_F32 || 519 Def->getOpcode() == WebAssembly::ARGUMENT_F64) 520 continue; 521 522 // Decide which strategy to take. Prefer to move a single-use value 523 // over cloning it, and prefer cloning over introducing a tee_local. 524 // For moving, we require the def to be in the same block as the use; 525 // this makes things simpler (LiveIntervals' handleMove function only 526 // supports intra-block moves) and it's MachineSink's job to catch all 527 // the sinking opportunities anyway. 528 bool SameBlock = Def->getParent() == &MBB; 529 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, LIS, MRI) && 530 !TreeWalker.IsOnStack(Reg); 531 if (CanMove && MRI.hasOneUse(Reg)) { 532 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 533 } else if (Def->isAsCheapAsAMove() && 534 TII->isTriviallyReMaterializable(Def, &AA)) { 535 Insert = RematerializeCheapDef(Reg, Op, Def, MBB, Insert, LIS, MFI, 536 MRI, TII, TRI); 537 } else if (CanMove && 538 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS)) { 539 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 540 MRI, TII); 541 } else { 542 // We failed to stackify the operand. If the problem was ordering 543 // constraints, Commuting may be able to help. 544 if (!CanMove && SameBlock) 545 Commuting.MaybeCommute(Insert, TreeWalker, TII); 546 // Proceed to the next operand. 547 continue; 548 } 549 550 // We stackified an operand. Add the defining instruction's operands to 551 // the worklist stack now to continue to build an ever deeper tree. 552 Commuting.Reset(); 553 TreeWalker.PushOperands(Insert); 554 } 555 556 // If we stackified any operands, skip over the tree to start looking for 557 // the next instruction we can build a tree on. 558 if (Insert != &*MII) { 559 ImposeStackOrdering(&*MII); 560 MII = std::prev( 561 llvm::make_reverse_iterator(MachineBasicBlock::iterator(Insert))); 562 Changed = true; 563 } 564 } 565 } 566 567 // If we used EXPR_STACK anywhere, add it to the live-in sets everywhere so 568 // that it never looks like a use-before-def. 569 if (Changed) { 570 MF.getRegInfo().addLiveIn(WebAssembly::EXPR_STACK); 571 for (MachineBasicBlock &MBB : MF) 572 MBB.addLiveIn(WebAssembly::EXPR_STACK); 573 } 574 575 #ifndef NDEBUG 576 // Verify that pushes and pops are performed in LIFO order. 577 SmallVector<unsigned, 0> Stack; 578 for (MachineBasicBlock &MBB : MF) { 579 for (MachineInstr &MI : MBB) { 580 if (MI.isDebugValue()) 581 continue; 582 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 583 if (!MO.isReg()) 584 continue; 585 unsigned Reg = MO.getReg(); 586 587 if (MFI.isVRegStackified(Reg)) { 588 if (MO.isDef()) 589 Stack.push_back(Reg); 590 else 591 assert(Stack.pop_back_val() == Reg && 592 "Register stack pop should be paired with a push"); 593 } 594 } 595 } 596 // TODO: Generalize this code to support keeping values on the stack across 597 // basic block boundaries. 598 assert(Stack.empty() && 599 "Register stack pushes and pops should be balanced"); 600 } 601 #endif 602 603 return Changed; 604 } 605