1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// This file implements a register stacking pass. 12 /// 13 /// This pass reorders instructions to put register uses and defs in an order 14 /// such that they form single-use expression trees. Registers fitting this form 15 /// are then marked as "stackified", meaning references to them are replaced by 16 /// "push" and "pop" from the value stack. 17 /// 18 /// This is primarily a code size optimization, since temporary values on the 19 /// value stack don't need to be named. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_* 24 #include "WebAssembly.h" 25 #include "WebAssemblyMachineFunctionInfo.h" 26 #include "WebAssemblySubtarget.h" 27 #include "WebAssemblyUtilities.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/CodeGen/LiveIntervals.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "wasm-reg-stackify" 42 43 namespace { 44 class WebAssemblyRegStackify final : public MachineFunctionPass { 45 StringRef getPassName() const override { 46 return "WebAssembly Register Stackify"; 47 } 48 49 void getAnalysisUsage(AnalysisUsage &AU) const override { 50 AU.setPreservesCFG(); 51 AU.addRequired<AAResultsWrapperPass>(); 52 AU.addRequired<MachineDominatorTree>(); 53 AU.addRequired<LiveIntervals>(); 54 AU.addPreserved<MachineBlockFrequencyInfo>(); 55 AU.addPreserved<SlotIndexes>(); 56 AU.addPreserved<LiveIntervals>(); 57 AU.addPreservedID(LiveVariablesID); 58 AU.addPreserved<MachineDominatorTree>(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 bool runOnMachineFunction(MachineFunction &MF) override; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {} 67 }; 68 } // end anonymous namespace 69 70 char WebAssemblyRegStackify::ID = 0; 71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE, 72 "Reorder instructions to use the WebAssembly value stack", 73 false, false) 74 75 FunctionPass *llvm::createWebAssemblyRegStackify() { 76 return new WebAssemblyRegStackify(); 77 } 78 79 // Decorate the given instruction with implicit operands that enforce the 80 // expression stack ordering constraints for an instruction which is on 81 // the expression stack. 82 static void ImposeStackOrdering(MachineInstr *MI) { 83 // Write the opaque VALUE_STACK register. 84 if (!MI->definesRegister(WebAssembly::VALUE_STACK)) 85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 86 /*isDef=*/true, 87 /*isImp=*/true)); 88 89 // Also read the opaque VALUE_STACK register. 90 if (!MI->readsRegister(WebAssembly::VALUE_STACK)) 91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK, 92 /*isDef=*/false, 93 /*isImp=*/true)); 94 } 95 96 // Convert an IMPLICIT_DEF instruction into an instruction which defines 97 // a constant zero value. 98 static void ConvertImplicitDefToConstZero(MachineInstr *MI, 99 MachineRegisterInfo &MRI, 100 const TargetInstrInfo *TII, 101 MachineFunction &MF) { 102 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF); 103 104 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg()); 105 if (RegClass == &WebAssembly::I32RegClass) { 106 MI->setDesc(TII->get(WebAssembly::CONST_I32)); 107 MI->addOperand(MachineOperand::CreateImm(0)); 108 } else if (RegClass == &WebAssembly::I64RegClass) { 109 MI->setDesc(TII->get(WebAssembly::CONST_I64)); 110 MI->addOperand(MachineOperand::CreateImm(0)); 111 } else if (RegClass == &WebAssembly::F32RegClass) { 112 MI->setDesc(TII->get(WebAssembly::CONST_F32)); 113 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 114 Type::getFloatTy(MF.getFunction().getContext()))); 115 MI->addOperand(MachineOperand::CreateFPImm(Val)); 116 } else if (RegClass == &WebAssembly::F64RegClass) { 117 MI->setDesc(TII->get(WebAssembly::CONST_F64)); 118 ConstantFP *Val = cast<ConstantFP>(Constant::getNullValue( 119 Type::getDoubleTy(MF.getFunction().getContext()))); 120 MI->addOperand(MachineOperand::CreateFPImm(Val)); 121 } else if (RegClass == &WebAssembly::V128RegClass) { 122 // TODO: make splat instead of constant 123 MI->setDesc(TII->get(WebAssembly::CONST_V128_v16i8)); 124 for (int I = 0; I < 16; ++I) 125 MI->addOperand(MachineOperand::CreateImm(0)); 126 } else { 127 llvm_unreachable("Unexpected reg class"); 128 } 129 } 130 131 // Determine whether a call to the callee referenced by 132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side 133 // effects. 134 static void QueryCallee(const MachineInstr &MI, unsigned CalleeOpNo, bool &Read, 135 bool &Write, bool &Effects, bool &StackPointer) { 136 // All calls can use the stack pointer. 137 StackPointer = true; 138 139 const MachineOperand &MO = MI.getOperand(CalleeOpNo); 140 if (MO.isGlobal()) { 141 const Constant *GV = MO.getGlobal(); 142 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 143 if (!GA->isInterposable()) 144 GV = GA->getAliasee(); 145 146 if (const Function *F = dyn_cast<Function>(GV)) { 147 if (!F->doesNotThrow()) 148 Effects = true; 149 if (F->doesNotAccessMemory()) 150 return; 151 if (F->onlyReadsMemory()) { 152 Read = true; 153 return; 154 } 155 } 156 } 157 158 // Assume the worst. 159 Write = true; 160 Read = true; 161 Effects = true; 162 } 163 164 // Determine whether MI reads memory, writes memory, has side effects, 165 // and/or uses the stack pointer value. 166 static void Query(const MachineInstr &MI, AliasAnalysis &AA, bool &Read, 167 bool &Write, bool &Effects, bool &StackPointer) { 168 assert(!MI.isTerminator()); 169 170 if (MI.isDebugInstr() || MI.isPosition()) 171 return; 172 173 // Check for loads. 174 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(&AA)) 175 Read = true; 176 177 // Check for stores. 178 if (MI.mayStore()) { 179 Write = true; 180 181 // Check for stores to __stack_pointer. 182 for (auto MMO : MI.memoperands()) { 183 const MachinePointerInfo &MPI = MMO->getPointerInfo(); 184 if (MPI.V.is<const PseudoSourceValue *>()) { 185 auto PSV = MPI.V.get<const PseudoSourceValue *>(); 186 if (const ExternalSymbolPseudoSourceValue *EPSV = 187 dyn_cast<ExternalSymbolPseudoSourceValue>(PSV)) 188 if (StringRef(EPSV->getSymbol()) == "__stack_pointer") { 189 StackPointer = true; 190 } 191 } 192 } 193 } else if (MI.hasOrderedMemoryRef()) { 194 switch (MI.getOpcode()) { 195 case WebAssembly::DIV_S_I32: 196 case WebAssembly::DIV_S_I64: 197 case WebAssembly::REM_S_I32: 198 case WebAssembly::REM_S_I64: 199 case WebAssembly::DIV_U_I32: 200 case WebAssembly::DIV_U_I64: 201 case WebAssembly::REM_U_I32: 202 case WebAssembly::REM_U_I64: 203 case WebAssembly::I32_TRUNC_S_F32: 204 case WebAssembly::I64_TRUNC_S_F32: 205 case WebAssembly::I32_TRUNC_S_F64: 206 case WebAssembly::I64_TRUNC_S_F64: 207 case WebAssembly::I32_TRUNC_U_F32: 208 case WebAssembly::I64_TRUNC_U_F32: 209 case WebAssembly::I32_TRUNC_U_F64: 210 case WebAssembly::I64_TRUNC_U_F64: 211 // These instruction have hasUnmodeledSideEffects() returning true 212 // because they trap on overflow and invalid so they can't be arbitrarily 213 // moved, however hasOrderedMemoryRef() interprets this plus their lack 214 // of memoperands as having a potential unknown memory reference. 215 break; 216 default: 217 // Record volatile accesses, unless it's a call, as calls are handled 218 // specially below. 219 if (!MI.isCall()) { 220 Write = true; 221 Effects = true; 222 } 223 break; 224 } 225 } 226 227 // Check for side effects. 228 if (MI.hasUnmodeledSideEffects()) { 229 switch (MI.getOpcode()) { 230 case WebAssembly::DIV_S_I32: 231 case WebAssembly::DIV_S_I64: 232 case WebAssembly::REM_S_I32: 233 case WebAssembly::REM_S_I64: 234 case WebAssembly::DIV_U_I32: 235 case WebAssembly::DIV_U_I64: 236 case WebAssembly::REM_U_I32: 237 case WebAssembly::REM_U_I64: 238 case WebAssembly::I32_TRUNC_S_F32: 239 case WebAssembly::I64_TRUNC_S_F32: 240 case WebAssembly::I32_TRUNC_S_F64: 241 case WebAssembly::I64_TRUNC_S_F64: 242 case WebAssembly::I32_TRUNC_U_F32: 243 case WebAssembly::I64_TRUNC_U_F32: 244 case WebAssembly::I32_TRUNC_U_F64: 245 case WebAssembly::I64_TRUNC_U_F64: 246 // These instructions have hasUnmodeledSideEffects() returning true 247 // because they trap on overflow and invalid so they can't be arbitrarily 248 // moved, however in the specific case of register stackifying, it is safe 249 // to move them because overflow and invalid are Undefined Behavior. 250 break; 251 default: 252 Effects = true; 253 break; 254 } 255 } 256 257 // Analyze calls. 258 if (MI.isCall()) { 259 unsigned CalleeOpNo = WebAssembly::getCalleeOpNo(MI); 260 QueryCallee(MI, CalleeOpNo, Read, Write, Effects, StackPointer); 261 } 262 } 263 264 // Test whether Def is safe and profitable to rematerialize. 265 static bool ShouldRematerialize(const MachineInstr &Def, AliasAnalysis &AA, 266 const WebAssemblyInstrInfo *TII) { 267 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def, &AA); 268 } 269 270 // Identify the definition for this register at this point. This is a 271 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses 272 // LiveIntervals to handle complex cases. 273 static MachineInstr *GetVRegDef(unsigned Reg, const MachineInstr *Insert, 274 const MachineRegisterInfo &MRI, 275 const LiveIntervals &LIS) { 276 // Most registers are in SSA form here so we try a quick MRI query first. 277 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg)) 278 return Def; 279 280 // MRI doesn't know what the Def is. Try asking LIS. 281 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore( 282 LIS.getInstructionIndex(*Insert))) 283 return LIS.getInstructionFromIndex(ValNo->def); 284 285 return nullptr; 286 } 287 288 // Test whether Reg, as defined at Def, has exactly one use. This is a 289 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals 290 // to handle complex cases. 291 static bool HasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI, 292 MachineDominatorTree &MDT, LiveIntervals &LIS) { 293 // Most registers are in SSA form here so we try a quick MRI query first. 294 if (MRI.hasOneUse(Reg)) 295 return true; 296 297 bool HasOne = false; 298 const LiveInterval &LI = LIS.getInterval(Reg); 299 const VNInfo *DefVNI = 300 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot()); 301 assert(DefVNI); 302 for (auto &I : MRI.use_nodbg_operands(Reg)) { 303 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent())); 304 if (Result.valueIn() == DefVNI) { 305 if (!Result.isKill()) 306 return false; 307 if (HasOne) 308 return false; 309 HasOne = true; 310 } 311 } 312 return HasOne; 313 } 314 315 // Test whether it's safe to move Def to just before Insert. 316 // TODO: Compute memory dependencies in a way that doesn't require always 317 // walking the block. 318 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be 319 // more precise. 320 static bool IsSafeToMove(const MachineInstr *Def, const MachineInstr *Insert, 321 AliasAnalysis &AA, const MachineRegisterInfo &MRI) { 322 assert(Def->getParent() == Insert->getParent()); 323 324 // Check for register dependencies. 325 SmallVector<unsigned, 4> MutableRegisters; 326 for (const MachineOperand &MO : Def->operands()) { 327 if (!MO.isReg() || MO.isUndef()) 328 continue; 329 unsigned Reg = MO.getReg(); 330 331 // If the register is dead here and at Insert, ignore it. 332 if (MO.isDead() && Insert->definesRegister(Reg) && 333 !Insert->readsRegister(Reg)) 334 continue; 335 336 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 337 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions 338 // from moving down, and we've already checked for that. 339 if (Reg == WebAssembly::ARGUMENTS) 340 continue; 341 // If the physical register is never modified, ignore it. 342 if (!MRI.isPhysRegModified(Reg)) 343 continue; 344 // Otherwise, it's a physical register with unknown liveness. 345 return false; 346 } 347 348 // If one of the operands isn't in SSA form, it has different values at 349 // different times, and we need to make sure we don't move our use across 350 // a different def. 351 if (!MO.isDef() && !MRI.hasOneDef(Reg)) 352 MutableRegisters.push_back(Reg); 353 } 354 355 bool Read = false, Write = false, Effects = false, StackPointer = false; 356 Query(*Def, AA, Read, Write, Effects, StackPointer); 357 358 // If the instruction does not access memory and has no side effects, it has 359 // no additional dependencies. 360 bool HasMutableRegisters = !MutableRegisters.empty(); 361 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters) 362 return true; 363 364 // Scan through the intervening instructions between Def and Insert. 365 MachineBasicBlock::const_iterator D(Def), I(Insert); 366 for (--I; I != D; --I) { 367 bool InterveningRead = false; 368 bool InterveningWrite = false; 369 bool InterveningEffects = false; 370 bool InterveningStackPointer = false; 371 Query(*I, AA, InterveningRead, InterveningWrite, InterveningEffects, 372 InterveningStackPointer); 373 if (Effects && InterveningEffects) 374 return false; 375 if (Read && InterveningWrite) 376 return false; 377 if (Write && (InterveningRead || InterveningWrite)) 378 return false; 379 if (StackPointer && InterveningStackPointer) 380 return false; 381 382 for (unsigned Reg : MutableRegisters) 383 for (const MachineOperand &MO : I->operands()) 384 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) 385 return false; 386 } 387 388 return true; 389 } 390 391 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses. 392 static bool OneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse, 393 const MachineBasicBlock &MBB, 394 const MachineRegisterInfo &MRI, 395 const MachineDominatorTree &MDT, 396 LiveIntervals &LIS, 397 WebAssemblyFunctionInfo &MFI) { 398 const LiveInterval &LI = LIS.getInterval(Reg); 399 400 const MachineInstr *OneUseInst = OneUse.getParent(); 401 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst)); 402 403 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) { 404 if (&Use == &OneUse) 405 continue; 406 407 const MachineInstr *UseInst = Use.getParent(); 408 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst)); 409 410 if (UseVNI != OneUseVNI) 411 continue; 412 413 const MachineInstr *OneUseInst = OneUse.getParent(); 414 if (UseInst == OneUseInst) { 415 // Another use in the same instruction. We need to ensure that the one 416 // selected use happens "before" it. 417 if (&OneUse > &Use) 418 return false; 419 } else { 420 // Test that the use is dominated by the one selected use. 421 while (!MDT.dominates(OneUseInst, UseInst)) { 422 // Actually, dominating is over-conservative. Test that the use would 423 // happen after the one selected use in the stack evaluation order. 424 // 425 // This is needed as a consequence of using implicit get_locals for 426 // uses and implicit set_locals for defs. 427 if (UseInst->getDesc().getNumDefs() == 0) 428 return false; 429 const MachineOperand &MO = UseInst->getOperand(0); 430 if (!MO.isReg()) 431 return false; 432 unsigned DefReg = MO.getReg(); 433 if (!TargetRegisterInfo::isVirtualRegister(DefReg) || 434 !MFI.isVRegStackified(DefReg)) 435 return false; 436 assert(MRI.hasOneNonDBGUse(DefReg)); 437 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg); 438 const MachineInstr *NewUseInst = NewUse.getParent(); 439 if (NewUseInst == OneUseInst) { 440 if (&OneUse > &NewUse) 441 return false; 442 break; 443 } 444 UseInst = NewUseInst; 445 } 446 } 447 } 448 return true; 449 } 450 451 /// Get the appropriate tee opcode for the given register class. 452 static unsigned GetTeeOpcode(const TargetRegisterClass *RC) { 453 if (RC == &WebAssembly::I32RegClass) 454 return WebAssembly::TEE_I32; 455 if (RC == &WebAssembly::I64RegClass) 456 return WebAssembly::TEE_I64; 457 if (RC == &WebAssembly::F32RegClass) 458 return WebAssembly::TEE_F32; 459 if (RC == &WebAssembly::F64RegClass) 460 return WebAssembly::TEE_F64; 461 if (RC == &WebAssembly::V128RegClass) 462 return WebAssembly::TEE_V128; 463 llvm_unreachable("Unexpected register class"); 464 } 465 466 // Shrink LI to its uses, cleaning up LI. 467 static void ShrinkToUses(LiveInterval &LI, LiveIntervals &LIS) { 468 if (LIS.shrinkToUses(&LI)) { 469 SmallVector<LiveInterval *, 4> SplitLIs; 470 LIS.splitSeparateComponents(LI, SplitLIs); 471 } 472 } 473 474 static void MoveDebugValues(unsigned Reg, MachineInstr *Insert, 475 MachineBasicBlock &MBB, MachineRegisterInfo &MRI) { 476 for (auto &Op : MRI.reg_operands(Reg)) { 477 MachineInstr *MI = Op.getParent(); 478 assert(MI != nullptr); 479 if (MI->isDebugValue() && MI->getParent() == &MBB) 480 MBB.splice(Insert, &MBB, MI); 481 } 482 } 483 484 static void UpdateDebugValuesReg(unsigned Reg, unsigned NewReg, 485 MachineBasicBlock &MBB, 486 MachineRegisterInfo &MRI) { 487 for (auto &Op : MRI.reg_operands(Reg)) { 488 MachineInstr *MI = Op.getParent(); 489 assert(MI != nullptr); 490 if (MI->isDebugValue() && MI->getParent() == &MBB) 491 Op.setReg(NewReg); 492 } 493 } 494 495 /// A single-use def in the same block with no intervening memory or register 496 /// dependencies; move the def down and nest it with the current instruction. 497 static MachineInstr *MoveForSingleUse(unsigned Reg, MachineOperand &Op, 498 MachineInstr *Def, MachineBasicBlock &MBB, 499 MachineInstr *Insert, LiveIntervals &LIS, 500 WebAssemblyFunctionInfo &MFI, 501 MachineRegisterInfo &MRI) { 502 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump()); 503 504 MBB.splice(Insert, &MBB, Def); 505 MoveDebugValues(Reg, Insert, MBB, MRI); 506 LIS.handleMove(*Def); 507 508 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) { 509 // No one else is using this register for anything so we can just stackify 510 // it in place. 511 MFI.stackifyVReg(Reg); 512 } else { 513 // The register may have unrelated uses or defs; create a new register for 514 // just our one def and use so that we can stackify it. 515 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 516 Def->getOperand(0).setReg(NewReg); 517 Op.setReg(NewReg); 518 519 // Tell LiveIntervals about the new register. 520 LIS.createAndComputeVirtRegInterval(NewReg); 521 522 // Tell LiveIntervals about the changes to the old register. 523 LiveInterval &LI = LIS.getInterval(Reg); 524 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(), 525 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(), 526 /*RemoveDeadValNo=*/true); 527 528 MFI.stackifyVReg(NewReg); 529 530 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 531 532 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 533 } 534 535 ImposeStackOrdering(Def); 536 return Def; 537 } 538 539 static void CloneDebugValues(unsigned Reg, MachineInstr *Insert, 540 unsigned TargetReg, MachineBasicBlock &MBB, 541 MachineRegisterInfo &MRI, 542 const WebAssemblyInstrInfo *TII) { 543 SmallPtrSet<MachineInstr *, 4> Instrs; 544 for (auto &Op : MRI.reg_operands(Reg)) { 545 MachineInstr *MI = Op.getParent(); 546 assert(MI != nullptr); 547 if (MI->isDebugValue() && MI->getParent() == &MBB && 548 Instrs.find(MI) == Instrs.end()) 549 Instrs.insert(MI); 550 } 551 for (const auto &MI : Instrs) { 552 MachineInstr &Clone = TII->duplicate(MBB, Insert, *MI); 553 for (unsigned i = 0, e = Clone.getNumOperands(); i != e; ++i) { 554 MachineOperand &MO = Clone.getOperand(i); 555 if (MO.isReg() && MO.getReg() == Reg) 556 MO.setReg(TargetReg); 557 } 558 LLVM_DEBUG(dbgs() << " - - Cloned DBG_VALUE: "; Clone.dump()); 559 } 560 } 561 562 /// A trivially cloneable instruction; clone it and nest the new copy with the 563 /// current instruction. 564 static MachineInstr *RematerializeCheapDef( 565 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB, 566 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS, 567 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI, 568 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) { 569 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump()); 570 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump()); 571 572 unsigned NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg)); 573 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI); 574 Op.setReg(NewReg); 575 MachineInstr *Clone = &*std::prev(Insert); 576 LIS.InsertMachineInstrInMaps(*Clone); 577 LIS.createAndComputeVirtRegInterval(NewReg); 578 MFI.stackifyVReg(NewReg); 579 ImposeStackOrdering(Clone); 580 581 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump()); 582 583 // Shrink the interval. 584 bool IsDead = MRI.use_empty(Reg); 585 if (!IsDead) { 586 LiveInterval &LI = LIS.getInterval(Reg); 587 ShrinkToUses(LI, LIS); 588 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot()); 589 } 590 591 // If that was the last use of the original, delete the original. 592 // Move or clone corresponding DBG_VALUEs to the 'Insert' location. 593 if (IsDead) { 594 LLVM_DEBUG(dbgs() << " - Deleting original\n"); 595 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot(); 596 LIS.removePhysRegDefAt(WebAssembly::ARGUMENTS, Idx); 597 LIS.removeInterval(Reg); 598 LIS.RemoveMachineInstrFromMaps(Def); 599 Def.eraseFromParent(); 600 601 MoveDebugValues(Reg, &*Insert, MBB, MRI); 602 UpdateDebugValuesReg(Reg, NewReg, MBB, MRI); 603 } else { 604 CloneDebugValues(Reg, &*Insert, NewReg, MBB, MRI, TII); 605 } 606 607 return Clone; 608 } 609 610 /// A multiple-use def in the same block with no intervening memory or register 611 /// dependencies; move the def down, nest it with the current instruction, and 612 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite 613 /// this: 614 /// 615 /// Reg = INST ... // Def 616 /// INST ..., Reg, ... // Insert 617 /// INST ..., Reg, ... 618 /// INST ..., Reg, ... 619 /// 620 /// to this: 621 /// 622 /// DefReg = INST ... // Def (to become the new Insert) 623 /// TeeReg, Reg = TEE_... DefReg 624 /// INST ..., TeeReg, ... // Insert 625 /// INST ..., Reg, ... 626 /// INST ..., Reg, ... 627 /// 628 /// with DefReg and TeeReg stackified. This eliminates a get_local from the 629 /// resulting code. 630 static MachineInstr *MoveAndTeeForMultiUse( 631 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB, 632 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI, 633 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) { 634 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump()); 635 636 // Move Def into place. 637 MBB.splice(Insert, &MBB, Def); 638 LIS.handleMove(*Def); 639 640 // Create the Tee and attach the registers. 641 const auto *RegClass = MRI.getRegClass(Reg); 642 unsigned TeeReg = MRI.createVirtualRegister(RegClass); 643 unsigned DefReg = MRI.createVirtualRegister(RegClass); 644 MachineOperand &DefMO = Def->getOperand(0); 645 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(), 646 TII->get(GetTeeOpcode(RegClass)), TeeReg) 647 .addReg(Reg, RegState::Define) 648 .addReg(DefReg, getUndefRegState(DefMO.isDead())); 649 Op.setReg(TeeReg); 650 DefMO.setReg(DefReg); 651 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot(); 652 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot(); 653 654 MoveDebugValues(Reg, Insert, MBB, MRI); 655 656 // Tell LiveIntervals we moved the original vreg def from Def to Tee. 657 LiveInterval &LI = LIS.getInterval(Reg); 658 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx); 659 VNInfo *ValNo = LI.getVNInfoAt(DefIdx); 660 I->start = TeeIdx; 661 ValNo->def = TeeIdx; 662 ShrinkToUses(LI, LIS); 663 664 // Finish stackifying the new regs. 665 LIS.createAndComputeVirtRegInterval(TeeReg); 666 LIS.createAndComputeVirtRegInterval(DefReg); 667 MFI.stackifyVReg(DefReg); 668 MFI.stackifyVReg(TeeReg); 669 ImposeStackOrdering(Def); 670 ImposeStackOrdering(Tee); 671 672 CloneDebugValues(Reg, Tee, DefReg, MBB, MRI, TII); 673 CloneDebugValues(Reg, Insert, TeeReg, MBB, MRI, TII); 674 675 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump()); 676 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump()); 677 return Def; 678 } 679 680 namespace { 681 /// A stack for walking the tree of instructions being built, visiting the 682 /// MachineOperands in DFS order. 683 class TreeWalkerState { 684 typedef MachineInstr::mop_iterator mop_iterator; 685 typedef std::reverse_iterator<mop_iterator> mop_reverse_iterator; 686 typedef iterator_range<mop_reverse_iterator> RangeTy; 687 SmallVector<RangeTy, 4> Worklist; 688 689 public: 690 explicit TreeWalkerState(MachineInstr *Insert) { 691 const iterator_range<mop_iterator> &Range = Insert->explicit_uses(); 692 if (Range.begin() != Range.end()) 693 Worklist.push_back(reverse(Range)); 694 } 695 696 bool Done() const { return Worklist.empty(); } 697 698 MachineOperand &Pop() { 699 RangeTy &Range = Worklist.back(); 700 MachineOperand &Op = *Range.begin(); 701 Range = drop_begin(Range, 1); 702 if (Range.begin() == Range.end()) 703 Worklist.pop_back(); 704 assert((Worklist.empty() || 705 Worklist.back().begin() != Worklist.back().end()) && 706 "Empty ranges shouldn't remain in the worklist"); 707 return Op; 708 } 709 710 /// Push Instr's operands onto the stack to be visited. 711 void PushOperands(MachineInstr *Instr) { 712 const iterator_range<mop_iterator> &Range(Instr->explicit_uses()); 713 if (Range.begin() != Range.end()) 714 Worklist.push_back(reverse(Range)); 715 } 716 717 /// Some of Instr's operands are on the top of the stack; remove them and 718 /// re-insert them starting from the beginning (because we've commuted them). 719 void ResetTopOperands(MachineInstr *Instr) { 720 assert(HasRemainingOperands(Instr) && 721 "Reseting operands should only be done when the instruction has " 722 "an operand still on the stack"); 723 Worklist.back() = reverse(Instr->explicit_uses()); 724 } 725 726 /// Test whether Instr has operands remaining to be visited at the top of 727 /// the stack. 728 bool HasRemainingOperands(const MachineInstr *Instr) const { 729 if (Worklist.empty()) 730 return false; 731 const RangeTy &Range = Worklist.back(); 732 return Range.begin() != Range.end() && Range.begin()->getParent() == Instr; 733 } 734 735 /// Test whether the given register is present on the stack, indicating an 736 /// operand in the tree that we haven't visited yet. Moving a definition of 737 /// Reg to a point in the tree after that would change its value. 738 /// 739 /// This is needed as a consequence of using implicit get_locals for 740 /// uses and implicit set_locals for defs. 741 bool IsOnStack(unsigned Reg) const { 742 for (const RangeTy &Range : Worklist) 743 for (const MachineOperand &MO : Range) 744 if (MO.isReg() && MO.getReg() == Reg) 745 return true; 746 return false; 747 } 748 }; 749 750 /// State to keep track of whether commuting is in flight or whether it's been 751 /// tried for the current instruction and didn't work. 752 class CommutingState { 753 /// There are effectively three states: the initial state where we haven't 754 /// started commuting anything and we don't know anything yet, the tenative 755 /// state where we've commuted the operands of the current instruction and are 756 /// revisting it, and the declined state where we've reverted the operands 757 /// back to their original order and will no longer commute it further. 758 bool TentativelyCommuting; 759 bool Declined; 760 761 /// During the tentative state, these hold the operand indices of the commuted 762 /// operands. 763 unsigned Operand0, Operand1; 764 765 public: 766 CommutingState() : TentativelyCommuting(false), Declined(false) {} 767 768 /// Stackification for an operand was not successful due to ordering 769 /// constraints. If possible, and if we haven't already tried it and declined 770 /// it, commute Insert's operands and prepare to revisit it. 771 void MaybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker, 772 const WebAssemblyInstrInfo *TII) { 773 if (TentativelyCommuting) { 774 assert(!Declined && 775 "Don't decline commuting until you've finished trying it"); 776 // Commuting didn't help. Revert it. 777 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 778 TentativelyCommuting = false; 779 Declined = true; 780 } else if (!Declined && TreeWalker.HasRemainingOperands(Insert)) { 781 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex; 782 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex; 783 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) { 784 // Tentatively commute the operands and try again. 785 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1); 786 TreeWalker.ResetTopOperands(Insert); 787 TentativelyCommuting = true; 788 Declined = false; 789 } 790 } 791 } 792 793 /// Stackification for some operand was successful. Reset to the default 794 /// state. 795 void Reset() { 796 TentativelyCommuting = false; 797 Declined = false; 798 } 799 }; 800 } // end anonymous namespace 801 802 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) { 803 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n" 804 "********** Function: " 805 << MF.getName() << '\n'); 806 807 bool Changed = false; 808 MachineRegisterInfo &MRI = MF.getRegInfo(); 809 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>(); 810 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 811 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo(); 812 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 813 MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); 814 LiveIntervals &LIS = getAnalysis<LiveIntervals>(); 815 816 // Walk the instructions from the bottom up. Currently we don't look past 817 // block boundaries, and the blocks aren't ordered so the block visitation 818 // order isn't significant, but we may want to change this in the future. 819 for (MachineBasicBlock &MBB : MF) { 820 // Don't use a range-based for loop, because we modify the list as we're 821 // iterating over it and the end iterator may change. 822 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) { 823 MachineInstr *Insert = &*MII; 824 // Don't nest anything inside an inline asm, because we don't have 825 // constraints for $push inputs. 826 if (Insert->getOpcode() == TargetOpcode::INLINEASM) 827 continue; 828 829 // Ignore debugging intrinsics. 830 if (Insert->getOpcode() == TargetOpcode::DBG_VALUE) 831 continue; 832 833 // Iterate through the inputs in reverse order, since we'll be pulling 834 // operands off the stack in LIFO order. 835 CommutingState Commuting; 836 TreeWalkerState TreeWalker(Insert); 837 while (!TreeWalker.Done()) { 838 MachineOperand &Op = TreeWalker.Pop(); 839 840 // We're only interested in explicit virtual register operands. 841 if (!Op.isReg()) 842 continue; 843 844 unsigned Reg = Op.getReg(); 845 assert(Op.isUse() && "explicit_uses() should only iterate over uses"); 846 assert(!Op.isImplicit() && 847 "explicit_uses() should only iterate over explicit operands"); 848 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 849 continue; 850 851 // Identify the definition for this register at this point. 852 MachineInstr *Def = GetVRegDef(Reg, Insert, MRI, LIS); 853 if (!Def) 854 continue; 855 856 // Don't nest an INLINE_ASM def into anything, because we don't have 857 // constraints for $pop outputs. 858 if (Def->getOpcode() == TargetOpcode::INLINEASM) 859 continue; 860 861 // Argument instructions represent live-in registers and not real 862 // instructions. 863 if (WebAssembly::isArgument(*Def)) 864 continue; 865 866 // Decide which strategy to take. Prefer to move a single-use value 867 // over cloning it, and prefer cloning over introducing a tee. 868 // For moving, we require the def to be in the same block as the use; 869 // this makes things simpler (LiveIntervals' handleMove function only 870 // supports intra-block moves) and it's MachineSink's job to catch all 871 // the sinking opportunities anyway. 872 bool SameBlock = Def->getParent() == &MBB; 873 bool CanMove = SameBlock && IsSafeToMove(Def, Insert, AA, MRI) && 874 !TreeWalker.IsOnStack(Reg); 875 if (CanMove && HasOneUse(Reg, Def, MRI, MDT, LIS)) { 876 Insert = MoveForSingleUse(Reg, Op, Def, MBB, Insert, LIS, MFI, MRI); 877 } else if (ShouldRematerialize(*Def, AA, TII)) { 878 Insert = 879 RematerializeCheapDef(Reg, Op, *Def, MBB, Insert->getIterator(), 880 LIS, MFI, MRI, TII, TRI); 881 } else if (CanMove && 882 OneUseDominatesOtherUses(Reg, Op, MBB, MRI, MDT, LIS, MFI)) { 883 Insert = MoveAndTeeForMultiUse(Reg, Op, Def, MBB, Insert, LIS, MFI, 884 MRI, TII); 885 } else { 886 // We failed to stackify the operand. If the problem was ordering 887 // constraints, Commuting may be able to help. 888 if (!CanMove && SameBlock) 889 Commuting.MaybeCommute(Insert, TreeWalker, TII); 890 // Proceed to the next operand. 891 continue; 892 } 893 894 // If the instruction we just stackified is an IMPLICIT_DEF, convert it 895 // to a constant 0 so that the def is explicit, and the push/pop 896 // correspondence is maintained. 897 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF) 898 ConvertImplicitDefToConstZero(Insert, MRI, TII, MF); 899 900 // We stackified an operand. Add the defining instruction's operands to 901 // the worklist stack now to continue to build an ever deeper tree. 902 Commuting.Reset(); 903 TreeWalker.PushOperands(Insert); 904 } 905 906 // If we stackified any operands, skip over the tree to start looking for 907 // the next instruction we can build a tree on. 908 if (Insert != &*MII) { 909 ImposeStackOrdering(&*MII); 910 MII = MachineBasicBlock::iterator(Insert).getReverse(); 911 Changed = true; 912 } 913 } 914 } 915 916 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so 917 // that it never looks like a use-before-def. 918 if (Changed) { 919 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK); 920 for (MachineBasicBlock &MBB : MF) 921 MBB.addLiveIn(WebAssembly::VALUE_STACK); 922 } 923 924 #ifndef NDEBUG 925 // Verify that pushes and pops are performed in LIFO order. 926 SmallVector<unsigned, 0> Stack; 927 for (MachineBasicBlock &MBB : MF) { 928 for (MachineInstr &MI : MBB) { 929 if (MI.isDebugInstr()) 930 continue; 931 for (MachineOperand &MO : reverse(MI.explicit_operands())) { 932 if (!MO.isReg()) 933 continue; 934 unsigned Reg = MO.getReg(); 935 936 if (MFI.isVRegStackified(Reg)) { 937 if (MO.isDef()) 938 Stack.push_back(Reg); 939 else 940 assert(Stack.pop_back_val() == Reg && 941 "Register stack pop should be paired with a push"); 942 } 943 } 944 } 945 // TODO: Generalize this code to support keeping values on the stack across 946 // basic block boundaries. 947 assert(Stack.empty() && 948 "Register stack pushes and pops should be balanced"); 949 } 950 #endif 951 952 return Changed; 953 } 954