1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten.
17 ///
18 /// * Exception handling
19 /// This pass lowers invokes and landingpads into library functions in JS glue
20 /// code. Invokes are lowered into function wrappers called invoke wrappers that
21 /// exist in JS side, which wraps the original function call with JS try-catch.
22 /// If an exception occurred, cxa_throw() function in JS side sets some
23 /// variables (see below) so we can check whether an exception occurred from
24 /// wasm code and handle it appropriately.
25 ///
26 /// * Setjmp-longjmp handling
27 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
28 /// The idea is that each block with a setjmp is broken up into two parts: the
29 /// part containing setjmp and the part right after the setjmp. The latter part
30 /// is either reached from the setjmp, or later from a longjmp. To handle the
31 /// longjmp, all calls that might longjmp are also called using invoke wrappers
32 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
33 /// we can check / whether a longjmp occurred from wasm code. Each block with a
34 /// function call that might longjmp is also split up after the longjmp call.
35 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
36 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
37 /// We assume setjmp-longjmp handling always run after EH handling, which means
38 /// we don't expect any exception-related instructions when SjLj runs.
39 /// FIXME Currently this scheme does not support indirect call of setjmp,
40 /// because of the limitation of the scheme itself. fastcomp does not support it
41 /// either.
42 ///
43 /// In detail, this pass does following things:
44 ///
45 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
46 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
47 ///    These variables are used for both exceptions and setjmp/longjmps.
48 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
49 ///    means nothing occurred, 1 means an exception occurred, and other numbers
50 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
51 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
52 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
53 ///    longjmp.
54 ///
55 /// * Exception handling
56 ///
57 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
58 ///    at link time. setThrew exists in Emscripten's compiler-rt:
59 ///
60 ///    void setThrew(uintptr_t threw, int value) {
61 ///      if (__THREW__ == 0) {
62 ///        __THREW__ = threw;
63 ///        __threwValue = value;
64 ///      }
65 ///    }
66 //
67 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
68 ///    In exception handling, getTempRet0 indicates the type of an exception
69 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
70 ///    function.
71 ///
72 /// 3) Lower
73 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
74 ///    into
75 ///      __THREW__ = 0;
76 ///      call @__invoke_SIG(func, arg1, arg2)
77 ///      %__THREW__.val = __THREW__;
78 ///      __THREW__ = 0;
79 ///      if (%__THREW__.val == 1)
80 ///        goto %lpad
81 ///      else
82 ///         goto %invoke.cont
83 ///    SIG is a mangled string generated based on the LLVM IR-level function
84 ///    signature. After LLVM IR types are lowered to the target wasm types,
85 ///    the names for these wrappers will change based on wasm types as well,
86 ///    as in invoke_vi (function takes an int and returns void). The bodies of
87 ///    these wrappers will be generated in JS glue code, and inside those
88 ///    wrappers we use JS try-catch to generate actual exception effects. It
89 ///    also calls the original callee function. An example wrapper in JS code
90 ///    would look like this:
91 ///      function invoke_vi(index,a1) {
92 ///        try {
93 ///          Module["dynCall_vi"](index,a1); // This calls original callee
94 ///        } catch(e) {
95 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
96 ///          _setThrew(1, 0); // setThrew is called here
97 ///        }
98 ///      }
99 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
100 ///    so we can jump to the right BB based on this value.
101 ///
102 /// 4) Lower
103 ///      %val = landingpad catch c1 catch c2 catch c3 ...
104 ///      ... use %val ...
105 ///    into
106 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
107 ///      %val = {%fmc, getTempRet0()}
108 ///      ... use %val ...
109 ///    Here N is a number calculated based on the number of clauses.
110 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
111 ///
112 /// 5) Lower
113 ///      resume {%a, %b}
114 ///    into
115 ///      call @__resumeException(%a)
116 ///    where __resumeException() is a function in JS glue code.
117 ///
118 /// 6) Lower
119 ///      call @llvm.eh.typeid.for(type) (intrinsic)
120 ///    into
121 ///      call @llvm_eh_typeid_for(type)
122 ///    llvm_eh_typeid_for function will be generated in JS glue code.
123 ///
124 /// * Setjmp / Longjmp handling
125 ///
126 /// In case calls to longjmp() exists
127 ///
128 /// 1) Lower
129 ///      longjmp(buf, value)
130 ///    into
131 ///      emscripten_longjmp(buf, value)
132 ///
133 /// In case calls to setjmp() exists
134 ///
135 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
136 ///    sejmpTableSize as follows:
137 ///      setjmpTableSize = 4;
138 ///      setjmpTable = (int *) malloc(40);
139 ///      setjmpTable[0] = 0;
140 ///    setjmpTable and setjmpTableSize are used to call saveSetjmp() function in
141 ///    Emscripten compiler-rt.
142 ///
143 /// 3) Lower
144 ///      setjmp(buf)
145 ///    into
146 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
147 ///      setjmpTableSize = getTempRet0();
148 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
149 ///    is incrementally assigned from 0) and its label (a unique number that
150 ///    represents each callsite of setjmp). When we need more entries in
151 ///    setjmpTable, it is reallocated in saveSetjmp() in Emscripten's
152 ///    compiler-rt and it will return the new table address, and assign the new
153 ///    table size in setTempRet0(). saveSetjmp also stores the setjmp's ID into
154 ///    the buffer buf. A BB with setjmp is split into two after setjmp call in
155 ///    order to make the post-setjmp BB the possible destination of longjmp BB.
156 ///
157 ///
158 /// 4) Lower every call that might longjmp into
159 ///      __THREW__ = 0;
160 ///      call @__invoke_SIG(func, arg1, arg2)
161 ///      %__THREW__.val = __THREW__;
162 ///      __THREW__ = 0;
163 ///      %__threwValue.val = __threwValue;
164 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
165 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
166 ///                            setjmpTableSize);
167 ///        if (%label == 0)
168 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
169 ///        setTempRet0(%__threwValue.val);
170 ///      } else {
171 ///        %label = -1;
172 ///      }
173 ///      longjmp_result = getTempRet0();
174 ///      switch label {
175 ///        label 1: goto post-setjmp BB 1
176 ///        label 2: goto post-setjmp BB 2
177 ///        ...
178 ///        default: goto splitted next BB
179 ///      }
180 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
181 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
182 ///    will be the address of matching jmp_buf buffer and __threwValue be the
183 ///    second argument to longjmp. mem[%__THREW__.val] is a setjmp ID that is
184 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
185 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
186 ///    correspond to one of the setjmp callsites in this function, so in this
187 ///    case we just chain the longjmp to the caller. Label -1 means no longjmp
188 ///    occurred. Otherwise we jump to the right post-setjmp BB based on the
189 ///    label.
190 ///
191 ///===----------------------------------------------------------------------===//
192 
193 #include "WebAssembly.h"
194 #include "WebAssemblyTargetMachine.h"
195 #include "llvm/ADT/StringExtras.h"
196 #include "llvm/CodeGen/TargetPassConfig.h"
197 #include "llvm/IR/DebugInfoMetadata.h"
198 #include "llvm/IR/Dominators.h"
199 #include "llvm/IR/IRBuilder.h"
200 #include "llvm/Support/CommandLine.h"
201 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
202 #include "llvm/Transforms/Utils/SSAUpdater.h"
203 
204 using namespace llvm;
205 
206 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
207 
208 static cl::list<std::string>
209     EHAllowlist("emscripten-cxx-exceptions-allowed",
210                 cl::desc("The list of function names in which Emscripten-style "
211                          "exception handling is enabled (see emscripten "
212                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
213                 cl::CommaSeparated);
214 
215 namespace {
216 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
217   bool EnableEmEH;   // Enable Emscripten exception handling
218   bool EnableEmSjLj; // Enable Emscripten setjmp/longjmp handling
219   bool DoSjLj;       // Whether we actually perform setjmp/longjmp handling
220 
221   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
222   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
223   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
224   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
225   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
226   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
227   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
228   Function *SaveSetjmpF = nullptr;        // saveSetjmp() (Emscripten)
229   Function *TestSetjmpF = nullptr;        // testSetjmp() (Emscripten)
230 
231   // __cxa_find_matching_catch_N functions.
232   // Indexed by the number of clauses in an original landingpad instruction.
233   DenseMap<int, Function *> FindMatchingCatches;
234   // Map of <function signature string, invoke_ wrappers>
235   StringMap<Function *> InvokeWrappers;
236   // Set of allowed function names for exception handling
237   std::set<std::string> EHAllowlistSet;
238   // Functions that contains calls to setjmp
239   SmallPtrSet<Function *, 8> SetjmpUsers;
240 
241   StringRef getPassName() const override {
242     return "WebAssembly Lower Emscripten Exceptions";
243   }
244 
245   bool runEHOnFunction(Function &F);
246   bool runSjLjOnFunction(Function &F);
247   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
248 
249   Value *wrapInvoke(CallBase *CI);
250   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
251                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
252                       Value *&LongjmpResult, BasicBlock *&EndBB);
253   Function *getInvokeWrapper(CallBase *CI);
254 
255   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
256   bool supportsException(const Function *F) const {
257     return EnableEmEH && (areAllExceptionsAllowed() ||
258                           EHAllowlistSet.count(std::string(F->getName())));
259   }
260 
261   void rebuildSSA(Function &F);
262 
263 public:
264   static char ID;
265 
266   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEmEH = true,
267                                    bool EnableEmSjLj = true)
268       : ModulePass(ID), EnableEmEH(EnableEmEH), EnableEmSjLj(EnableEmSjLj) {
269     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
270   }
271   bool runOnModule(Module &M) override;
272 
273   void getAnalysisUsage(AnalysisUsage &AU) const override {
274     AU.addRequired<DominatorTreeWrapperPass>();
275   }
276 };
277 } // End anonymous namespace
278 
279 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
280 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
281                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
282                 false, false)
283 
284 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEmEH,
285                                                          bool EnableEmSjLj) {
286   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEmEH, EnableEmSjLj);
287 }
288 
289 static bool canThrow(const Value *V) {
290   if (const auto *F = dyn_cast<const Function>(V)) {
291     // Intrinsics cannot throw
292     if (F->isIntrinsic())
293       return false;
294     StringRef Name = F->getName();
295     // leave setjmp and longjmp (mostly) alone, we process them properly later
296     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
297       return false;
298     return !F->doesNotThrow();
299   }
300   // not a function, so an indirect call - can throw, we can't tell
301   return true;
302 }
303 
304 // Get a global variable with the given name. If it doesn't exist declare it,
305 // which will generate an import and assume that it will exist at link time.
306 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
307                                          WebAssemblyTargetMachine &TM,
308                                          const char *Name) {
309   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
310   if (!GV)
311     report_fatal_error(Twine("unable to create global: ") + Name);
312 
313   // If the target supports TLS, make this variable thread-local. We can't just
314   // unconditionally make it thread-local and depend on
315   // CoalesceFeaturesAndStripAtomics to downgrade it, because stripping TLS has
316   // the side effect of disallowing the object from being linked into a
317   // shared-memory module, which we don't want to be responsible for.
318   auto *Subtarget = TM.getSubtargetImpl();
319   auto TLS = Subtarget->hasAtomics() && Subtarget->hasBulkMemory()
320                  ? GlobalValue::LocalExecTLSModel
321                  : GlobalValue::NotThreadLocal;
322   GV->setThreadLocalMode(TLS);
323   return GV;
324 }
325 
326 // Simple function name mangler.
327 // This function simply takes LLVM's string representation of parameter types
328 // and concatenate them with '_'. There are non-alphanumeric characters but llc
329 // is ok with it, and we need to postprocess these names after the lowering
330 // phase anyway.
331 static std::string getSignature(FunctionType *FTy) {
332   std::string Sig;
333   raw_string_ostream OS(Sig);
334   OS << *FTy->getReturnType();
335   for (Type *ParamTy : FTy->params())
336     OS << "_" << *ParamTy;
337   if (FTy->isVarArg())
338     OS << "_...";
339   Sig = OS.str();
340   erase_if(Sig, isSpace);
341   // When s2wasm parses .s file, a comma means the end of an argument. So a
342   // mangled function name can contain any character but a comma.
343   std::replace(Sig.begin(), Sig.end(), ',', '.');
344   return Sig;
345 }
346 
347 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
348                                        Module *M) {
349   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
350   // Tell the linker that this function is expected to be imported from the
351   // 'env' module.
352   if (!F->hasFnAttribute("wasm-import-module")) {
353     llvm::AttrBuilder B;
354     B.addAttribute("wasm-import-module", "env");
355     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
356   }
357   if (!F->hasFnAttribute("wasm-import-name")) {
358     llvm::AttrBuilder B;
359     B.addAttribute("wasm-import-name", F->getName());
360     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
361   }
362   return F;
363 }
364 
365 // Returns an integer type for the target architecture's address space.
366 // i32 for wasm32 and i64 for wasm64.
367 static Type *getAddrIntType(Module *M) {
368   IRBuilder<> IRB(M->getContext());
369   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
370 }
371 
372 // Returns an integer pointer type for the target architecture's address space.
373 // i32* for wasm32 and i64* for wasm64.
374 static Type *getAddrPtrType(Module *M) {
375   return Type::getIntNPtrTy(M->getContext(),
376                             M->getDataLayout().getPointerSizeInBits());
377 }
378 
379 // Returns an integer whose type is the integer type for the target's address
380 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
381 // integer.
382 static Value *getAddrSizeInt(Module *M, uint64_t C) {
383   IRBuilder<> IRB(M->getContext());
384   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
385 }
386 
387 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
388 // This is because a landingpad instruction contains two more arguments, a
389 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
390 // functions are named after the number of arguments in the original landingpad
391 // instruction.
392 Function *
393 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
394                                                        unsigned NumClauses) {
395   if (FindMatchingCatches.count(NumClauses))
396     return FindMatchingCatches[NumClauses];
397   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
398   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
399   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
400   Function *F = getEmscriptenFunction(
401       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
402   FindMatchingCatches[NumClauses] = F;
403   return F;
404 }
405 
406 // Generate invoke wrapper seqence with preamble and postamble
407 // Preamble:
408 // __THREW__ = 0;
409 // Postamble:
410 // %__THREW__.val = __THREW__; __THREW__ = 0;
411 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
412 // whether longjmp occurred), for future use.
413 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
414   Module *M = CI->getModule();
415   LLVMContext &C = M->getContext();
416 
417   // If we are calling a function that is noreturn, we must remove that
418   // attribute. The code we insert here does expect it to return, after we
419   // catch the exception.
420   if (CI->doesNotReturn()) {
421     if (auto *F = CI->getCalledFunction())
422       F->removeFnAttr(Attribute::NoReturn);
423     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
424   }
425 
426   IRBuilder<> IRB(C);
427   IRB.SetInsertPoint(CI);
428 
429   // Pre-invoke
430   // __THREW__ = 0;
431   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
432 
433   // Invoke function wrapper in JavaScript
434   SmallVector<Value *, 16> Args;
435   // Put the pointer to the callee as first argument, so it can be called
436   // within the invoke wrapper later
437   Args.push_back(CI->getCalledOperand());
438   Args.append(CI->arg_begin(), CI->arg_end());
439   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
440   NewCall->takeName(CI);
441   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
442   NewCall->setDebugLoc(CI->getDebugLoc());
443 
444   // Because we added the pointer to the callee as first argument, all
445   // argument attribute indices have to be incremented by one.
446   SmallVector<AttributeSet, 8> ArgAttributes;
447   const AttributeList &InvokeAL = CI->getAttributes();
448 
449   // No attributes for the callee pointer.
450   ArgAttributes.push_back(AttributeSet());
451   // Copy the argument attributes from the original
452   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
453     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
454 
455   AttrBuilder FnAttrs(InvokeAL.getFnAttrs());
456   if (FnAttrs.contains(Attribute::AllocSize)) {
457     // The allocsize attribute (if any) referes to parameters by index and needs
458     // to be adjusted.
459     unsigned SizeArg;
460     Optional<unsigned> NEltArg;
461     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
462     SizeArg += 1;
463     if (NEltArg.hasValue())
464       NEltArg = NEltArg.getValue() + 1;
465     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
466   }
467 
468   // Reconstruct the AttributesList based on the vector we constructed.
469   AttributeList NewCallAL = AttributeList::get(
470       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
471   NewCall->setAttributes(NewCallAL);
472 
473   CI->replaceAllUsesWith(NewCall);
474 
475   // Post-invoke
476   // %__THREW__.val = __THREW__; __THREW__ = 0;
477   Value *Threw =
478       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
479   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
480   return Threw;
481 }
482 
483 // Get matching invoke wrapper based on callee signature
484 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
485   Module *M = CI->getModule();
486   SmallVector<Type *, 16> ArgTys;
487   FunctionType *CalleeFTy = CI->getFunctionType();
488 
489   std::string Sig = getSignature(CalleeFTy);
490   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
491     return InvokeWrappers[Sig];
492 
493   // Put the pointer to the callee as first argument
494   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
495   // Add argument types
496   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
497 
498   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
499                                         CalleeFTy->isVarArg());
500   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
501   InvokeWrappers[Sig] = F;
502   return F;
503 }
504 
505 static bool canLongjmp(const Value *Callee) {
506   if (auto *CalleeF = dyn_cast<Function>(Callee))
507     if (CalleeF->isIntrinsic())
508       return false;
509 
510   // Attempting to transform inline assembly will result in something like:
511   //     call void @__invoke_void(void ()* asm ...)
512   // which is invalid because inline assembly blocks do not have addresses
513   // and can't be passed by pointer. The result is a crash with illegal IR.
514   if (isa<InlineAsm>(Callee))
515     return false;
516   StringRef CalleeName = Callee->getName();
517 
518   // The reason we include malloc/free here is to exclude the malloc/free
519   // calls generated in setjmp prep / cleanup routines.
520   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
521     return false;
522 
523   // There are functions in Emscripten's JS glue code or compiler-rt
524   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
525       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
526       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
527     return false;
528 
529   // __cxa_find_matching_catch_N functions cannot longjmp
530   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
531     return false;
532 
533   // Exception-catching related functions
534   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
535       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
536       CalleeName == "__clang_call_terminate")
537     return false;
538 
539   // Otherwise we don't know
540   return true;
541 }
542 
543 static bool isEmAsmCall(const Value *Callee) {
544   StringRef CalleeName = Callee->getName();
545   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
546   return CalleeName == "emscripten_asm_const_int" ||
547          CalleeName == "emscripten_asm_const_double" ||
548          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
549          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
550          CalleeName == "emscripten_asm_const_async_on_main_thread";
551 }
552 
553 // Generate testSetjmp function call seqence with preamble and postamble.
554 // The code this generates is equivalent to the following JavaScript code:
555 // %__threwValue.val = __threwValue;
556 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
557 //   %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
558 //   if (%label == 0)
559 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
560 //   setTempRet0(%__threwValue.val);
561 // } else {
562 //   %label = -1;
563 // }
564 // %longjmp_result = getTempRet0();
565 //
566 // As output parameters. returns %label, %longjmp_result, and the BB the last
567 // instruction (%longjmp_result = ...) is in.
568 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
569     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *SetjmpTable,
570     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
571     BasicBlock *&EndBB) {
572   Function *F = BB->getParent();
573   Module *M = F->getParent();
574   LLVMContext &C = M->getContext();
575   IRBuilder<> IRB(C);
576   IRB.SetCurrentDebugLocation(DL);
577 
578   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
579   IRB.SetInsertPoint(BB);
580   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
581   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
582   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
583   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
584   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
585                                      ThrewValueGV->getName() + ".val");
586   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
587   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
588   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
589 
590   // %label = testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
591   // if (%label == 0)
592   IRB.SetInsertPoint(ThenBB1);
593   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
594   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
595   Value *ThrewPtr =
596       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
597   Value *LoadedThrew = IRB.CreateLoad(getAddrIntType(M), ThrewPtr,
598                                       ThrewPtr->getName() + ".loaded");
599   Value *ThenLabel = IRB.CreateCall(
600       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
601   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
602   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
603 
604   // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
605   IRB.SetInsertPoint(ThenBB2);
606   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
607   IRB.CreateUnreachable();
608 
609   // setTempRet0(%__threwValue.val);
610   IRB.SetInsertPoint(EndBB2);
611   IRB.CreateCall(SetTempRet0F, ThrewValue);
612   IRB.CreateBr(EndBB1);
613 
614   IRB.SetInsertPoint(ElseBB1);
615   IRB.CreateBr(EndBB1);
616 
617   // longjmp_result = getTempRet0();
618   IRB.SetInsertPoint(EndBB1);
619   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
620   LabelPHI->addIncoming(ThenLabel, EndBB2);
621 
622   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
623 
624   // Output parameter assignment
625   Label = LabelPHI;
626   EndBB = EndBB1;
627   LongjmpResult = IRB.CreateCall(GetTempRet0F, None, "longjmp_result");
628 }
629 
630 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
631   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
632   DT.recalculate(F); // CFG has been changed
633   SSAUpdater SSA;
634   for (BasicBlock &BB : F) {
635     for (Instruction &I : BB) {
636       SSA.Initialize(I.getType(), I.getName());
637       SSA.AddAvailableValue(&BB, &I);
638       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
639         Use &U = *UI;
640         ++UI;
641         auto *User = cast<Instruction>(U.getUser());
642         if (auto *UserPN = dyn_cast<PHINode>(User))
643           if (UserPN->getIncomingBlock(U) == &BB)
644             continue;
645 
646         if (DT.dominates(&I, User))
647           continue;
648         SSA.RewriteUseAfterInsertions(U);
649       }
650     }
651   }
652 }
653 
654 // Replace uses of longjmp with emscripten_longjmp. emscripten_longjmp takes
655 // arguments of type {i32, i32} (wasm32) / {i64, i32} (wasm64) and longjmp takes
656 // {jmp_buf*, i32}, so we need a ptrtoint instruction here to make the type
657 // match. jmp_buf* will eventually be lowered to i32/i64 in the wasm backend.
658 static void replaceLongjmpWithEmscriptenLongjmp(Function *LongjmpF,
659                                                 Function *EmLongjmpF) {
660   Module *M = LongjmpF->getParent();
661   SmallVector<CallInst *, 8> ToErase;
662   LLVMContext &C = LongjmpF->getParent()->getContext();
663   IRBuilder<> IRB(C);
664 
665   // For calls to longjmp, replace it with emscripten_longjmp and cast its first
666   // argument (jmp_buf*) to int
667   for (User *U : LongjmpF->users()) {
668     auto *CI = dyn_cast<CallInst>(U);
669     if (CI && CI->getCalledFunction() == LongjmpF) {
670       IRB.SetInsertPoint(CI);
671       Value *JmpBuf =
672           IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "jmpbuf");
673       IRB.CreateCall(EmLongjmpF, {JmpBuf, CI->getArgOperand(1)});
674       ToErase.push_back(CI);
675     }
676   }
677   for (auto *I : ToErase)
678     I->eraseFromParent();
679 
680   // If we have any remaining uses of longjmp's function pointer, replace it
681   // with (int(*)(jmp_buf*, int))emscripten_longjmp.
682   if (!LongjmpF->uses().empty()) {
683     Value *EmLongjmp =
684         IRB.CreateBitCast(EmLongjmpF, LongjmpF->getType(), "em_longjmp");
685     LongjmpF->replaceAllUsesWith(EmLongjmp);
686   }
687 }
688 
689 static bool containsLongjmpableCalls(const Function *F) {
690   for (const auto &BB : *F)
691     for (const auto &I : BB)
692       if (const auto *CB = dyn_cast<CallBase>(&I))
693         if (canLongjmp(CB->getCalledOperand()))
694           return true;
695   return false;
696 }
697 
698 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
699   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
700 
701   LLVMContext &C = M.getContext();
702   IRBuilder<> IRB(C);
703 
704   Function *SetjmpF = M.getFunction("setjmp");
705   Function *LongjmpF = M.getFunction("longjmp");
706 
707   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
708   assert(TPC && "Expected a TargetPassConfig");
709   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
710 
711   if (EnableEmEH && TM.Options.ExceptionModel == ExceptionHandling::Wasm)
712     report_fatal_error("-exception-model=wasm not allowed with "
713                        "-enable-emscripten-cxx-exceptions");
714 
715   // Declare (or get) global variables __THREW__, __threwValue, and
716   // getTempRet0/setTempRet0 function which are used in common for both
717   // exception handling and setjmp/longjmp handling
718   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
719   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
720   GetTempRet0F = getEmscriptenFunction(
721       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
722   SetTempRet0F = getEmscriptenFunction(
723       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
724       "setTempRet0", &M);
725   GetTempRet0F->setDoesNotThrow();
726   SetTempRet0F->setDoesNotThrow();
727 
728   bool Changed = false;
729 
730   // Function registration for exception handling
731   if (EnableEmEH) {
732     // Register __resumeException function
733     FunctionType *ResumeFTy =
734         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
735     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
736 
737     // Register llvm_eh_typeid_for function
738     FunctionType *EHTypeIDTy =
739         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
740     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
741   }
742 
743   if (EnableEmSjLj && SetjmpF) {
744     // Precompute setjmp users
745     for (User *U : SetjmpF->users()) {
746       Function *UserF = cast<Instruction>(U)->getFunction();
747       // If a function that calls setjmp does not contain any other calls that
748       // can longjmp, we don't need to do any transformation on that function,
749       // so can ignore it
750       if (containsLongjmpableCalls(UserF))
751         SetjmpUsers.insert(UserF);
752     }
753   }
754 
755   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
756   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
757   DoSjLj = EnableEmSjLj && (SetjmpUsed || LongjmpUsed);
758 
759   // Function registration and data pre-gathering for setjmp/longjmp handling
760   if (DoSjLj) {
761     // Register emscripten_longjmp function
762     FunctionType *FTy = FunctionType::get(
763         IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
764     EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
765 
766     if (SetjmpF) {
767       // Register saveSetjmp function
768       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
769       FTy = FunctionType::get(Type::getInt32PtrTy(C),
770                               {SetjmpFTy->getParamType(0), IRB.getInt32Ty(),
771                                Type::getInt32PtrTy(C), IRB.getInt32Ty()},
772                               false);
773       SaveSetjmpF = getEmscriptenFunction(FTy, "saveSetjmp", &M);
774 
775       // Register testSetjmp function
776       FTy = FunctionType::get(
777           IRB.getInt32Ty(),
778           {getAddrIntType(&M), Type::getInt32PtrTy(C), IRB.getInt32Ty()},
779           false);
780       TestSetjmpF = getEmscriptenFunction(FTy, "testSetjmp", &M);
781     }
782   }
783 
784   // Exception handling transformation
785   if (EnableEmEH) {
786     for (Function &F : M) {
787       if (F.isDeclaration())
788         continue;
789       Changed |= runEHOnFunction(F);
790     }
791   }
792 
793   // Setjmp/longjmp handling transformation
794   if (DoSjLj) {
795     Changed = true; // We have setjmp or longjmp somewhere
796     if (LongjmpF)
797       replaceLongjmpWithEmscriptenLongjmp(LongjmpF, EmLongjmpF);
798     // Only traverse functions that uses setjmp in order not to insert
799     // unnecessary prep / cleanup code in every function
800     if (SetjmpF)
801       for (Function *F : SetjmpUsers)
802         runSjLjOnFunction(*F);
803   }
804 
805   if (!Changed) {
806     // Delete unused global variables and functions
807     if (ResumeF)
808       ResumeF->eraseFromParent();
809     if (EHTypeIDF)
810       EHTypeIDF->eraseFromParent();
811     if (EmLongjmpF)
812       EmLongjmpF->eraseFromParent();
813     if (SaveSetjmpF)
814       SaveSetjmpF->eraseFromParent();
815     if (TestSetjmpF)
816       TestSetjmpF->eraseFromParent();
817     return false;
818   }
819 
820   return true;
821 }
822 
823 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
824   Module &M = *F.getParent();
825   LLVMContext &C = F.getContext();
826   IRBuilder<> IRB(C);
827   bool Changed = false;
828   SmallVector<Instruction *, 64> ToErase;
829   SmallPtrSet<LandingPadInst *, 32> LandingPads;
830 
831   for (BasicBlock &BB : F) {
832     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
833     if (!II)
834       continue;
835     Changed = true;
836     LandingPads.insert(II->getLandingPadInst());
837     IRB.SetInsertPoint(II);
838 
839     const Value *Callee = II->getCalledOperand();
840     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
841     if (NeedInvoke) {
842       // Wrap invoke with invoke wrapper and generate preamble/postamble
843       Value *Threw = wrapInvoke(II);
844       ToErase.push_back(II);
845 
846       // If setjmp/longjmp handling is enabled, the thrown value can be not an
847       // exception but a longjmp. If the current function contains calls to
848       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
849       // if the function does not contain setjmp calls, we shouldn't silently
850       // ignore longjmps; we should rethrow them so they can be correctly
851       // handled in somewhere up the call chain where setjmp is. __THREW__'s
852       // value is 0 when nothing happened, 1 when an exception is thrown, and
853       // other values when longjmp is thrown.
854       //
855       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
856       //   goto %tail
857       // else
858       //   goto %longjmp.rethrow
859       //
860       // longjmp.rethrow: ;; This is longjmp. Rethrow it
861       //   %__threwValue.val = __threwValue
862       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
863       //
864       // tail: ;; Nothing happened or an exception is thrown
865       //   ... Continue exception handling ...
866       if (DoSjLj && !SetjmpUsers.count(&F) && canLongjmp(Callee)) {
867         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
868         BasicBlock *RethrowBB = BasicBlock::Create(C, "longjmp.rethrow", &F);
869         Value *CmpEqOne =
870             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
871         Value *CmpEqZero =
872             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
873         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
874         IRB.CreateCondBr(Or, Tail, RethrowBB);
875         IRB.SetInsertPoint(RethrowBB);
876         Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
877                                            ThrewValueGV->getName() + ".val");
878         IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
879 
880         IRB.CreateUnreachable();
881         IRB.SetInsertPoint(Tail);
882       }
883 
884       // Insert a branch based on __THREW__ variable
885       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
886       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
887 
888     } else {
889       // This can't throw, and we don't need this invoke, just replace it with a
890       // call+branch
891       SmallVector<Value *, 16> Args(II->args());
892       CallInst *NewCall =
893           IRB.CreateCall(II->getFunctionType(), II->getCalledOperand(), Args);
894       NewCall->takeName(II);
895       NewCall->setCallingConv(II->getCallingConv());
896       NewCall->setDebugLoc(II->getDebugLoc());
897       NewCall->setAttributes(II->getAttributes());
898       II->replaceAllUsesWith(NewCall);
899       ToErase.push_back(II);
900 
901       IRB.CreateBr(II->getNormalDest());
902 
903       // Remove any PHI node entries from the exception destination
904       II->getUnwindDest()->removePredecessor(&BB);
905     }
906   }
907 
908   // Process resume instructions
909   for (BasicBlock &BB : F) {
910     // Scan the body of the basic block for resumes
911     for (Instruction &I : BB) {
912       auto *RI = dyn_cast<ResumeInst>(&I);
913       if (!RI)
914         continue;
915       Changed = true;
916 
917       // Split the input into legal values
918       Value *Input = RI->getValue();
919       IRB.SetInsertPoint(RI);
920       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
921       // Create a call to __resumeException function
922       IRB.CreateCall(ResumeF, {Low});
923       // Add a terminator to the block
924       IRB.CreateUnreachable();
925       ToErase.push_back(RI);
926     }
927   }
928 
929   // Process llvm.eh.typeid.for intrinsics
930   for (BasicBlock &BB : F) {
931     for (Instruction &I : BB) {
932       auto *CI = dyn_cast<CallInst>(&I);
933       if (!CI)
934         continue;
935       const Function *Callee = CI->getCalledFunction();
936       if (!Callee)
937         continue;
938       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
939         continue;
940       Changed = true;
941 
942       IRB.SetInsertPoint(CI);
943       CallInst *NewCI =
944           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
945       CI->replaceAllUsesWith(NewCI);
946       ToErase.push_back(CI);
947     }
948   }
949 
950   // Look for orphan landingpads, can occur in blocks with no predecessors
951   for (BasicBlock &BB : F) {
952     Instruction *I = BB.getFirstNonPHI();
953     if (auto *LPI = dyn_cast<LandingPadInst>(I))
954       LandingPads.insert(LPI);
955   }
956   Changed |= !LandingPads.empty();
957 
958   // Handle all the landingpad for this function together, as multiple invokes
959   // may share a single lp
960   for (LandingPadInst *LPI : LandingPads) {
961     IRB.SetInsertPoint(LPI);
962     SmallVector<Value *, 16> FMCArgs;
963     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
964       Constant *Clause = LPI->getClause(I);
965       // TODO Handle filters (= exception specifications).
966       // https://bugs.llvm.org/show_bug.cgi?id=50396
967       if (LPI->isCatch(I))
968         FMCArgs.push_back(Clause);
969     }
970 
971     // Create a call to __cxa_find_matching_catch_N function
972     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
973     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
974     Value *Undef = UndefValue::get(LPI->getType());
975     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
976     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, None, "tempret0");
977     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
978 
979     LPI->replaceAllUsesWith(Pair1);
980     ToErase.push_back(LPI);
981   }
982 
983   // Erase everything we no longer need in this function
984   for (Instruction *I : ToErase)
985     I->eraseFromParent();
986 
987   return Changed;
988 }
989 
990 // This tries to get debug info from the instruction before which a new
991 // instruction will be inserted, and if there's no debug info in that
992 // instruction, tries to get the info instead from the previous instruction (if
993 // any). If none of these has debug info and a DISubprogram is provided, it
994 // creates a dummy debug info with the first line of the function, because IR
995 // verifier requires all inlinable callsites should have debug info when both a
996 // caller and callee have DISubprogram. If none of these conditions are met,
997 // returns empty info.
998 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
999                                     DISubprogram *SP) {
1000   assert(InsertBefore);
1001   if (InsertBefore->getDebugLoc())
1002     return InsertBefore->getDebugLoc();
1003   const Instruction *Prev = InsertBefore->getPrevNode();
1004   if (Prev && Prev->getDebugLoc())
1005     return Prev->getDebugLoc();
1006   if (SP)
1007     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1008   return DebugLoc();
1009 }
1010 
1011 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1012   Module &M = *F.getParent();
1013   LLVMContext &C = F.getContext();
1014   IRBuilder<> IRB(C);
1015   SmallVector<Instruction *, 64> ToErase;
1016   // Vector of %setjmpTable values
1017   SmallVector<Instruction *, 4> SetjmpTableInsts;
1018   // Vector of %setjmpTableSize values
1019   SmallVector<Instruction *, 4> SetjmpTableSizeInsts;
1020 
1021   // Setjmp preparation
1022 
1023   // This instruction effectively means %setjmpTableSize = 4.
1024   // We create this as an instruction intentionally, and we don't want to fold
1025   // this instruction to a constant 4, because this value will be used in
1026   // SSAUpdater.AddAvailableValue(...) later.
1027   BasicBlock *Entry = &F.getEntryBlock();
1028   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1029   BinaryOperator *SetjmpTableSize =
1030       BinaryOperator::Create(Instruction::Add, IRB.getInt32(4), IRB.getInt32(0),
1031                              "setjmpTableSize", &*Entry->getFirstInsertionPt());
1032   SetjmpTableSize->setDebugLoc(FirstDL);
1033   // setjmpTable = (int *) malloc(40);
1034   Instruction *SetjmpTable = CallInst::CreateMalloc(
1035       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
1036       nullptr, nullptr, "setjmpTable");
1037   SetjmpTable->setDebugLoc(FirstDL);
1038   // CallInst::CreateMalloc may return a bitcast instruction if the result types
1039   // mismatch. We need to set the debug loc for the original call too.
1040   auto *MallocCall = SetjmpTable->stripPointerCasts();
1041   if (auto *MallocCallI = dyn_cast<Instruction>(MallocCall)) {
1042     MallocCallI->setDebugLoc(FirstDL);
1043   }
1044   // setjmpTable[0] = 0;
1045   IRB.SetInsertPoint(SetjmpTableSize);
1046   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
1047   SetjmpTableInsts.push_back(SetjmpTable);
1048   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
1049 
1050   // Setjmp transformation
1051   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1052   Function *SetjmpF = M.getFunction("setjmp");
1053   for (User *U : SetjmpF->users()) {
1054     auto *CI = dyn_cast<CallInst>(U);
1055     if (!CI)
1056       report_fatal_error("Does not support indirect calls to setjmp");
1057 
1058     BasicBlock *BB = CI->getParent();
1059     if (BB->getParent() != &F) // in other function
1060       continue;
1061 
1062     // The tail is everything right after the call, and will be reached once
1063     // when setjmp is called, and later when longjmp returns to the setjmp
1064     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1065     // Add a phi to the tail, which will be the output of setjmp, which
1066     // indicates if this is the first call or a longjmp back. The phi directly
1067     // uses the right value based on where we arrive from
1068     IRB.SetInsertPoint(Tail->getFirstNonPHI());
1069     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1070 
1071     // setjmp initial call returns 0
1072     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1073     // The proper output is now this, not the setjmp call itself
1074     CI->replaceAllUsesWith(SetjmpRet);
1075     // longjmp returns to the setjmp will add themselves to this phi
1076     SetjmpRetPHIs.push_back(SetjmpRet);
1077 
1078     // Fix call target
1079     // Our index in the function is our place in the array + 1 to avoid index
1080     // 0, because index 0 means the longjmp is not ours to handle.
1081     IRB.SetInsertPoint(CI);
1082     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1083                      SetjmpTable, SetjmpTableSize};
1084     Instruction *NewSetjmpTable =
1085         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1086     Instruction *NewSetjmpTableSize =
1087         IRB.CreateCall(GetTempRet0F, None, "setjmpTableSize");
1088     SetjmpTableInsts.push_back(NewSetjmpTable);
1089     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1090     ToErase.push_back(CI);
1091   }
1092 
1093   // Update each call that can longjmp so it can return to a setjmp where
1094   // relevant.
1095 
1096   // Because we are creating new BBs while processing and don't want to make
1097   // all these newly created BBs candidates again for longjmp processing, we
1098   // first make the vector of candidate BBs.
1099   std::vector<BasicBlock *> BBs;
1100   for (BasicBlock &BB : F)
1101     BBs.push_back(&BB);
1102 
1103   // BBs.size() will change within the loop, so we query it every time
1104   for (unsigned I = 0; I < BBs.size(); I++) {
1105     BasicBlock *BB = BBs[I];
1106     for (Instruction &I : *BB) {
1107       if (isa<InvokeInst>(&I))
1108         report_fatal_error("When using Wasm EH with Emscripten SjLj, there is "
1109                            "a restriction that `setjmp` function call and "
1110                            "exception cannot be used within the same function");
1111       auto *CI = dyn_cast<CallInst>(&I);
1112       if (!CI)
1113         continue;
1114 
1115       const Value *Callee = CI->getCalledOperand();
1116       if (!canLongjmp(Callee))
1117         continue;
1118       if (isEmAsmCall(Callee))
1119         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1120                                F.getName() +
1121                                ". Please consider using EM_JS, or move the "
1122                                "EM_ASM into another function.",
1123                            false);
1124 
1125       Value *Threw = nullptr;
1126       BasicBlock *Tail;
1127       if (Callee->getName().startswith("__invoke_")) {
1128         // If invoke wrapper has already been generated for this call in
1129         // previous EH phase, search for the load instruction
1130         // %__THREW__.val = __THREW__;
1131         // in postamble after the invoke wrapper call
1132         LoadInst *ThrewLI = nullptr;
1133         StoreInst *ThrewResetSI = nullptr;
1134         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1135              I != IE; ++I) {
1136           if (auto *LI = dyn_cast<LoadInst>(I))
1137             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1138               if (GV == ThrewGV) {
1139                 Threw = ThrewLI = LI;
1140                 break;
1141               }
1142         }
1143         // Search for the store instruction after the load above
1144         // __THREW__ = 0;
1145         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1146              I != IE; ++I) {
1147           if (auto *SI = dyn_cast<StoreInst>(I)) {
1148             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1149               if (GV == ThrewGV &&
1150                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1151                 ThrewResetSI = SI;
1152                 break;
1153               }
1154             }
1155           }
1156         }
1157         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1158         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1159         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1160 
1161       } else {
1162         // Wrap call with invoke wrapper and generate preamble/postamble
1163         Threw = wrapInvoke(CI);
1164         ToErase.push_back(CI);
1165         Tail = SplitBlock(BB, CI->getNextNode());
1166 
1167         // If exception handling is enabled, the thrown value can be not a
1168         // longjmp but an exception, in which case we shouldn't silently ignore
1169         // exceptions; we should rethrow them.
1170         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1171         // thrown, other values when longjmp is thrown.
1172         //
1173         // if (%__THREW__.val == 1)
1174         //   goto %eh.rethrow
1175         // else
1176         //   goto %normal
1177         //
1178         // eh.rethrow: ;; Rethrow exception
1179         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1180         //   __resumeException(%exn)
1181         //
1182         // normal:
1183         //   <-- Insertion point. Will insert sjlj handling code from here
1184         //   goto %tail
1185         //
1186         // tail:
1187         //   ...
1188         if (supportsException(&F) && canThrow(Callee)) {
1189           IRB.SetInsertPoint(CI);
1190           // We will add a new conditional branch. So remove the branch created
1191           // when we split the BB
1192           ToErase.push_back(BB->getTerminator());
1193           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1194           BasicBlock *RethrowBB = BasicBlock::Create(C, "eh.rethrow", &F);
1195           Value *CmpEqOne =
1196               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1197           IRB.CreateCondBr(CmpEqOne, RethrowBB, NormalBB);
1198           IRB.SetInsertPoint(RethrowBB);
1199           CallInst *Exn = IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1200           IRB.CreateCall(ResumeF, {Exn});
1201           IRB.CreateUnreachable();
1202           IRB.SetInsertPoint(NormalBB);
1203           IRB.CreateBr(Tail);
1204           BB = NormalBB; // New insertion point to insert testSetjmp()
1205         }
1206       }
1207 
1208       // We need to replace the terminator in Tail - SplitBlock makes BB go
1209       // straight to Tail, we need to check if a longjmp occurred, and go to the
1210       // right setjmp-tail if so
1211       ToErase.push_back(BB->getTerminator());
1212 
1213       // Generate a function call to testSetjmp function and preamble/postamble
1214       // code to figure out (1) whether longjmp occurred (2) if longjmp
1215       // occurred, which setjmp it corresponds to
1216       Value *Label = nullptr;
1217       Value *LongjmpResult = nullptr;
1218       BasicBlock *EndBB = nullptr;
1219       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, SetjmpTable, SetjmpTableSize,
1220                      Label, LongjmpResult, EndBB);
1221       assert(Label && LongjmpResult && EndBB);
1222 
1223       // Create switch instruction
1224       IRB.SetInsertPoint(EndBB);
1225       IRB.SetCurrentDebugLocation(EndBB->getInstList().back().getDebugLoc());
1226       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1227       // -1 means no longjmp happened, continue normally (will hit the default
1228       // switch case). 0 means a longjmp that is not ours to handle, needs a
1229       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1230       // 0).
1231       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1232         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1233         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1234       }
1235 
1236       // We are splitting the block here, and must continue to find other calls
1237       // in the block - which is now split. so continue to traverse in the Tail
1238       BBs.push_back(Tail);
1239     }
1240   }
1241 
1242   // Erase everything we no longer need in this function
1243   for (Instruction *I : ToErase)
1244     I->eraseFromParent();
1245 
1246   // Free setjmpTable buffer before each return instruction + function-exiting
1247   // call
1248   SmallVector<Instruction *, 16> ExitingInsts;
1249   for (BasicBlock &BB : F) {
1250     Instruction *TI = BB.getTerminator();
1251     if (isa<ReturnInst>(TI))
1252       ExitingInsts.push_back(TI);
1253     for (auto &I : BB) {
1254       if (auto *CB = dyn_cast<CallBase>(&I)) {
1255         StringRef CalleeName = CB->getCalledOperand()->getName();
1256         if (CalleeName == "__resumeException" ||
1257             CalleeName == "emscripten_longjmp" || CalleeName == "__cxa_throw")
1258           ExitingInsts.push_back(&I);
1259       }
1260     }
1261   }
1262   for (auto *I : ExitingInsts) {
1263     DebugLoc DL = getOrCreateDebugLoc(I, F.getSubprogram());
1264     auto *Free = CallInst::CreateFree(SetjmpTable, I);
1265     Free->setDebugLoc(DL);
1266     // CallInst::CreateFree may create a bitcast instruction if its argument
1267     // types mismatch. We need to set the debug loc for the bitcast too.
1268     if (auto *FreeCallI = dyn_cast<CallInst>(Free)) {
1269       if (auto *BitCastI = dyn_cast<BitCastInst>(FreeCallI->getArgOperand(0)))
1270         BitCastI->setDebugLoc(DL);
1271     }
1272   }
1273 
1274   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1275   // (when buffer reallocation occurs)
1276   // entry:
1277   //   setjmpTableSize = 4;
1278   //   setjmpTable = (int *) malloc(40);
1279   //   setjmpTable[0] = 0;
1280   // ...
1281   // somebb:
1282   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1283   //   setjmpTableSize = getTempRet0();
1284   // So we need to make sure the SSA for these variables is valid so that every
1285   // saveSetjmp and testSetjmp calls have the correct arguments.
1286   SSAUpdater SetjmpTableSSA;
1287   SSAUpdater SetjmpTableSizeSSA;
1288   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1289   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1290   for (Instruction *I : SetjmpTableInsts)
1291     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1292   for (Instruction *I : SetjmpTableSizeInsts)
1293     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1294 
1295   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1296        UI != UE;) {
1297     // Grab the use before incrementing the iterator.
1298     Use &U = *UI;
1299     // Increment the iterator before removing the use from the list.
1300     ++UI;
1301     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1302       if (I->getParent() != Entry)
1303         SetjmpTableSSA.RewriteUse(U);
1304   }
1305   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1306        UI != UE;) {
1307     Use &U = *UI;
1308     ++UI;
1309     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1310       if (I->getParent() != Entry)
1311         SetjmpTableSizeSSA.RewriteUse(U);
1312   }
1313 
1314   // Finally, our modifications to the cfg can break dominance of SSA variables.
1315   // For example, in this code,
1316   // if (x()) { .. setjmp() .. }
1317   // if (y()) { .. longjmp() .. }
1318   // We must split the longjmp block, and it can jump into the block splitted
1319   // from setjmp one. But that means that when we split the setjmp block, it's
1320   // first part no longer dominates its second part - there is a theoretically
1321   // possible control flow path where x() is false, then y() is true and we
1322   // reach the second part of the setjmp block, without ever reaching the first
1323   // part. So, we rebuild SSA form here.
1324   rebuildSSA(F);
1325   return true;
1326 }
1327