1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief This file lowers exception-related instructions and setjmp/longjmp
12 /// function calls in order to use Emscripten's JavaScript try and catch
13 /// mechanism.
14 ///
15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
16 /// try and catch syntax and relevant exception-related libraries implemented
17 /// in JavaScript glue code that will be produced by Emscripten. This is similar
18 /// to the current Emscripten asm.js exception handling in fastcomp. For
19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
20 /// (Location: https://github.com/kripken/emscripten-fastcomp)
21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
23 /// lib/Target/JSBackend/JSBackend.cpp
24 /// lib/Target/JSBackend/CallHandlers.h
25 ///
26 /// * Exception handling
27 /// This pass lowers invokes and landingpads into library functions in JS glue
28 /// code. Invokes are lowered into function wrappers called invoke wrappers that
29 /// exist in JS side, which wraps the original function call with JS try-catch.
30 /// If an exception occurred, cxa_throw() function in JS side sets some
31 /// variables (see below) so we can check whether an exception occurred from
32 /// wasm code and handle it appropriately.
33 ///
34 /// * Setjmp-longjmp handling
35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
36 /// The idea is that each block with a setjmp is broken up into two parts: the
37 /// part containing setjmp and the part right after the setjmp. The latter part
38 /// is either reached from the setjmp, or later from a longjmp. To handle the
39 /// longjmp, all calls that might longjmp are also called using invoke wrappers
40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
41 /// we can check / whether a longjmp occurred from wasm code. Each block with a
42 /// function call that might longjmp is also split up after the longjmp call.
43 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
44 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
45 /// We assume setjmp-longjmp handling always run after EH handling, which means
46 /// we don't expect any exception-related instructions when SjLj runs.
47 /// FIXME Currently this scheme does not support indirect call of setjmp,
48 /// because of the limitation of the scheme itself. fastcomp does not support it
49 /// either.
50 ///
51 /// In detail, this pass does following things:
52 ///
53 /// 1) Create three global variables: __THREW__, __threwValue, and __tempRet0.
54 ///    __tempRet0 will be set within __cxa_find_matching_catch() function in
55 ///    JS library, and __THREW__ and __threwValue will be set in invoke wrappers
56 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
57 ///    variables are used for both exceptions and setjmp/longjmps.
58 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
59 ///    means nothing occurred, 1 means an exception occurred, and other numbers
60 ///    mean a longjmp occurred. In the case of longjmp, threwValue variable
61 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
62 ///    In exception handling, __tempRet0 indicates the type of an exception
63 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
64 ///    function.
65 ///
66 /// * Exception handling
67 ///
68 /// 2) Create setThrew and setTempRet0 functions.
69 ///    The global variables created in 1) will exist in wasm address space,
70 ///    but their values should be set in JS code, so we provide these functions
71 ///    as interfaces to JS glue code. These functions are equivalent to the
72 ///    following JS functions, which actually exist in asm.js version of JS
73 ///    library.
74 ///
75 ///    function setThrew(threw, value) {
76 ///      if (__THREW__ == 0) {
77 ///        __THREW__ = threw;
78 ///        __threwValue = value;
79 ///      }
80 ///    }
81 ///
82 ///    function setTempRet0(value) {
83 ///      __tempRet0 = value;
84 ///    }
85 ///
86 /// 3) Lower
87 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
88 ///    into
89 ///      __THREW__ = 0;
90 ///      call @invoke_SIG(func, arg1, arg2)
91 ///      %__THREW__.val = __THREW__;
92 ///      __THREW__ = 0;
93 ///      br %__THREW__.val, label %lpad, label %invoke.cont
94 ///    SIG is a mangled string generated based on the LLVM IR-level function
95 ///    signature. After LLVM IR types are lowered to the target wasm types,
96 ///    the names for these wrappers will change based on wasm types as well,
97 ///    as in invoke_vi (function takes an int and returns void). The bodies of
98 ///    these wrappers will be generated in JS glue code, and inside those
99 ///    wrappers we use JS try-catch to generate actual exception effects. It
100 ///    also calls the original callee function. An example wrapper in JS code
101 ///    would look like this:
102 ///      function invoke_vi(index,a1) {
103 ///        try {
104 ///          Module["dynCall_vi"](index,a1); // This calls original callee
105 ///        } catch(e) {
106 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
107 ///          asm["setThrew"](1, 0); // setThrew is called here
108 ///        }
109 ///      }
110 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
111 ///    so we can jump to the right BB based on this value.
112 ///
113 /// 4) Lower
114 ///      %val = landingpad catch c1 catch c2 catch c3 ...
115 ///      ... use %val ...
116 ///    into
117 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
118 ///      %val = {%fmc, __tempRet0}
119 ///      ... use %val ...
120 ///    Here N is a number calculated based on the number of clauses.
121 ///    Global variable __tempRet0 is set within __cxa_find_matching_catch() in
122 ///    JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// 7) In the function entry that calls setjmp, initialize setjmpTable and
139 ///    sejmpTableSize as follows:
140 ///      setjmpTableSize = 4;
141 ///      setjmpTable = (int *) malloc(40);
142 ///      setjmpTable[0] = 0;
143 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
144 ///    code.
145 ///
146 /// 8) Lower
147 ///      setjmp(buf)
148 ///    into
149 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
150 ///      setjmpTableSize = __tempRet0;
151 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
152 ///    is incrementally assigned from 0) and its label (a unique number that
153 ///    represents each callsite of setjmp). When we need more entries in
154 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
155 ///    return the new table address, and assign the new table size in
156 ///    __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf.
157 ///    A BB with setjmp is split into two after setjmp call in order to make the
158 ///    post-setjmp BB the possible destination of longjmp BB.
159 ///
160 /// 9) Lower
161 ///      longjmp(buf, value)
162 ///    into
163 ///      emscripten_longjmp_jmpbuf(buf, value)
164 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
165 ///
166 /// 10) Lower every call that might longjmp into
167 ///      __THREW__ = 0;
168 ///      call @invoke_SIG(func, arg1, arg2)
169 ///      %__THREW__.val = __THREW__;
170 ///      __THREW__ = 0;
171 ///      if (%__THREW__.val != 0 & threwValue != 0) {
172 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
173 ///                            setjmpTableSize);
174 ///        if (%label == 0)
175 ///          emscripten_longjmp(%__THREW__.val, threwValue);
176 ///        __tempRet0 = threwValue;
177 ///      } else {
178 ///        %label = -1;
179 ///      }
180 ///      longjmp_result = __tempRet0;
181 ///      switch label {
182 ///        label 1: post-setjmp BB 1
183 ///        label 2: post-setjmp BB 2
184 ///        ...
185 ///        default: splited next BB
186 ///      }
187 ///     testSetjmp examines setjmpTable to see if there is a matching setjmp
188 ///     call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
189 ///     will be the address of matching jmp_buf buffer and threwValue be the
190 ///     second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
191 ///     stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
192 ///     each setjmp callsite. Label 0 means this longjmp buffer does not
193 ///     correspond to one of the setjmp callsites in this function, so in this
194 ///     case we just chain the longjmp to the caller. (Here we call
195 ///     emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
196 ///     emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
197 ///     emscripten_longjmp takes an int. Both of them will eventually be lowered
198 ///     to emscripten_longjmp in s2wasm, but here we need two signatures - we
199 ///     can't translate an int value to a jmp_buf.)
200 ///     Label -1 means no longjmp occurred. Otherwise we jump to the right
201 ///     post-setjmp BB based on the label.
202 ///
203 ///===----------------------------------------------------------------------===//
204 
205 #include "WebAssembly.h"
206 #include "llvm/IR/CallSite.h"
207 #include "llvm/IR/Dominators.h"
208 #include "llvm/IR/IRBuilder.h"
209 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
210 #include "llvm/Transforms/Utils/SSAUpdater.h"
211 
212 using namespace llvm;
213 
214 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
215 
216 static cl::list<std::string>
217     EHWhitelist("emscripten-cxx-exceptions-whitelist",
218                 cl::desc("The list of function names in which Emscripten-style "
219                          "exception handling is enabled (see emscripten "
220                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
221                 cl::CommaSeparated);
222 
223 namespace {
224 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
225   static const char *ThrewGVName;
226   static const char *ThrewValueGVName;
227   static const char *TempRet0GVName;
228   static const char *ResumeFName;
229   static const char *EHTypeIDFName;
230   static const char *SetThrewFName;
231   static const char *SetTempRet0FName;
232   static const char *EmLongjmpFName;
233   static const char *EmLongjmpJmpbufFName;
234   static const char *SaveSetjmpFName;
235   static const char *TestSetjmpFName;
236   static const char *FindMatchingCatchPrefix;
237   static const char *InvokePrefix;
238 
239   bool EnableEH;   // Enable exception handling
240   bool EnableSjLj; // Enable setjmp/longjmp handling
241 
242   GlobalVariable *ThrewGV;
243   GlobalVariable *ThrewValueGV;
244   GlobalVariable *TempRet0GV;
245   Function *ResumeF;
246   Function *EHTypeIDF;
247   Function *EmLongjmpF;
248   Function *EmLongjmpJmpbufF;
249   Function *SaveSetjmpF;
250   Function *TestSetjmpF;
251 
252   // __cxa_find_matching_catch_N functions.
253   // Indexed by the number of clauses in an original landingpad instruction.
254   DenseMap<int, Function *> FindMatchingCatches;
255   // Map of <function signature string, invoke_ wrappers>
256   StringMap<Function *> InvokeWrappers;
257   // Set of whitelisted function names for exception handling
258   std::set<std::string> EHWhitelistSet;
259 
260   const char *getPassName() const override {
261     return "WebAssembly Lower Emscripten Exceptions";
262   }
263 
264   bool runEHOnFunction(Function &F);
265   bool runSjLjOnFunction(Function &F);
266   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
267 
268   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
269   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
270                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
271                       Value *&LongjmpResult, BasicBlock *&EndBB);
272   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
273 
274   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
275   bool canLongjmp(Module &M, const Value *Callee) const;
276 
277   void createSetThrewFunction(Module &M);
278   void createSetTempRet0Function(Module &M);
279 
280   void rebuildSSA(Function &F);
281 
282 public:
283   static char ID;
284 
285   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
286       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj),
287         ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr),
288         ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr),
289         EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) {
290     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
291   }
292   bool runOnModule(Module &M) override;
293 
294   void getAnalysisUsage(AnalysisUsage &AU) const override {
295     AU.addRequired<DominatorTreeWrapperPass>();
296   }
297 };
298 } // End anonymous namespace
299 
300 const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewGVName = "__THREW__";
301 const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewValueGVName = "__threwValue";
302 const char *WebAssemblyLowerEmscriptenEHSjLj::TempRet0GVName = "__tempRet0";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
304 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
305     "llvm_eh_typeid_for";
306 const char *WebAssemblyLowerEmscriptenEHSjLj::SetThrewFName = "setThrew";
307 const char *WebAssemblyLowerEmscriptenEHSjLj::SetTempRet0FName = "setTempRet0";
308 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
309     "emscripten_longjmp";
310 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
311     "emscripten_longjmp_jmpbuf";
312 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
313 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
314 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
315     "__cxa_find_matching_catch_";
316 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
317 
318 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
319 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
320                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
321                 false, false)
322 
323 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
324                                                          bool EnableSjLj) {
325   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
326 }
327 
328 static bool canThrow(const Value *V) {
329   if (const auto *F = dyn_cast<const Function>(V)) {
330     // Intrinsics cannot throw
331     if (F->isIntrinsic())
332       return false;
333     StringRef Name = F->getName();
334     // leave setjmp and longjmp (mostly) alone, we process them properly later
335     if (Name == "setjmp" || Name == "longjmp")
336       return false;
337     return !F->doesNotThrow();
338   }
339   // not a function, so an indirect call - can throw, we can't tell
340   return true;
341 }
342 
343 // Returns an available name for a global value.
344 // If the proposed name already exists in the module, adds '_' at the end of
345 // the name until the name is available.
346 static inline std::string createGlobalValueName(const Module &M,
347                                                 const std::string &Propose) {
348   std::string Name = Propose;
349   while (M.getNamedGlobal(Name))
350     Name += "_";
351   return Name;
352 }
353 
354 // Simple function name mangler.
355 // This function simply takes LLVM's string representation of parameter types
356 // and concatenate them with '_'. There are non-alphanumeric characters but llc
357 // is ok with it, and we need to postprocess these names after the lowering
358 // phase anyway.
359 static std::string getSignature(FunctionType *FTy) {
360   std::string Sig;
361   raw_string_ostream OS(Sig);
362   OS << *FTy->getReturnType();
363   for (Type *ParamTy : FTy->params())
364     OS << "_" << *ParamTy;
365   if (FTy->isVarArg())
366     OS << "_...";
367   Sig = OS.str();
368   Sig.erase(remove_if(Sig, isspace), Sig.end());
369   // When s2wasm parses .s file, a comma means the end of an argument. So a
370   // mangled function name can contain any character but a comma.
371   std::replace(Sig.begin(), Sig.end(), ',', '.');
372   return Sig;
373 }
374 
375 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
376 // This is because a landingpad instruction contains two more arguments, a
377 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
378 // functions are named after the number of arguments in the original landingpad
379 // instruction.
380 Function *
381 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
382                                                        unsigned NumClauses) {
383   if (FindMatchingCatches.count(NumClauses))
384     return FindMatchingCatches[NumClauses];
385   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
386   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
387   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
388   Function *F =
389       Function::Create(FTy, GlobalValue::ExternalLinkage,
390                        FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
391   FindMatchingCatches[NumClauses] = F;
392   return F;
393 }
394 
395 // Generate invoke wrapper seqence with preamble and postamble
396 // Preamble:
397 // __THREW__ = 0;
398 // Postamble:
399 // %__THREW__.val = __THREW__; __THREW__ = 0;
400 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
401 // whether longjmp occurred), for future use.
402 template <typename CallOrInvoke>
403 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
404   LLVMContext &C = CI->getModule()->getContext();
405 
406   // If we are calling a function that is noreturn, we must remove that
407   // attribute. The code we insert here does expect it to return, after we
408   // catch the exception.
409   if (CI->doesNotReturn()) {
410     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
411       F->removeFnAttr(Attribute::NoReturn);
412     CI->removeAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
413   }
414 
415   IRBuilder<> IRB(C);
416   IRB.SetInsertPoint(CI);
417 
418   // Pre-invoke
419   // __THREW__ = 0;
420   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
421 
422   // Invoke function wrapper in JavaScript
423   SmallVector<Value *, 16> Args;
424   // Put the pointer to the callee as first argument, so it can be called
425   // within the invoke wrapper later
426   Args.push_back(CI->getCalledValue());
427   Args.append(CI->arg_begin(), CI->arg_end());
428   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
429   NewCall->takeName(CI);
430   NewCall->setCallingConv(CI->getCallingConv());
431   NewCall->setDebugLoc(CI->getDebugLoc());
432 
433   // Because we added the pointer to the callee as first argument, all
434   // argument attribute indices have to be incremented by one.
435   SmallVector<AttributeSet, 8> AttributesVec;
436   const AttributeSet &InvokePAL = CI->getAttributes();
437   CallSite::arg_iterator AI = CI->arg_begin();
438   unsigned i = 1; // Argument attribute index starts from 1
439   for (unsigned e = CI->getNumArgOperands(); i <= e; ++AI, ++i) {
440     if (InvokePAL.hasAttributes(i)) {
441       AttrBuilder B(InvokePAL, i);
442       AttributesVec.push_back(AttributeSet::get(C, i + 1, B));
443     }
444   }
445   // Add any return attributes.
446   if (InvokePAL.hasAttributes(AttributeSet::ReturnIndex))
447     AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getRetAttributes()));
448   // Add any function attributes.
449   if (InvokePAL.hasAttributes(AttributeSet::FunctionIndex))
450     AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getFnAttributes()));
451   // Reconstruct the AttributesList based on the vector we constructed.
452   AttributeSet NewCallPAL = AttributeSet::get(C, AttributesVec);
453   NewCall->setAttributes(NewCallPAL);
454 
455   CI->replaceAllUsesWith(NewCall);
456 
457   // Post-invoke
458   // %__THREW__.val = __THREW__; __THREW__ = 0;
459   Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
460   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
461   return Threw;
462 }
463 
464 // Get matching invoke wrapper based on callee signature
465 template <typename CallOrInvoke>
466 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
467   Module *M = CI->getModule();
468   SmallVector<Type *, 16> ArgTys;
469   Value *Callee = CI->getCalledValue();
470   FunctionType *CalleeFTy;
471   if (auto *F = dyn_cast<Function>(Callee))
472     CalleeFTy = F->getFunctionType();
473   else {
474     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
475     CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
476   }
477 
478   std::string Sig = getSignature(CalleeFTy);
479   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
480     return InvokeWrappers[Sig];
481 
482   // Put the pointer to the callee as first argument
483   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
484   // Add argument types
485   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
486 
487   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
488                                         CalleeFTy->isVarArg());
489   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
490                                  InvokePrefix + Sig, M);
491   InvokeWrappers[Sig] = F;
492   return F;
493 }
494 
495 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
496                                                   const Value *Callee) const {
497   if (auto *CalleeF = dyn_cast<Function>(Callee))
498     if (CalleeF->isIntrinsic())
499       return false;
500 
501   // The reason we include malloc/free here is to exclude the malloc/free
502   // calls generated in setjmp prep / cleanup routines.
503   Function *SetjmpF = M.getFunction("setjmp");
504   Function *MallocF = M.getFunction("malloc");
505   Function *FreeF = M.getFunction("free");
506   if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
507     return false;
508 
509   // There are functions in JS glue code
510   if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
511       Callee == TestSetjmpF)
512     return false;
513 
514   // __cxa_find_matching_catch_N functions cannot longjmp
515   if (Callee->getName().startswith(FindMatchingCatchPrefix))
516     return false;
517 
518   // Exception-catching related functions
519   Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
520   Function *EndCatchF = M.getFunction("__cxa_end_catch");
521   Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
522   Function *ThrowF = M.getFunction("__cxa_throw");
523   Function *TerminateF = M.getFunction("__clang_call_terminate");
524   if (Callee == BeginCatchF || Callee == EndCatchF ||
525       Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF)
526     return false;
527 
528   // Otherwise we don't know
529   return true;
530 }
531 
532 // Generate testSetjmp function call seqence with preamble and postamble.
533 // The code this generates is equivalent to the following JavaScript code:
534 // if (%__THREW__.val != 0 & threwValue != 0) {
535 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
536 //   if (%label == 0)
537 //     emscripten_longjmp(%__THREW__.val, threwValue);
538 //   __tempRet0 = threwValue;
539 // } else {
540 //   %label = -1;
541 // }
542 // %longjmp_result = __tempRet0;
543 //
544 // As output parameters. returns %label, %longjmp_result, and the BB the last
545 // instruction (%longjmp_result = ...) is in.
546 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
547     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
548     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
549     BasicBlock *&EndBB) {
550   Function *F = BB->getParent();
551   LLVMContext &C = BB->getModule()->getContext();
552   IRBuilder<> IRB(C);
553   IRB.SetInsertPoint(InsertPt);
554 
555   // if (%__THREW__.val != 0 & threwValue != 0)
556   IRB.SetInsertPoint(BB);
557   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
558   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
559   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
560   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
561   Value *ThrewValue =
562       IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val");
563   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
564   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
565   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
566 
567   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
568   // if (%label == 0)
569   IRB.SetInsertPoint(ThenBB1);
570   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
571   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
572   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
573                                        Threw->getName() + ".i32p");
574   Value *LoadedThrew =
575       IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded");
576   Value *ThenLabel = IRB.CreateCall(
577       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
578   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
579   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
580 
581   // emscripten_longjmp(%__THREW__.val, threwValue);
582   IRB.SetInsertPoint(ThenBB2);
583   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
584   IRB.CreateUnreachable();
585 
586   // __tempRet0 = threwValue;
587   IRB.SetInsertPoint(EndBB2);
588   IRB.CreateStore(ThrewValue, TempRet0GV);
589   IRB.CreateBr(EndBB1);
590 
591   IRB.SetInsertPoint(ElseBB1);
592   IRB.CreateBr(EndBB1);
593 
594   // longjmp_result = __tempRet0;
595   IRB.SetInsertPoint(EndBB1);
596   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
597   LabelPHI->addIncoming(ThenLabel, EndBB2);
598 
599   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
600 
601   // Output parameter assignment
602   Label = LabelPHI;
603   EndBB = EndBB1;
604   LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result");
605 }
606 
607 // Create setThrew function
608 // function setThrew(threw, value) {
609 //   if (__THREW__ == 0) {
610 //     __THREW__ = threw;
611 //     __threwValue = value;
612 //   }
613 // }
614 void WebAssemblyLowerEmscriptenEHSjLj::createSetThrewFunction(Module &M) {
615   LLVMContext &C = M.getContext();
616   IRBuilder<> IRB(C);
617 
618   assert(!M.getNamedGlobal(SetThrewFName) && "setThrew already exists");
619   Type *Params[] = {IRB.getInt32Ty(), IRB.getInt32Ty()};
620   FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
621   Function *F =
622       Function::Create(FTy, GlobalValue::ExternalLinkage, SetThrewFName, &M);
623   Argument *Arg1 = &*(F->arg_begin());
624   Argument *Arg2 = &*(++F->arg_begin());
625   Arg1->setName("threw");
626   Arg2->setName("value");
627   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
628   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", F);
629   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", F);
630 
631   IRB.SetInsertPoint(EntryBB);
632   Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
633   Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(0), "cmp");
634   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
635 
636   IRB.SetInsertPoint(ThenBB);
637   IRB.CreateStore(Arg1, ThrewGV);
638   IRB.CreateStore(Arg2, ThrewValueGV);
639   IRB.CreateBr(EndBB);
640 
641   IRB.SetInsertPoint(EndBB);
642   IRB.CreateRetVoid();
643 }
644 
645 // Create setTempRet0 function
646 // function setTempRet0(value) {
647 //   __tempRet0 = value;
648 // }
649 void WebAssemblyLowerEmscriptenEHSjLj::createSetTempRet0Function(Module &M) {
650   LLVMContext &C = M.getContext();
651   IRBuilder<> IRB(C);
652 
653   assert(!M.getNamedGlobal(SetTempRet0FName) && "setTempRet0 already exists");
654   Type *Params[] = {IRB.getInt32Ty()};
655   FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
656   Function *F =
657       Function::Create(FTy, GlobalValue::ExternalLinkage, SetTempRet0FName, &M);
658   F->arg_begin()->setName("value");
659   BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
660   IRB.SetInsertPoint(EntryBB);
661   IRB.CreateStore(&*F->arg_begin(), TempRet0GV);
662   IRB.CreateRetVoid();
663 }
664 
665 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
666   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
667   DT.recalculate(F); // CFG has been changed
668   SSAUpdater SSA;
669   for (BasicBlock &BB : F) {
670     for (Instruction &I : BB) {
671       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
672         Use &U = *UI;
673         ++UI;
674         SSA.Initialize(I.getType(), I.getName());
675         SSA.AddAvailableValue(&BB, &I);
676         Instruction *User = cast<Instruction>(U.getUser());
677         if (User->getParent() == &BB)
678           continue;
679 
680         if (PHINode *UserPN = dyn_cast<PHINode>(User))
681           if (UserPN->getIncomingBlock(U) == &BB)
682             continue;
683 
684         if (DT.dominates(&I, User))
685           continue;
686         SSA.RewriteUseAfterInsertions(U);
687       }
688     }
689   }
690 }
691 
692 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
693   LLVMContext &C = M.getContext();
694   IRBuilder<> IRB(C);
695 
696   Function *SetjmpF = M.getFunction("setjmp");
697   Function *LongjmpF = M.getFunction("longjmp");
698   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
699   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
700   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
701 
702   // Create global variables __THREW__, threwValue, and __tempRet0, which are
703   // used in common for both exception handling and setjmp/longjmp handling
704   ThrewGV = new GlobalVariable(M, IRB.getInt32Ty(), false,
705                                GlobalValue::ExternalLinkage, IRB.getInt32(0),
706                                createGlobalValueName(M, ThrewGVName));
707   ThrewValueGV = new GlobalVariable(
708       M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage, IRB.getInt32(0),
709       createGlobalValueName(M, ThrewValueGVName));
710   TempRet0GV = new GlobalVariable(M, IRB.getInt32Ty(), false,
711                                   GlobalValue::ExternalLinkage, IRB.getInt32(0),
712                                   createGlobalValueName(M, TempRet0GVName));
713 
714   bool Changed = false;
715 
716   // Exception handling
717   if (EnableEH) {
718     // Register __resumeException function
719     FunctionType *ResumeFTy =
720         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
721     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
722                                ResumeFName, &M);
723 
724     // Register llvm_eh_typeid_for function
725     FunctionType *EHTypeIDTy =
726         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
727     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
728                                  EHTypeIDFName, &M);
729 
730     for (Function &F : M) {
731       if (F.isDeclaration())
732         continue;
733       Changed |= runEHOnFunction(F);
734     }
735   }
736 
737   // Setjmp/longjmp handling
738   if (DoSjLj) {
739     Changed = true; // We have setjmp or longjmp somewhere
740 
741     Function *MallocF = M.getFunction("malloc");
742     Function *FreeF = M.getFunction("free");
743     if (!MallocF || !FreeF)
744       report_fatal_error(
745           "malloc and free must be linked into the module if setjmp is used");
746 
747     // Register saveSetjmp function
748     FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
749     SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
750                                      IRB.getInt32Ty(), Type::getInt32PtrTy(C),
751                                      IRB.getInt32Ty()};
752     FunctionType *FTy =
753         FunctionType::get(Type::getInt32PtrTy(C), Params, false);
754     SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
755                                    SaveSetjmpFName, &M);
756 
757     // Register testSetjmp function
758     Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
759     FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
760     TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
761                                    TestSetjmpFName, &M);
762 
763     if (LongjmpF) {
764       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
765       // defined in JS code
766       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
767                                           GlobalValue::ExternalLinkage,
768                                           EmLongjmpJmpbufFName, &M);
769 
770       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
771     }
772     FTy = FunctionType::get(IRB.getVoidTy(),
773                             {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
774     EmLongjmpF =
775         Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M);
776 
777     // Only traverse functions that uses setjmp in order not to insert
778     // unnecessary prep / cleanup code in every function
779     SmallPtrSet<Function *, 8> SetjmpUsers;
780     for (User *U : SetjmpF->users()) {
781       auto *UI = cast<Instruction>(U);
782       SetjmpUsers.insert(UI->getFunction());
783     }
784     for (Function *F : SetjmpUsers)
785       runSjLjOnFunction(*F);
786   }
787 
788   if (!Changed) {
789     // Delete unused global variables and functions
790     ThrewGV->eraseFromParent();
791     ThrewValueGV->eraseFromParent();
792     TempRet0GV->eraseFromParent();
793     if (ResumeF)
794       ResumeF->eraseFromParent();
795     if (EHTypeIDF)
796       EHTypeIDF->eraseFromParent();
797     if (EmLongjmpF)
798       EmLongjmpF->eraseFromParent();
799     if (SaveSetjmpF)
800       SaveSetjmpF->eraseFromParent();
801     if (TestSetjmpF)
802       TestSetjmpF->eraseFromParent();
803     return false;
804   }
805 
806   // If we have made any changes while doing exception handling or
807   // setjmp/longjmp handling, we have to create these functions for JavaScript
808   // to call.
809   createSetThrewFunction(M);
810   createSetTempRet0Function(M);
811 
812   return true;
813 }
814 
815 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
816   Module &M = *F.getParent();
817   LLVMContext &C = F.getContext();
818   IRBuilder<> IRB(C);
819   bool Changed = false;
820   SmallVector<Instruction *, 64> ToErase;
821   SmallPtrSet<LandingPadInst *, 32> LandingPads;
822   bool AllowExceptions =
823       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
824 
825   for (BasicBlock &BB : F) {
826     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
827     if (!II)
828       continue;
829     Changed = true;
830     LandingPads.insert(II->getLandingPadInst());
831     IRB.SetInsertPoint(II);
832 
833     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
834     if (NeedInvoke) {
835       // Wrap invoke with invoke wrapper and generate preamble/postamble
836       Value *Threw = wrapInvoke(II);
837       ToErase.push_back(II);
838 
839       // Insert a branch based on __THREW__ variable
840       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
841       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
842 
843     } else {
844       // This can't throw, and we don't need this invoke, just replace it with a
845       // call+branch
846       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
847       CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args);
848       NewCall->takeName(II);
849       NewCall->setCallingConv(II->getCallingConv());
850       NewCall->setDebugLoc(II->getDebugLoc());
851       NewCall->setAttributes(II->getAttributes());
852       II->replaceAllUsesWith(NewCall);
853       ToErase.push_back(II);
854 
855       IRB.CreateBr(II->getNormalDest());
856 
857       // Remove any PHI node entries from the exception destination
858       II->getUnwindDest()->removePredecessor(&BB);
859     }
860   }
861 
862   // Process resume instructions
863   for (BasicBlock &BB : F) {
864     // Scan the body of the basic block for resumes
865     for (Instruction &I : BB) {
866       auto *RI = dyn_cast<ResumeInst>(&I);
867       if (!RI)
868         continue;
869 
870       // Split the input into legal values
871       Value *Input = RI->getValue();
872       IRB.SetInsertPoint(RI);
873       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
874       // Create a call to __resumeException function
875       IRB.CreateCall(ResumeF, {Low});
876       // Add a terminator to the block
877       IRB.CreateUnreachable();
878       ToErase.push_back(RI);
879     }
880   }
881 
882   // Process llvm.eh.typeid.for intrinsics
883   for (BasicBlock &BB : F) {
884     for (Instruction &I : BB) {
885       auto *CI = dyn_cast<CallInst>(&I);
886       if (!CI)
887         continue;
888       const Function *Callee = CI->getCalledFunction();
889       if (!Callee)
890         continue;
891       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
892         continue;
893 
894       IRB.SetInsertPoint(CI);
895       CallInst *NewCI =
896           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
897       CI->replaceAllUsesWith(NewCI);
898       ToErase.push_back(CI);
899     }
900   }
901 
902   // Look for orphan landingpads, can occur in blocks with no predecesors
903   for (BasicBlock &BB : F) {
904     Instruction *I = BB.getFirstNonPHI();
905     if (auto *LPI = dyn_cast<LandingPadInst>(I))
906       LandingPads.insert(LPI);
907   }
908 
909   // Handle all the landingpad for this function together, as multiple invokes
910   // may share a single lp
911   for (LandingPadInst *LPI : LandingPads) {
912     IRB.SetInsertPoint(LPI);
913     SmallVector<Value *, 16> FMCArgs;
914     for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) {
915       Constant *Clause = LPI->getClause(i);
916       // As a temporary workaround for the lack of aggregate varargs support
917       // in the interface between JS and wasm, break out filter operands into
918       // their component elements.
919       if (LPI->isFilter(i)) {
920         auto *ATy = cast<ArrayType>(Clause->getType());
921         for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) {
922           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter");
923           FMCArgs.push_back(EV);
924         }
925       } else
926         FMCArgs.push_back(Clause);
927     }
928 
929     // Create a call to __cxa_find_matching_catch_N function
930     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
931     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
932     Value *Undef = UndefValue::get(LPI->getType());
933     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
934     Value *TempRet0 =
935         IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val");
936     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
937 
938     LPI->replaceAllUsesWith(Pair1);
939     ToErase.push_back(LPI);
940   }
941 
942   // Erase everything we no longer need in this function
943   for (Instruction *I : ToErase)
944     I->eraseFromParent();
945 
946   return Changed;
947 }
948 
949 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
950   Module &M = *F.getParent();
951   LLVMContext &C = F.getContext();
952   IRBuilder<> IRB(C);
953   SmallVector<Instruction *, 64> ToErase;
954   // Vector of %setjmpTable values
955   std::vector<Instruction *> SetjmpTableInsts;
956   // Vector of %setjmpTableSize values
957   std::vector<Instruction *> SetjmpTableSizeInsts;
958 
959   // Setjmp preparation
960 
961   // This instruction effectively means %setjmpTableSize = 4.
962   // We create this as an instruction intentionally, and we don't want to fold
963   // this instruction to a constant 4, because this value will be used in
964   // SSAUpdater.AddAvailableValue(...) later.
965   BasicBlock &EntryBB = F.getEntryBlock();
966   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
967       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
968       &*EntryBB.getFirstInsertionPt());
969   // setjmpTable = (int *) malloc(40);
970   Instruction *SetjmpTable = CallInst::CreateMalloc(
971       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
972       nullptr, nullptr, "setjmpTable");
973   // setjmpTable[0] = 0;
974   IRB.SetInsertPoint(SetjmpTableSize);
975   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
976   SetjmpTableInsts.push_back(SetjmpTable);
977   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
978 
979   // Setjmp transformation
980   std::vector<PHINode *> SetjmpRetPHIs;
981   Function *SetjmpF = M.getFunction("setjmp");
982   for (User *U : SetjmpF->users()) {
983     auto *CI = dyn_cast<CallInst>(U);
984     if (!CI)
985       report_fatal_error("Does not support indirect calls to setjmp");
986 
987     BasicBlock *BB = CI->getParent();
988     if (BB->getParent() != &F) // in other function
989       continue;
990 
991     // The tail is everything right after the call, and will be reached once
992     // when setjmp is called, and later when longjmp returns to the setjmp
993     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
994     // Add a phi to the tail, which will be the output of setjmp, which
995     // indicates if this is the first call or a longjmp back. The phi directly
996     // uses the right value based on where we arrive from
997     IRB.SetInsertPoint(Tail->getFirstNonPHI());
998     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
999 
1000     // setjmp initial call returns 0
1001     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1002     // The proper output is now this, not the setjmp call itself
1003     CI->replaceAllUsesWith(SetjmpRet);
1004     // longjmp returns to the setjmp will add themselves to this phi
1005     SetjmpRetPHIs.push_back(SetjmpRet);
1006 
1007     // Fix call target
1008     // Our index in the function is our place in the array + 1 to avoid index
1009     // 0, because index 0 means the longjmp is not ours to handle.
1010     IRB.SetInsertPoint(CI);
1011     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1012                      SetjmpTable, SetjmpTableSize};
1013     Instruction *NewSetjmpTable =
1014         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
1015     Instruction *NewSetjmpTableSize =
1016         IRB.CreateLoad(TempRet0GV, "setjmpTableSize");
1017     SetjmpTableInsts.push_back(NewSetjmpTable);
1018     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
1019     ToErase.push_back(CI);
1020   }
1021 
1022   // Update each call that can longjmp so it can return to a setjmp where
1023   // relevant.
1024 
1025   // Because we are creating new BBs while processing and don't want to make
1026   // all these newly created BBs candidates again for longjmp processing, we
1027   // first make the vector of candidate BBs.
1028   std::vector<BasicBlock *> BBs;
1029   for (BasicBlock &BB : F)
1030     BBs.push_back(&BB);
1031 
1032   // BBs.size() will change within the loop, so we query it every time
1033   for (unsigned i = 0; i < BBs.size(); i++) {
1034     BasicBlock *BB = BBs[i];
1035     for (Instruction &I : *BB) {
1036       assert(!isa<InvokeInst>(&I));
1037       auto *CI = dyn_cast<CallInst>(&I);
1038       if (!CI)
1039         continue;
1040 
1041       const Value *Callee = CI->getCalledValue();
1042       if (!canLongjmp(M, Callee))
1043         continue;
1044 
1045       Value *Threw = nullptr;
1046       BasicBlock *Tail;
1047       if (Callee->getName().startswith(InvokePrefix)) {
1048         // If invoke wrapper has already been generated for this call in
1049         // previous EH phase, search for the load instruction
1050         // %__THREW__.val = __THREW__;
1051         // in postamble after the invoke wrapper call
1052         LoadInst *ThrewLI = nullptr;
1053         StoreInst *ThrewResetSI = nullptr;
1054         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1055              I != IE; ++I) {
1056           if (auto *LI = dyn_cast<LoadInst>(I))
1057             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1058               if (GV == ThrewGV) {
1059                 Threw = ThrewLI = LI;
1060                 break;
1061               }
1062         }
1063         // Search for the store instruction after the load above
1064         // __THREW__ = 0;
1065         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1066              I != IE; ++I) {
1067           if (auto *SI = dyn_cast<StoreInst>(I))
1068             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1069               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1070                 ThrewResetSI = SI;
1071                 break;
1072               }
1073         }
1074         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1075         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1076         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1077 
1078       } else {
1079         // Wrap call with invoke wrapper and generate preamble/postamble
1080         Threw = wrapInvoke(CI);
1081         ToErase.push_back(CI);
1082         Tail = SplitBlock(BB, CI->getNextNode());
1083       }
1084 
1085       // We need to replace the terminator in Tail - SplitBlock makes BB go
1086       // straight to Tail, we need to check if a longjmp occurred, and go to the
1087       // right setjmp-tail if so
1088       ToErase.push_back(BB->getTerminator());
1089 
1090       // Generate a function call to testSetjmp function and preamble/postamble
1091       // code to figure out (1) whether longjmp occurred (2) if longjmp
1092       // occurred, which setjmp it corresponds to
1093       Value *Label = nullptr;
1094       Value *LongjmpResult = nullptr;
1095       BasicBlock *EndBB = nullptr;
1096       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1097                      LongjmpResult, EndBB);
1098       assert(Label && LongjmpResult && EndBB);
1099 
1100       // Create switch instruction
1101       IRB.SetInsertPoint(EndBB);
1102       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1103       // -1 means no longjmp happened, continue normally (will hit the default
1104       // switch case). 0 means a longjmp that is not ours to handle, needs a
1105       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1106       // 0).
1107       for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) {
1108         SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent());
1109         SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB);
1110       }
1111 
1112       // We are splitting the block here, and must continue to find other calls
1113       // in the block - which is now split. so continue to traverse in the Tail
1114       BBs.push_back(Tail);
1115     }
1116   }
1117 
1118   // Erase everything we no longer need in this function
1119   for (Instruction *I : ToErase)
1120     I->eraseFromParent();
1121 
1122   // Free setjmpTable buffer before each return instruction
1123   for (BasicBlock &BB : F) {
1124     TerminatorInst *TI = BB.getTerminator();
1125     if (isa<ReturnInst>(TI))
1126       CallInst::CreateFree(SetjmpTable, TI);
1127   }
1128 
1129   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1130   // (when buffer reallocation occurs)
1131   // entry:
1132   //   setjmpTableSize = 4;
1133   //   setjmpTable = (int *) malloc(40);
1134   //   setjmpTable[0] = 0;
1135   // ...
1136   // somebb:
1137   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1138   //   setjmpTableSize = __tempRet0;
1139   // So we need to make sure the SSA for these variables is valid so that every
1140   // saveSetjmp and testSetjmp calls have the correct arguments.
1141   SSAUpdater SetjmpTableSSA;
1142   SSAUpdater SetjmpTableSizeSSA;
1143   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1144   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1145   for (Instruction *I : SetjmpTableInsts)
1146     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1147   for (Instruction *I : SetjmpTableSizeInsts)
1148     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1149 
1150   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1151        UI != UE;) {
1152     // Grab the use before incrementing the iterator.
1153     Use &U = *UI;
1154     // Increment the iterator before removing the use from the list.
1155     ++UI;
1156     if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1157       if (I->getParent() != &EntryBB)
1158         SetjmpTableSSA.RewriteUse(U);
1159   }
1160   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1161        UI != UE;) {
1162     Use &U = *UI;
1163     ++UI;
1164     if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1165       if (I->getParent() != &EntryBB)
1166         SetjmpTableSizeSSA.RewriteUse(U);
1167   }
1168 
1169   // Finally, our modifications to the cfg can break dominance of SSA variables.
1170   // For example, in this code,
1171   // if (x()) { .. setjmp() .. }
1172   // if (y()) { .. longjmp() .. }
1173   // We must split the longjmp block, and it can jump into the block splitted
1174   // from setjmp one. But that means that when we split the setjmp block, it's
1175   // first part no longer dominates its second part - there is a theoretically
1176   // possible control flow path where x() is false, then y() is true and we
1177   // reach the second part of the setjmp block, without ever reaching the first
1178   // part. So, we rebuild SSA form here.
1179   rebuildSSA(F);
1180   return true;
1181 }
1182