1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file lowers exception-related instructions and setjmp/longjmp 12 /// function calls in order to use Emscripten's JavaScript try and catch 13 /// mechanism. 14 /// 15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 16 /// try and catch syntax and relevant exception-related libraries implemented 17 /// in JavaScript glue code that will be produced by Emscripten. This is similar 18 /// to the current Emscripten asm.js exception handling in fastcomp. For 19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 20 /// (Location: https://github.com/kripken/emscripten-fastcomp) 21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 23 /// lib/Target/JSBackend/JSBackend.cpp 24 /// lib/Target/JSBackend/CallHandlers.h 25 /// 26 /// * Exception handling 27 /// This pass lowers invokes and landingpads into library functions in JS glue 28 /// code. Invokes are lowered into function wrappers called invoke wrappers that 29 /// exist in JS side, which wraps the original function call with JS try-catch. 30 /// If an exception occurred, cxa_throw() function in JS side sets some 31 /// variables (see below) so we can check whether an exception occurred from 32 /// wasm code and handle it appropriately. 33 /// 34 /// * Setjmp-longjmp handling 35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 36 /// The idea is that each block with a setjmp is broken up into two parts: the 37 /// part containing setjmp and the part right after the setjmp. The latter part 38 /// is either reached from the setjmp, or later from a longjmp. To handle the 39 /// longjmp, all calls that might longjmp are also called using invoke wrappers 40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 41 /// we can check / whether a longjmp occurred from wasm code. Each block with a 42 /// function call that might longjmp is also split up after the longjmp call. 43 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 44 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 45 /// We assume setjmp-longjmp handling always run after EH handling, which means 46 /// we don't expect any exception-related instructions when SjLj runs. 47 /// FIXME Currently this scheme does not support indirect call of setjmp, 48 /// because of the limitation of the scheme itself. fastcomp does not support it 49 /// either. 50 /// 51 /// In detail, this pass does following things: 52 /// 53 /// 1) Create three global variables: __THREW__, __threwValue, and __tempRet0. 54 /// __tempRet0 will be set within __cxa_find_matching_catch() function in 55 /// JS library, and __THREW__ and __threwValue will be set in invoke wrappers 56 /// in JS glue code. For what invoke wrappers are, refer to 3). These 57 /// variables are used for both exceptions and setjmp/longjmps. 58 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 59 /// means nothing occurred, 1 means an exception occurred, and other numbers 60 /// mean a longjmp occurred. In the case of longjmp, threwValue variable 61 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 62 /// In exception handling, __tempRet0 indicates the type of an exception 63 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 64 /// function. 65 /// 66 /// * Exception handling 67 /// 68 /// 2) Create setThrew and setTempRet0 functions. 69 /// The global variables created in 1) will exist in wasm address space, 70 /// but their values should be set in JS code, so we provide these functions 71 /// as interfaces to JS glue code. These functions are equivalent to the 72 /// following JS functions, which actually exist in asm.js version of JS 73 /// library. 74 /// 75 /// function setThrew(threw, value) { 76 /// if (__THREW__ == 0) { 77 /// __THREW__ = threw; 78 /// __threwValue = value; 79 /// } 80 /// } 81 /// 82 /// function setTempRet0(value) { 83 /// __tempRet0 = value; 84 /// } 85 /// 86 /// 3) Lower 87 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 88 /// into 89 /// __THREW__ = 0; 90 /// call @invoke_SIG(func, arg1, arg2) 91 /// %__THREW__.val = __THREW__; 92 /// __THREW__ = 0; 93 /// br %__THREW__.val, label %lpad, label %invoke.cont 94 /// SIG is a mangled string generated based on the LLVM IR-level function 95 /// signature. After LLVM IR types are lowered to the target wasm types, 96 /// the names for these wrappers will change based on wasm types as well, 97 /// as in invoke_vi (function takes an int and returns void). The bodies of 98 /// these wrappers will be generated in JS glue code, and inside those 99 /// wrappers we use JS try-catch to generate actual exception effects. It 100 /// also calls the original callee function. An example wrapper in JS code 101 /// would look like this: 102 /// function invoke_vi(index,a1) { 103 /// try { 104 /// Module["dynCall_vi"](index,a1); // This calls original callee 105 /// } catch(e) { 106 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 107 /// asm["setThrew"](1, 0); // setThrew is called here 108 /// } 109 /// } 110 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 111 /// so we can jump to the right BB based on this value. 112 /// 113 /// 4) Lower 114 /// %val = landingpad catch c1 catch c2 catch c3 ... 115 /// ... use %val ... 116 /// into 117 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 118 /// %val = {%fmc, __tempRet0} 119 /// ... use %val ... 120 /// Here N is a number calculated based on the number of clauses. 121 /// Global variable __tempRet0 is set within __cxa_find_matching_catch() in 122 /// JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// 7) In the function entry that calls setjmp, initialize setjmpTable and 139 /// sejmpTableSize as follows: 140 /// setjmpTableSize = 4; 141 /// setjmpTable = (int *) malloc(40); 142 /// setjmpTable[0] = 0; 143 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 144 /// code. 145 /// 146 /// 8) Lower 147 /// setjmp(buf) 148 /// into 149 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 150 /// setjmpTableSize = __tempRet0; 151 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 152 /// is incrementally assigned from 0) and its label (a unique number that 153 /// represents each callsite of setjmp). When we need more entries in 154 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 155 /// return the new table address, and assign the new table size in 156 /// __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf. 157 /// A BB with setjmp is split into two after setjmp call in order to make the 158 /// post-setjmp BB the possible destination of longjmp BB. 159 /// 160 /// 9) Lower 161 /// longjmp(buf, value) 162 /// into 163 /// emscripten_longjmp_jmpbuf(buf, value) 164 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 165 /// 166 /// 10) Lower every call that might longjmp into 167 /// __THREW__ = 0; 168 /// call @invoke_SIG(func, arg1, arg2) 169 /// %__THREW__.val = __THREW__; 170 /// __THREW__ = 0; 171 /// if (%__THREW__.val != 0 & threwValue != 0) { 172 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 173 /// setjmpTableSize); 174 /// if (%label == 0) 175 /// emscripten_longjmp(%__THREW__.val, threwValue); 176 /// __tempRet0 = threwValue; 177 /// } else { 178 /// %label = -1; 179 /// } 180 /// longjmp_result = __tempRet0; 181 /// switch label { 182 /// label 1: post-setjmp BB 1 183 /// label 2: post-setjmp BB 2 184 /// ... 185 /// default: splited next BB 186 /// } 187 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 188 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 189 /// will be the address of matching jmp_buf buffer and threwValue be the 190 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 191 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 192 /// each setjmp callsite. Label 0 means this longjmp buffer does not 193 /// correspond to one of the setjmp callsites in this function, so in this 194 /// case we just chain the longjmp to the caller. (Here we call 195 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 196 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 197 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 198 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 199 /// can't translate an int value to a jmp_buf.) 200 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 201 /// post-setjmp BB based on the label. 202 /// 203 ///===----------------------------------------------------------------------===// 204 205 #include "WebAssembly.h" 206 #include "llvm/IR/CallSite.h" 207 #include "llvm/IR/Dominators.h" 208 #include "llvm/IR/IRBuilder.h" 209 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 210 #include "llvm/Transforms/Utils/SSAUpdater.h" 211 212 using namespace llvm; 213 214 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 215 216 static cl::list<std::string> 217 EHWhitelist("emscripten-cxx-exceptions-whitelist", 218 cl::desc("The list of function names in which Emscripten-style " 219 "exception handling is enabled (see emscripten " 220 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 221 cl::CommaSeparated); 222 223 namespace { 224 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 225 static const char *ThrewGVName; 226 static const char *ThrewValueGVName; 227 static const char *TempRet0GVName; 228 static const char *ResumeFName; 229 static const char *EHTypeIDFName; 230 static const char *SetThrewFName; 231 static const char *SetTempRet0FName; 232 static const char *EmLongjmpFName; 233 static const char *EmLongjmpJmpbufFName; 234 static const char *SaveSetjmpFName; 235 static const char *TestSetjmpFName; 236 static const char *FindMatchingCatchPrefix; 237 static const char *InvokePrefix; 238 239 bool EnableEH; // Enable exception handling 240 bool EnableSjLj; // Enable setjmp/longjmp handling 241 242 GlobalVariable *ThrewGV; 243 GlobalVariable *ThrewValueGV; 244 GlobalVariable *TempRet0GV; 245 Function *ResumeF; 246 Function *EHTypeIDF; 247 Function *EmLongjmpF; 248 Function *EmLongjmpJmpbufF; 249 Function *SaveSetjmpF; 250 Function *TestSetjmpF; 251 252 // __cxa_find_matching_catch_N functions. 253 // Indexed by the number of clauses in an original landingpad instruction. 254 DenseMap<int, Function *> FindMatchingCatches; 255 // Map of <function signature string, invoke_ wrappers> 256 StringMap<Function *> InvokeWrappers; 257 // Set of whitelisted function names for exception handling 258 std::set<std::string> EHWhitelistSet; 259 260 const char *getPassName() const override { 261 return "WebAssembly Lower Emscripten Exceptions"; 262 } 263 264 bool runEHOnFunction(Function &F); 265 bool runSjLjOnFunction(Function &F); 266 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 267 268 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 269 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 270 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 271 Value *&LongjmpResult, BasicBlock *&EndBB); 272 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 273 274 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 275 bool canLongjmp(Module &M, const Value *Callee) const; 276 277 void createSetThrewFunction(Module &M); 278 void createSetTempRet0Function(Module &M); 279 280 void rebuildSSA(Function &F); 281 282 public: 283 static char ID; 284 285 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 286 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj), 287 ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr), 288 ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr), 289 EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) { 290 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 291 } 292 bool runOnModule(Module &M) override; 293 294 void getAnalysisUsage(AnalysisUsage &AU) const override { 295 AU.addRequired<DominatorTreeWrapperPass>(); 296 } 297 }; 298 } // End anonymous namespace 299 300 const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewGVName = "__THREW__"; 301 const char *WebAssemblyLowerEmscriptenEHSjLj::ThrewValueGVName = "__threwValue"; 302 const char *WebAssemblyLowerEmscriptenEHSjLj::TempRet0GVName = "__tempRet0"; 303 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException"; 304 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName = 305 "llvm_eh_typeid_for"; 306 const char *WebAssemblyLowerEmscriptenEHSjLj::SetThrewFName = "setThrew"; 307 const char *WebAssemblyLowerEmscriptenEHSjLj::SetTempRet0FName = "setTempRet0"; 308 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName = 309 "emscripten_longjmp"; 310 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName = 311 "emscripten_longjmp_jmpbuf"; 312 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp"; 313 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp"; 314 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix = 315 "__cxa_find_matching_catch_"; 316 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_"; 317 318 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 319 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 320 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 321 false, false) 322 323 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 324 bool EnableSjLj) { 325 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 326 } 327 328 static bool canThrow(const Value *V) { 329 if (const auto *F = dyn_cast<const Function>(V)) { 330 // Intrinsics cannot throw 331 if (F->isIntrinsic()) 332 return false; 333 StringRef Name = F->getName(); 334 // leave setjmp and longjmp (mostly) alone, we process them properly later 335 if (Name == "setjmp" || Name == "longjmp") 336 return false; 337 return !F->doesNotThrow(); 338 } 339 // not a function, so an indirect call - can throw, we can't tell 340 return true; 341 } 342 343 // Returns an available name for a global value. 344 // If the proposed name already exists in the module, adds '_' at the end of 345 // the name until the name is available. 346 static inline std::string createGlobalValueName(const Module &M, 347 const std::string &Propose) { 348 std::string Name = Propose; 349 while (M.getNamedGlobal(Name)) 350 Name += "_"; 351 return Name; 352 } 353 354 // Simple function name mangler. 355 // This function simply takes LLVM's string representation of parameter types 356 // and concatenate them with '_'. There are non-alphanumeric characters but llc 357 // is ok with it, and we need to postprocess these names after the lowering 358 // phase anyway. 359 static std::string getSignature(FunctionType *FTy) { 360 std::string Sig; 361 raw_string_ostream OS(Sig); 362 OS << *FTy->getReturnType(); 363 for (Type *ParamTy : FTy->params()) 364 OS << "_" << *ParamTy; 365 if (FTy->isVarArg()) 366 OS << "_..."; 367 Sig = OS.str(); 368 Sig.erase(remove_if(Sig, isspace), Sig.end()); 369 // When s2wasm parses .s file, a comma means the end of an argument. So a 370 // mangled function name can contain any character but a comma. 371 std::replace(Sig.begin(), Sig.end(), ',', '.'); 372 return Sig; 373 } 374 375 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 376 // This is because a landingpad instruction contains two more arguments, a 377 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 378 // functions are named after the number of arguments in the original landingpad 379 // instruction. 380 Function * 381 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 382 unsigned NumClauses) { 383 if (FindMatchingCatches.count(NumClauses)) 384 return FindMatchingCatches[NumClauses]; 385 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 386 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 387 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 388 Function *F = 389 Function::Create(FTy, GlobalValue::ExternalLinkage, 390 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M); 391 FindMatchingCatches[NumClauses] = F; 392 return F; 393 } 394 395 // Generate invoke wrapper seqence with preamble and postamble 396 // Preamble: 397 // __THREW__ = 0; 398 // Postamble: 399 // %__THREW__.val = __THREW__; __THREW__ = 0; 400 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 401 // whether longjmp occurred), for future use. 402 template <typename CallOrInvoke> 403 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 404 LLVMContext &C = CI->getModule()->getContext(); 405 406 // If we are calling a function that is noreturn, we must remove that 407 // attribute. The code we insert here does expect it to return, after we 408 // catch the exception. 409 if (CI->doesNotReturn()) { 410 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 411 F->removeFnAttr(Attribute::NoReturn); 412 CI->removeAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn); 413 } 414 415 IRBuilder<> IRB(C); 416 IRB.SetInsertPoint(CI); 417 418 // Pre-invoke 419 // __THREW__ = 0; 420 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 421 422 // Invoke function wrapper in JavaScript 423 SmallVector<Value *, 16> Args; 424 // Put the pointer to the callee as first argument, so it can be called 425 // within the invoke wrapper later 426 Args.push_back(CI->getCalledValue()); 427 Args.append(CI->arg_begin(), CI->arg_end()); 428 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 429 NewCall->takeName(CI); 430 NewCall->setCallingConv(CI->getCallingConv()); 431 NewCall->setDebugLoc(CI->getDebugLoc()); 432 433 // Because we added the pointer to the callee as first argument, all 434 // argument attribute indices have to be incremented by one. 435 SmallVector<AttributeSet, 8> AttributesVec; 436 const AttributeSet &InvokePAL = CI->getAttributes(); 437 CallSite::arg_iterator AI = CI->arg_begin(); 438 unsigned i = 1; // Argument attribute index starts from 1 439 for (unsigned e = CI->getNumArgOperands(); i <= e; ++AI, ++i) { 440 if (InvokePAL.hasAttributes(i)) { 441 AttrBuilder B(InvokePAL, i); 442 AttributesVec.push_back(AttributeSet::get(C, i + 1, B)); 443 } 444 } 445 // Add any return attributes. 446 if (InvokePAL.hasAttributes(AttributeSet::ReturnIndex)) 447 AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getRetAttributes())); 448 // Add any function attributes. 449 if (InvokePAL.hasAttributes(AttributeSet::FunctionIndex)) 450 AttributesVec.push_back(AttributeSet::get(C, InvokePAL.getFnAttributes())); 451 // Reconstruct the AttributesList based on the vector we constructed. 452 AttributeSet NewCallPAL = AttributeSet::get(C, AttributesVec); 453 NewCall->setAttributes(NewCallPAL); 454 455 CI->replaceAllUsesWith(NewCall); 456 457 // Post-invoke 458 // %__THREW__.val = __THREW__; __THREW__ = 0; 459 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 460 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 461 return Threw; 462 } 463 464 // Get matching invoke wrapper based on callee signature 465 template <typename CallOrInvoke> 466 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 467 Module *M = CI->getModule(); 468 SmallVector<Type *, 16> ArgTys; 469 Value *Callee = CI->getCalledValue(); 470 FunctionType *CalleeFTy; 471 if (auto *F = dyn_cast<Function>(Callee)) 472 CalleeFTy = F->getFunctionType(); 473 else { 474 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 475 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 476 } 477 478 std::string Sig = getSignature(CalleeFTy); 479 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 480 return InvokeWrappers[Sig]; 481 482 // Put the pointer to the callee as first argument 483 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 484 // Add argument types 485 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 486 487 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 488 CalleeFTy->isVarArg()); 489 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage, 490 InvokePrefix + Sig, M); 491 InvokeWrappers[Sig] = F; 492 return F; 493 } 494 495 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 496 const Value *Callee) const { 497 if (auto *CalleeF = dyn_cast<Function>(Callee)) 498 if (CalleeF->isIntrinsic()) 499 return false; 500 501 // The reason we include malloc/free here is to exclude the malloc/free 502 // calls generated in setjmp prep / cleanup routines. 503 Function *SetjmpF = M.getFunction("setjmp"); 504 Function *MallocF = M.getFunction("malloc"); 505 Function *FreeF = M.getFunction("free"); 506 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF) 507 return false; 508 509 // There are functions in JS glue code 510 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF || 511 Callee == TestSetjmpF) 512 return false; 513 514 // __cxa_find_matching_catch_N functions cannot longjmp 515 if (Callee->getName().startswith(FindMatchingCatchPrefix)) 516 return false; 517 518 // Exception-catching related functions 519 Function *BeginCatchF = M.getFunction("__cxa_begin_catch"); 520 Function *EndCatchF = M.getFunction("__cxa_end_catch"); 521 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception"); 522 Function *ThrowF = M.getFunction("__cxa_throw"); 523 Function *TerminateF = M.getFunction("__clang_call_terminate"); 524 if (Callee == BeginCatchF || Callee == EndCatchF || 525 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF) 526 return false; 527 528 // Otherwise we don't know 529 return true; 530 } 531 532 // Generate testSetjmp function call seqence with preamble and postamble. 533 // The code this generates is equivalent to the following JavaScript code: 534 // if (%__THREW__.val != 0 & threwValue != 0) { 535 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 536 // if (%label == 0) 537 // emscripten_longjmp(%__THREW__.val, threwValue); 538 // __tempRet0 = threwValue; 539 // } else { 540 // %label = -1; 541 // } 542 // %longjmp_result = __tempRet0; 543 // 544 // As output parameters. returns %label, %longjmp_result, and the BB the last 545 // instruction (%longjmp_result = ...) is in. 546 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 547 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 548 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 549 BasicBlock *&EndBB) { 550 Function *F = BB->getParent(); 551 LLVMContext &C = BB->getModule()->getContext(); 552 IRBuilder<> IRB(C); 553 IRB.SetInsertPoint(InsertPt); 554 555 // if (%__THREW__.val != 0 & threwValue != 0) 556 IRB.SetInsertPoint(BB); 557 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 558 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 559 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 560 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 561 Value *ThrewValue = 562 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val"); 563 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 564 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 565 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 566 567 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 568 // if (%label == 0) 569 IRB.SetInsertPoint(ThenBB1); 570 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 571 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 572 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 573 Threw->getName() + ".i32p"); 574 Value *LoadedThrew = 575 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded"); 576 Value *ThenLabel = IRB.CreateCall( 577 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 578 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 579 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 580 581 // emscripten_longjmp(%__THREW__.val, threwValue); 582 IRB.SetInsertPoint(ThenBB2); 583 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 584 IRB.CreateUnreachable(); 585 586 // __tempRet0 = threwValue; 587 IRB.SetInsertPoint(EndBB2); 588 IRB.CreateStore(ThrewValue, TempRet0GV); 589 IRB.CreateBr(EndBB1); 590 591 IRB.SetInsertPoint(ElseBB1); 592 IRB.CreateBr(EndBB1); 593 594 // longjmp_result = __tempRet0; 595 IRB.SetInsertPoint(EndBB1); 596 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 597 LabelPHI->addIncoming(ThenLabel, EndBB2); 598 599 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 600 601 // Output parameter assignment 602 Label = LabelPHI; 603 EndBB = EndBB1; 604 LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result"); 605 } 606 607 // Create setThrew function 608 // function setThrew(threw, value) { 609 // if (__THREW__ == 0) { 610 // __THREW__ = threw; 611 // __threwValue = value; 612 // } 613 // } 614 void WebAssemblyLowerEmscriptenEHSjLj::createSetThrewFunction(Module &M) { 615 LLVMContext &C = M.getContext(); 616 IRBuilder<> IRB(C); 617 618 assert(!M.getNamedGlobal(SetThrewFName) && "setThrew already exists"); 619 Type *Params[] = {IRB.getInt32Ty(), IRB.getInt32Ty()}; 620 FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false); 621 Function *F = 622 Function::Create(FTy, GlobalValue::ExternalLinkage, SetThrewFName, &M); 623 Argument *Arg1 = &*(F->arg_begin()); 624 Argument *Arg2 = &*(++F->arg_begin()); 625 Arg1->setName("threw"); 626 Arg2->setName("value"); 627 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 628 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", F); 629 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", F); 630 631 IRB.SetInsertPoint(EntryBB); 632 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val"); 633 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(0), "cmp"); 634 IRB.CreateCondBr(Cmp, ThenBB, EndBB); 635 636 IRB.SetInsertPoint(ThenBB); 637 IRB.CreateStore(Arg1, ThrewGV); 638 IRB.CreateStore(Arg2, ThrewValueGV); 639 IRB.CreateBr(EndBB); 640 641 IRB.SetInsertPoint(EndBB); 642 IRB.CreateRetVoid(); 643 } 644 645 // Create setTempRet0 function 646 // function setTempRet0(value) { 647 // __tempRet0 = value; 648 // } 649 void WebAssemblyLowerEmscriptenEHSjLj::createSetTempRet0Function(Module &M) { 650 LLVMContext &C = M.getContext(); 651 IRBuilder<> IRB(C); 652 653 assert(!M.getNamedGlobal(SetTempRet0FName) && "setTempRet0 already exists"); 654 Type *Params[] = {IRB.getInt32Ty()}; 655 FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false); 656 Function *F = 657 Function::Create(FTy, GlobalValue::ExternalLinkage, SetTempRet0FName, &M); 658 F->arg_begin()->setName("value"); 659 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); 660 IRB.SetInsertPoint(EntryBB); 661 IRB.CreateStore(&*F->arg_begin(), TempRet0GV); 662 IRB.CreateRetVoid(); 663 } 664 665 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 666 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 667 DT.recalculate(F); // CFG has been changed 668 SSAUpdater SSA; 669 for (BasicBlock &BB : F) { 670 for (Instruction &I : BB) { 671 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 672 Use &U = *UI; 673 ++UI; 674 SSA.Initialize(I.getType(), I.getName()); 675 SSA.AddAvailableValue(&BB, &I); 676 Instruction *User = cast<Instruction>(U.getUser()); 677 if (User->getParent() == &BB) 678 continue; 679 680 if (PHINode *UserPN = dyn_cast<PHINode>(User)) 681 if (UserPN->getIncomingBlock(U) == &BB) 682 continue; 683 684 if (DT.dominates(&I, User)) 685 continue; 686 SSA.RewriteUseAfterInsertions(U); 687 } 688 } 689 } 690 } 691 692 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 693 LLVMContext &C = M.getContext(); 694 IRBuilder<> IRB(C); 695 696 Function *SetjmpF = M.getFunction("setjmp"); 697 Function *LongjmpF = M.getFunction("longjmp"); 698 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 699 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 700 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 701 702 // Create global variables __THREW__, threwValue, and __tempRet0, which are 703 // used in common for both exception handling and setjmp/longjmp handling 704 ThrewGV = new GlobalVariable(M, IRB.getInt32Ty(), false, 705 GlobalValue::ExternalLinkage, IRB.getInt32(0), 706 createGlobalValueName(M, ThrewGVName)); 707 ThrewValueGV = new GlobalVariable( 708 M, IRB.getInt32Ty(), false, GlobalValue::ExternalLinkage, IRB.getInt32(0), 709 createGlobalValueName(M, ThrewValueGVName)); 710 TempRet0GV = new GlobalVariable(M, IRB.getInt32Ty(), false, 711 GlobalValue::ExternalLinkage, IRB.getInt32(0), 712 createGlobalValueName(M, TempRet0GVName)); 713 714 bool Changed = false; 715 716 // Exception handling 717 if (EnableEH) { 718 // Register __resumeException function 719 FunctionType *ResumeFTy = 720 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 721 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 722 ResumeFName, &M); 723 724 // Register llvm_eh_typeid_for function 725 FunctionType *EHTypeIDTy = 726 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 727 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 728 EHTypeIDFName, &M); 729 730 for (Function &F : M) { 731 if (F.isDeclaration()) 732 continue; 733 Changed |= runEHOnFunction(F); 734 } 735 } 736 737 // Setjmp/longjmp handling 738 if (DoSjLj) { 739 Changed = true; // We have setjmp or longjmp somewhere 740 741 Function *MallocF = M.getFunction("malloc"); 742 Function *FreeF = M.getFunction("free"); 743 if (!MallocF || !FreeF) 744 report_fatal_error( 745 "malloc and free must be linked into the module if setjmp is used"); 746 747 // Register saveSetjmp function 748 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 749 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 750 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 751 IRB.getInt32Ty()}; 752 FunctionType *FTy = 753 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 754 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 755 SaveSetjmpFName, &M); 756 757 // Register testSetjmp function 758 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 759 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 760 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 761 TestSetjmpFName, &M); 762 763 if (LongjmpF) { 764 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 765 // defined in JS code 766 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 767 GlobalValue::ExternalLinkage, 768 EmLongjmpJmpbufFName, &M); 769 770 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 771 } 772 FTy = FunctionType::get(IRB.getVoidTy(), 773 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 774 EmLongjmpF = 775 Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M); 776 777 // Only traverse functions that uses setjmp in order not to insert 778 // unnecessary prep / cleanup code in every function 779 SmallPtrSet<Function *, 8> SetjmpUsers; 780 for (User *U : SetjmpF->users()) { 781 auto *UI = cast<Instruction>(U); 782 SetjmpUsers.insert(UI->getFunction()); 783 } 784 for (Function *F : SetjmpUsers) 785 runSjLjOnFunction(*F); 786 } 787 788 if (!Changed) { 789 // Delete unused global variables and functions 790 ThrewGV->eraseFromParent(); 791 ThrewValueGV->eraseFromParent(); 792 TempRet0GV->eraseFromParent(); 793 if (ResumeF) 794 ResumeF->eraseFromParent(); 795 if (EHTypeIDF) 796 EHTypeIDF->eraseFromParent(); 797 if (EmLongjmpF) 798 EmLongjmpF->eraseFromParent(); 799 if (SaveSetjmpF) 800 SaveSetjmpF->eraseFromParent(); 801 if (TestSetjmpF) 802 TestSetjmpF->eraseFromParent(); 803 return false; 804 } 805 806 // If we have made any changes while doing exception handling or 807 // setjmp/longjmp handling, we have to create these functions for JavaScript 808 // to call. 809 createSetThrewFunction(M); 810 createSetTempRet0Function(M); 811 812 return true; 813 } 814 815 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 816 Module &M = *F.getParent(); 817 LLVMContext &C = F.getContext(); 818 IRBuilder<> IRB(C); 819 bool Changed = false; 820 SmallVector<Instruction *, 64> ToErase; 821 SmallPtrSet<LandingPadInst *, 32> LandingPads; 822 bool AllowExceptions = 823 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 824 825 for (BasicBlock &BB : F) { 826 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 827 if (!II) 828 continue; 829 Changed = true; 830 LandingPads.insert(II->getLandingPadInst()); 831 IRB.SetInsertPoint(II); 832 833 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 834 if (NeedInvoke) { 835 // Wrap invoke with invoke wrapper and generate preamble/postamble 836 Value *Threw = wrapInvoke(II); 837 ToErase.push_back(II); 838 839 // Insert a branch based on __THREW__ variable 840 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 841 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 842 843 } else { 844 // This can't throw, and we don't need this invoke, just replace it with a 845 // call+branch 846 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 847 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args); 848 NewCall->takeName(II); 849 NewCall->setCallingConv(II->getCallingConv()); 850 NewCall->setDebugLoc(II->getDebugLoc()); 851 NewCall->setAttributes(II->getAttributes()); 852 II->replaceAllUsesWith(NewCall); 853 ToErase.push_back(II); 854 855 IRB.CreateBr(II->getNormalDest()); 856 857 // Remove any PHI node entries from the exception destination 858 II->getUnwindDest()->removePredecessor(&BB); 859 } 860 } 861 862 // Process resume instructions 863 for (BasicBlock &BB : F) { 864 // Scan the body of the basic block for resumes 865 for (Instruction &I : BB) { 866 auto *RI = dyn_cast<ResumeInst>(&I); 867 if (!RI) 868 continue; 869 870 // Split the input into legal values 871 Value *Input = RI->getValue(); 872 IRB.SetInsertPoint(RI); 873 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 874 // Create a call to __resumeException function 875 IRB.CreateCall(ResumeF, {Low}); 876 // Add a terminator to the block 877 IRB.CreateUnreachable(); 878 ToErase.push_back(RI); 879 } 880 } 881 882 // Process llvm.eh.typeid.for intrinsics 883 for (BasicBlock &BB : F) { 884 for (Instruction &I : BB) { 885 auto *CI = dyn_cast<CallInst>(&I); 886 if (!CI) 887 continue; 888 const Function *Callee = CI->getCalledFunction(); 889 if (!Callee) 890 continue; 891 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 892 continue; 893 894 IRB.SetInsertPoint(CI); 895 CallInst *NewCI = 896 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 897 CI->replaceAllUsesWith(NewCI); 898 ToErase.push_back(CI); 899 } 900 } 901 902 // Look for orphan landingpads, can occur in blocks with no predecesors 903 for (BasicBlock &BB : F) { 904 Instruction *I = BB.getFirstNonPHI(); 905 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 906 LandingPads.insert(LPI); 907 } 908 909 // Handle all the landingpad for this function together, as multiple invokes 910 // may share a single lp 911 for (LandingPadInst *LPI : LandingPads) { 912 IRB.SetInsertPoint(LPI); 913 SmallVector<Value *, 16> FMCArgs; 914 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) { 915 Constant *Clause = LPI->getClause(i); 916 // As a temporary workaround for the lack of aggregate varargs support 917 // in the interface between JS and wasm, break out filter operands into 918 // their component elements. 919 if (LPI->isFilter(i)) { 920 auto *ATy = cast<ArrayType>(Clause->getType()); 921 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) { 922 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter"); 923 FMCArgs.push_back(EV); 924 } 925 } else 926 FMCArgs.push_back(Clause); 927 } 928 929 // Create a call to __cxa_find_matching_catch_N function 930 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 931 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 932 Value *Undef = UndefValue::get(LPI->getType()); 933 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 934 Value *TempRet0 = 935 IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val"); 936 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 937 938 LPI->replaceAllUsesWith(Pair1); 939 ToErase.push_back(LPI); 940 } 941 942 // Erase everything we no longer need in this function 943 for (Instruction *I : ToErase) 944 I->eraseFromParent(); 945 946 return Changed; 947 } 948 949 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 950 Module &M = *F.getParent(); 951 LLVMContext &C = F.getContext(); 952 IRBuilder<> IRB(C); 953 SmallVector<Instruction *, 64> ToErase; 954 // Vector of %setjmpTable values 955 std::vector<Instruction *> SetjmpTableInsts; 956 // Vector of %setjmpTableSize values 957 std::vector<Instruction *> SetjmpTableSizeInsts; 958 959 // Setjmp preparation 960 961 // This instruction effectively means %setjmpTableSize = 4. 962 // We create this as an instruction intentionally, and we don't want to fold 963 // this instruction to a constant 4, because this value will be used in 964 // SSAUpdater.AddAvailableValue(...) later. 965 BasicBlock &EntryBB = F.getEntryBlock(); 966 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 967 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 968 &*EntryBB.getFirstInsertionPt()); 969 // setjmpTable = (int *) malloc(40); 970 Instruction *SetjmpTable = CallInst::CreateMalloc( 971 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 972 nullptr, nullptr, "setjmpTable"); 973 // setjmpTable[0] = 0; 974 IRB.SetInsertPoint(SetjmpTableSize); 975 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 976 SetjmpTableInsts.push_back(SetjmpTable); 977 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 978 979 // Setjmp transformation 980 std::vector<PHINode *> SetjmpRetPHIs; 981 Function *SetjmpF = M.getFunction("setjmp"); 982 for (User *U : SetjmpF->users()) { 983 auto *CI = dyn_cast<CallInst>(U); 984 if (!CI) 985 report_fatal_error("Does not support indirect calls to setjmp"); 986 987 BasicBlock *BB = CI->getParent(); 988 if (BB->getParent() != &F) // in other function 989 continue; 990 991 // The tail is everything right after the call, and will be reached once 992 // when setjmp is called, and later when longjmp returns to the setjmp 993 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 994 // Add a phi to the tail, which will be the output of setjmp, which 995 // indicates if this is the first call or a longjmp back. The phi directly 996 // uses the right value based on where we arrive from 997 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 998 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 999 1000 // setjmp initial call returns 0 1001 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 1002 // The proper output is now this, not the setjmp call itself 1003 CI->replaceAllUsesWith(SetjmpRet); 1004 // longjmp returns to the setjmp will add themselves to this phi 1005 SetjmpRetPHIs.push_back(SetjmpRet); 1006 1007 // Fix call target 1008 // Our index in the function is our place in the array + 1 to avoid index 1009 // 0, because index 0 means the longjmp is not ours to handle. 1010 IRB.SetInsertPoint(CI); 1011 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 1012 SetjmpTable, SetjmpTableSize}; 1013 Instruction *NewSetjmpTable = 1014 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 1015 Instruction *NewSetjmpTableSize = 1016 IRB.CreateLoad(TempRet0GV, "setjmpTableSize"); 1017 SetjmpTableInsts.push_back(NewSetjmpTable); 1018 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 1019 ToErase.push_back(CI); 1020 } 1021 1022 // Update each call that can longjmp so it can return to a setjmp where 1023 // relevant. 1024 1025 // Because we are creating new BBs while processing and don't want to make 1026 // all these newly created BBs candidates again for longjmp processing, we 1027 // first make the vector of candidate BBs. 1028 std::vector<BasicBlock *> BBs; 1029 for (BasicBlock &BB : F) 1030 BBs.push_back(&BB); 1031 1032 // BBs.size() will change within the loop, so we query it every time 1033 for (unsigned i = 0; i < BBs.size(); i++) { 1034 BasicBlock *BB = BBs[i]; 1035 for (Instruction &I : *BB) { 1036 assert(!isa<InvokeInst>(&I)); 1037 auto *CI = dyn_cast<CallInst>(&I); 1038 if (!CI) 1039 continue; 1040 1041 const Value *Callee = CI->getCalledValue(); 1042 if (!canLongjmp(M, Callee)) 1043 continue; 1044 1045 Value *Threw = nullptr; 1046 BasicBlock *Tail; 1047 if (Callee->getName().startswith(InvokePrefix)) { 1048 // If invoke wrapper has already been generated for this call in 1049 // previous EH phase, search for the load instruction 1050 // %__THREW__.val = __THREW__; 1051 // in postamble after the invoke wrapper call 1052 LoadInst *ThrewLI = nullptr; 1053 StoreInst *ThrewResetSI = nullptr; 1054 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 1055 I != IE; ++I) { 1056 if (auto *LI = dyn_cast<LoadInst>(I)) 1057 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 1058 if (GV == ThrewGV) { 1059 Threw = ThrewLI = LI; 1060 break; 1061 } 1062 } 1063 // Search for the store instruction after the load above 1064 // __THREW__ = 0; 1065 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 1066 I != IE; ++I) { 1067 if (auto *SI = dyn_cast<StoreInst>(I)) 1068 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 1069 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1070 ThrewResetSI = SI; 1071 break; 1072 } 1073 } 1074 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1075 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1076 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1077 1078 } else { 1079 // Wrap call with invoke wrapper and generate preamble/postamble 1080 Threw = wrapInvoke(CI); 1081 ToErase.push_back(CI); 1082 Tail = SplitBlock(BB, CI->getNextNode()); 1083 } 1084 1085 // We need to replace the terminator in Tail - SplitBlock makes BB go 1086 // straight to Tail, we need to check if a longjmp occurred, and go to the 1087 // right setjmp-tail if so 1088 ToErase.push_back(BB->getTerminator()); 1089 1090 // Generate a function call to testSetjmp function and preamble/postamble 1091 // code to figure out (1) whether longjmp occurred (2) if longjmp 1092 // occurred, which setjmp it corresponds to 1093 Value *Label = nullptr; 1094 Value *LongjmpResult = nullptr; 1095 BasicBlock *EndBB = nullptr; 1096 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1097 LongjmpResult, EndBB); 1098 assert(Label && LongjmpResult && EndBB); 1099 1100 // Create switch instruction 1101 IRB.SetInsertPoint(EndBB); 1102 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1103 // -1 means no longjmp happened, continue normally (will hit the default 1104 // switch case). 0 means a longjmp that is not ours to handle, needs a 1105 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1106 // 0). 1107 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) { 1108 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent()); 1109 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB); 1110 } 1111 1112 // We are splitting the block here, and must continue to find other calls 1113 // in the block - which is now split. so continue to traverse in the Tail 1114 BBs.push_back(Tail); 1115 } 1116 } 1117 1118 // Erase everything we no longer need in this function 1119 for (Instruction *I : ToErase) 1120 I->eraseFromParent(); 1121 1122 // Free setjmpTable buffer before each return instruction 1123 for (BasicBlock &BB : F) { 1124 TerminatorInst *TI = BB.getTerminator(); 1125 if (isa<ReturnInst>(TI)) 1126 CallInst::CreateFree(SetjmpTable, TI); 1127 } 1128 1129 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1130 // (when buffer reallocation occurs) 1131 // entry: 1132 // setjmpTableSize = 4; 1133 // setjmpTable = (int *) malloc(40); 1134 // setjmpTable[0] = 0; 1135 // ... 1136 // somebb: 1137 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1138 // setjmpTableSize = __tempRet0; 1139 // So we need to make sure the SSA for these variables is valid so that every 1140 // saveSetjmp and testSetjmp calls have the correct arguments. 1141 SSAUpdater SetjmpTableSSA; 1142 SSAUpdater SetjmpTableSizeSSA; 1143 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1144 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1145 for (Instruction *I : SetjmpTableInsts) 1146 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1147 for (Instruction *I : SetjmpTableSizeInsts) 1148 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1149 1150 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1151 UI != UE;) { 1152 // Grab the use before incrementing the iterator. 1153 Use &U = *UI; 1154 // Increment the iterator before removing the use from the list. 1155 ++UI; 1156 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1157 if (I->getParent() != &EntryBB) 1158 SetjmpTableSSA.RewriteUse(U); 1159 } 1160 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1161 UI != UE;) { 1162 Use &U = *UI; 1163 ++UI; 1164 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) 1165 if (I->getParent() != &EntryBB) 1166 SetjmpTableSizeSSA.RewriteUse(U); 1167 } 1168 1169 // Finally, our modifications to the cfg can break dominance of SSA variables. 1170 // For example, in this code, 1171 // if (x()) { .. setjmp() .. } 1172 // if (y()) { .. longjmp() .. } 1173 // We must split the longjmp block, and it can jump into the block splitted 1174 // from setjmp one. But that means that when we split the setjmp block, it's 1175 // first part no longer dominates its second part - there is a theoretically 1176 // possible control flow path where x() is false, then y() is true and we 1177 // reach the second part of the setjmp block, without ever reaching the first 1178 // part. So, we rebuild SSA form here. 1179 rebuildSSA(F); 1180 return true; 1181 } 1182